
WASTE DOCUMENTATION

Written by: Marco Piovanelli (<mailto:marco.piovanelli@pobox.com>)

Version: 1.3, January 1998

Copyright © 1993-1998 Marco Piovanelli

This document describes WASTE, a WorldScript™-Aware Styled Text Engine for the Macintosh
which can be used as the basis for simple to moderately complex applications dealing with styled text.

WASTE has been designed from the very beginning to be compatible with TextEdit and TextEdit-
based applications, although not everything you can do with TextEdit can be done with WASTE and
vice versa.

The main features of WASTE are:

• Memory-based editor, with no limit imposed on text size.

• Requires System 7.0 or newer.

• WorldScript™-aware.

• Built-in undo routines.

• Built-in support for drag-and-drop text editing.

• Built-in support for inline input.

• A mechanism for embedding pictures, sounds and other “objects” in the text.

• Low-level hooks for customizing text drawing and measuring.

• Allows full justification of text.

• Uses offscreen graphics worlds to achieve smooth text redrawing.

• Supports command-clicking of URLs via Internet Config.

This document assumes that you are familiar with the TextEdit model and with text handling on the
Macintosh in general, including the Script Manager and the Text Services Manager. The best
introduction to the subject of text handling on the Macintosh platform is the book “Inside Macintosh:
Text”.

WASTE Documentation 1



A Brief Overview of WASTE

This section gives you a general overview of WASTE and of what it can do for your application. Since
WASTE is so similar to TextEdit, a special emphasis is given to those areas in which the two models
diverge.

WASTE Data Structures

WASTE header files contain very few type declarations, since all internal data structures are private
and cannot be accessed directly. There is no type declaration for the internal format of a WE instance,
the WASTE counterpart to a TextEdit edit record. Instead you refer to a WE instance via an opaque
reference. This allows future versions of WASTE to add new functionality and new data structures
painlessly, without breaking existing applications.

You should make no assumptions as to how style and line-layout information is represented
internally, but you can count on the text being stored as a single relocatable block, to which you can
obtain a handle. This maximizes compatibility with existing TextEdit-based applications which rely
heavily on this assumption.

Long Coordinates

To allow for text taller than 32,767 pixels (a serious limitation of the TextEdit model), WASTE uses
long (32-bit) coordinates to identify positions within the destination rectangle. This should not
constitute a problem for your application, but be careful if you use a vertical scroll bar!

WASTE comes with an extensive set of utility functions to deal with long coordinates.

How WASTE Supports Inline Input

Support for inline input is built in WASTE so that your application can be friendly to users of double-
byte script systems with a minimal contribution of code.

Starting from version 7.1 of the system software, applications interface to inline input methods
through the Text Services Manager (TSM). TSM routines for use by applications can be roughly
divided into two sets: those which refer to TSM documents and those which do not. WASTE is
designed to handle internally all routines from the first set, as a TSM document record is
automatically associated with each WE instance. Furthermore WASTE implements all required Apple
event handlers and is responsible for properly highlighting ranges in the active input area. Your
application retains responsibility for a set of just four calls, namely InitTSMAwareApplication,
CloseTSMAwareApplication, TSMEvent and SetTSMCursor.

Your application may optionally install callback routines to monitor calls to the main TSM Apple
event handler (kUpdateActiveInputArea).

Embedded Objects

Starting from version 1.1, WASTE implements a simple mechanism to embed “objects” in the text
stream as if they were ordinary glyphs. This mechanism is essentially meant for inline pictures, but
you can embed other data types as well, like sounds, and in a future version maybe even
QuickTime™ movies.

Embedded objects are referenced by opaque handles of type WEObjectReference. The properties of
an object are its type tag (e.g., “PICT”), its size (height and width, in pixels), a handle to the actual
object data (e.g., a picture handle for PICT objects) and an optional “reference constant” for use by
your application. For each object type you want to support, you install handlers to create new objects,

WASTE Documentation 2



to destroy them and to draw them (the first handler is called when a new object is to be created from a
raw data handle coming from the Clipboard, from a drag or from a direct call to WEInsertObject).
You can install an optional handler to intercept mouse clicks on a selected object.

Embedded objects can be involved in Clipboard operations and in drags, either by themselves or as
part of a text stream. A special data type, called SOUP, is used by WASTE to complement the standard
TEXT/styl data types. A soup handle describes zero or more objects embedded in the text stream it
accompanies, their types, their sizes and the offsets where they are to be inserted.

How WASTE Supports Macintosh Drag & Drop

If the Drag Manager is available and you enable the drag-and-drop editing feature, WASTE modifies
the behavior of some of its routines so that clicking in the selection and dragging automatically starts
a drag. It is up to your application, however, to install handlers to track and receive drags. Your
handlers, in turn, can call special WASTE routines to provide standard feedback while tracking and to
insert the contents of a drag into a WE instance. Both styled text and embedded graphics can be
dragged to and from a WE instance, and even a mixture of the two.

NOTE: WASTE exploits the delayed data delivery feature of the Drag Manager to boost performance
and reduce storage needs, but version 1.0 of the Clipping Extension does not seem to work correctly
with “lazy drags”, so please use version 1.1 or newer of the Macintosh Drag and Drop package.

Built-in Undo

WASTE can undo the changes made to the text (including changes affecting text styles and embedded
objects) by some WASTE calls like WEKey, WECut and WEClick (the latter can cause text to be moved,
copied or deleted by a drag-and-drop operation). This feature can be enabled or disabled at any time.
Undoable operations include typing, cutting, pasting, dragging and more: see the reference section to
find out which calls are undoable and, as such, modify the contents of the internal undo buffer
associated with each WE instance. Carrying out an undoable operation when undo is enabled
destroys the previous contents of the undo buffer, i.e., there is only one “level” of undo.

As a further help for your application, WE instances keep track of an internal modification count that
lets your application find whether a given WE instance is “clean” or “dirty”.

Where WASTE Differs from the TextEdit Model

Some subtle and not-so-subtle differences between WASTE and TextEdit are listed below. Most of
them are deliberate design choices.

• WASTE keeps track internally of whether the anchor point of the selection range is at the beginning
or at the end; when extending a selection (either by shift-clicking or by using shift + arrow keys), what
moves is the free endpoint of the selection, but never the anchor point. Your application can control
which boundary of the selection range is treated as the anchor point using WESetSelection as
described in the reference section.

• To select a range of words, you can double click the first word, then shift-click the last word. The
first word clicked becomes the anchor word of the selection range. In the same way, you can select a
range of lines by triple clicking the first line and shift-clicking the last one, and the first line clicked
becomes the anchor line of the selection range.

• WASTE never draws the highlighting outside the destination rectangle, while TextEdit may
highlight portions of the view rectangle outside the destination rectangle.

WASTE Documentation 3



WASTE Routines

This section describes all WASTE routines and their parameters in depth.

WEVersion

Returns the version number of the WASTE library you are using.

pascal UInt32 WEVersion(void);

DESCRIPTION

WEVersion returns the version number of the WASTE library you are using, in standard
NumVersion format. This is useful for applications using WASTELib, the shared library version of
WASTE. At the time of this writing, WEVersion returns 0x01308000, for 1.3.

WEInstallTSMHandlers

Installs the Apple event handlers required for supporting inline input.

pascal OSErr WEInstallTSMHandlers(void);

DESCRIPTION

WEInstallTSMHandlers installs the Apple event handlers required for supporting inline input in
the Apple event dispatch table of the current process. You should call this function if your application
is TSM aware.

After the Apple event handlers have been installed, input methods can communicate with a WE
instance without the intervention of your application.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WERemoveTSMHandlers

Removes the Apple event handlers previously installed by WEInstallTSMHandlers.

pascal OSErr WERemoveTSMHandlers(void);

DESCRIPTION

WERemoveTSMHandlers removes the Apple event handlers required to support inline input that
were previously installed by WEInstallTSMHandlers.

RESULT CODES

noErr 0 No error
errAEHandlerNotFound -1717 TSM handlers were not installed

WASTE Documentation 4



WENew

Creates a new WE instance and returns a reference to it.

pascal OSErr WENew(const LongRect *destRect, const LongRect *viewRect,
UInt32 flags, WEReference *we);

Field descriptions

destRect The initial destination rectangle.
viewRect The initial view rectangle.
flags Miscellaneous flags.
we A reference to the newly created WE instance is returned here.

DESCRIPTION

WENew creates a complete text editing environment associated with the current graphics port. You
specify the initial destination and view rectangles in the local coordinates of the current graphics port,
expressed in long coordinates. The value of destRect.bottom is immaterial, since it is dynamically
updated whenever line breaks are recalculated so that (destRect.bottom - destRect.top) is
always equal to the total pixel height of the text, including any blank lines at its end.

The initial style attributes (font, size, Quickdraw styles and color) are copied from the current
graphics port. The initial alignment style is weFlushDefault. The initial activation state is inactive.

The flags parameter allows you to enable certain features on creation instead of calling
WEFeatureFlag. One of the flags, weDoUseTempMem, instructs WENew to allocate the main data
structures preferably from temporary memory and is only meaningful when passed to WENew (it does
nothing when passed to WEFeatureFlag).

If the Text Services Manager is available and the client application is TSM-aware (i.e.,
InitTSMAwareApplication has been called successfully), WENew automatically associates the new
instance with a TSM document record.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEDispose

Disposes of a WE instance and of all associated data structures.

pascal void WEDispose(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEDispose releases all memory associated with a given WE instance, including the text handle. If
you want to retain the text, you can either clone the text handle using HandToHand or call
WESetInfo with selector set to weText and *info set to 0 immediately before calling
WEDispose.

WEGetDestRect / WESetDestRect / WEGetViewRect / WESetViewRect

Get and set the values of the destination rectangle and the view rectangle.

pascal void WEGetDestRect(LongRect *destRect, WEReference we);

WASTE Documentation 5



pascal void WESetDestRect(const LongRect *destRect, WEReference we);
pascal void WEGetViewRect(LongRect *viewRect, WEReference we);
pascal void WESetViewRect(const LongRect *viewRect, WEReference we);

Field descriptions

destRect The destination rectangle.
viewRect The view rectangle.
we The WE instance.

DESCRIPTION

These functions allow you to get and set the destination rectangle and the view rectangle associated
with the specified WE instance. The rectangles are in local coordinates. As in the TextEdit model, the
destination rectangle is the area in which the text is drawn (the width of this rectangle specifies the
line width used to wrap the text), while the view rectangle is the portion in which the text is actually
displayed. All drawing is clipped to the intersection of these two rectangles.

When the text is scrolled, the destination rectangle is automatically offset by the scrolling amount; the
view rectangle is never changed save by a call to WESetViewRect. The only reason for using long
coordinates is to allow for text taller than 32,767 pixels when scrolling, but both the view rectangle
and the horizontal coordinates of the destination rectangle must always be limited to the Quickdraw
range (-32767 to 32767).

A call to WESetDestRect that alters the line width does not automatically trigger the recalculation of
line breaks: you must call WECalText.

WEGetAlignment / WESetAlignment

Get and set the alignment style associated with a given WE instance.

enum {
weFlushLeft = -2, /* flush left */
weFlushRight = -1, /* flush right */
weFlushDefault =  0, /* flush according to system direction */
weCenter =  1, /* centered */
weJustify =  2 /* fully justified */

};

typedef SInt8 WEAlignment;

pascal WEAlignment WEGetAlignment(WEReference we);
pascal void WESetAlignment(WEAlignment alignment, WEReference we);

Field descriptions

alignment The alignment style.
we The WE instance.

DESCRIPTION

Use WEGetAlignment and WESetAlignment to get and set the alignment style associated with the
specified WE instance. The alignment style applies to the whole text and can be one of the five values
listed above. The WESetAlignment call does not affect the internal undo buffer in any way.

WeFlushDefault (the default value) aligns the text according to the primary line direction (see
description of WEGetDirection/WESetDirection), which usually matches the current setting of
the system global variable SysDirection.

WeJustify aligns the text in the destination rectangle to both left and right margins. The specific way
this effect is achieved is script-dependent.

WASTE Documentation 6



SPECIAL CONSIDERATIONS

If your application will never need anything but left-aligned text, setting the alignment to
weFlushLeft soon after creating a new WE instance is a good idea. Doing so disables some of the
line layout calculations routinely performed by WASTE, effectively speeding up several calls, notably
WECalText.

WEGetDirection/ WESetDirection

Get and set the primary line direction associated with a given WE instance.

enum {
weDirDefault =  1, /* according to system direction */
weDirRightToLeft = -1, /* force right-to-left */
weDirLeftToRight =  0 /* force left-to-right */

};

typedef SInt16 WEDirection;

pascal WEDirection WEGetDirection(WEReference we);
pascal void WESetDirection(WEDirection direction, WEReference we);

Field descriptions

direction The primary line direction.
we The WE instance.

DESCRIPTION

Use WEGetDirection and WESetDirection to get and set the primary line direction associated
with the specified WE instance. The primary line direction applies to the whole text and can be one of
the three values listed above. The WESetDirection call does not affect the internal undo buffer in
any way.

The primary line direction (also known as dominant line direction) is a value that determines how
text runs of different directions (left-to-right and right-to-left) are laid out on a line. For example,
suppose a block of Hebrew text follows (in storage order) a block of Roman text. If the primary line
direction is left-to-right, the Hebrew text is drawn to the right of the Roman text, whereas if the
primary line direction is right-to-left, the Hebrew text is drawn to the left of the Roman text. Refer to
Inside Macintosh: Text for a thorough explaination of this concept.

The default direction value, weDirDefault, instructs WASTE to lay out the text according to the
setting of the system global variable SysDirection, which end users can modify using the Text
control panel. Most applications should use this default value.

On the other hand, weDirRightToLeft and weDirLeftToRight force WASTE to lay out the text
according to the specified primary line direction, regardless of SysDirection. You should not use
these values unless a bidirectional script is installed and you provide a user interface for changing the
direction, possibly for each individual document. If the alignment style is set to weFlushDefault,
weDirRightToLeft and weDirLeftToRight also affect the text alignment: for example, if the
direction is set to weDirRightToLeft and the alignment is set to weFlushDefault, WASTE will
lay out the text from right to left and align each line to the right margin of the destination rectangle.

WEGetText

Returns a handle to the text associated with a given WE instance.

pascal Handle WEGetText(WEReference we);

WASTE Documentation 7



Field descriptions

we The WE instance.

DESCRIPTION

WEGetText returns a handle to the text associated with the specified WE instance; this handle
contains the raw character codes without any character encoding or formatting information (this
information is stored elsewhere).

This handle belongs to the WE instance; you should not destroy it or modify it in any way.

WEGetTextLength

Returns the length of the text, in bytes.

pascal SInt32 WEGetTextLength(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEGetTextLength returns the length of the text, in bytes, initially zero.

WEGetChar

Returns the character code at a given byte offset.

pascal SInt16 WEGetChar(SInt32 offset, WEReference we);

Field descriptions

offset The byte offset to the desired character code.
we The WE instance.

DESCRIPTION

WEGetChar returns the character code at a given offset inside the text handle associated with the
specified WE instance. This routine always returns byte values, so when dealing with double-byte
characters, it returns only one half of the character. Use WECharByte to determine the byte type of
the character code at a given offset. If an invalid offset is specified, WEGetChar returns zero.

WECharByte

Returns the byte type (smSingleByte, smFirstByte or smLastByte) of the character code at the
specified offset.

pascal SInt16 WECharByte(SInt32 offset, WEReference we);

Field descriptions

offset The byte offset to the desired character code.
we The WE instance.

WASTE Documentation 8



DESCRIPTION

WECharByte returns the byte type of the character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharByte returns
smSingleByte.

WECharType

Returns the character type of the character code at the specified offset.

pascal SInt16 WECharType(SInt32 offset, WEReference we);

Field descriptions

offset The byte offset to the desired character code.
we The WE instance.

DESCRIPTION

WECharType returns the character type of character code at a given offset inside the text handle
associated with the specified WE instance. If an invalid offset is specified, WECharType returns zero.

WEGetRunInfo

Returns style information associated with the text run containing the specified offset.

typedef struct WERunInfo {
SInt32 runStart;
SInt32 runEnd;
SInt16 runHeight;
SInt16 runAscent;
TextStyle runStyle;
WEObjectReference runObject;

} WERunInfo;

pascal void WEGetRunInfo(SInt32 offset, WERunInfo *runInfo,
WEReference we);

Field descriptions

offset The byte offset to the desired character code.
runInfo The style run information is returned here.
we The WE instance.

DESCRIPTION

WEGetRunInfo returns a WERunInfo record describing the style attributes associated with the style
run the specified offset belongs to. This record specifies the boundaries of the style run, font metrics
information and style attributes proper. The runObject field can be either nil or a reference to an
embedded object (each embedded object is treated by WASTE like a one-character wide style run).
When called for the last style run in the text, WEGetRunInfo returns textLength + 1 in runEnd,
instead of textLength.

WEGetRunDirection

Returns the direction (left-to-right or right-to-left) of the text at the specified offset.

WASTE Documentation 9



pascal Boolean WEGetRunDirection(SInt32 offset, WEReference we);

Field descriptions

offset A byte offset into the text.
we The WE instance.

DESCRIPTION

WEGetRunDirection returns FALSE if the text at the specified offset belongs to a left-to-right script,
like Roman, and TRUE if it belongs to a right-to-left script, like Arabic or Hebrew. If an invalid offset is
specified, WEGetRunDirection returns the primary line direction of the WE instance.

WEContinuousStyle

Determines which text attributes are continuous over the current selection range.

pascal Boolean WEContinuousStyle(WEStyleMode *mode, TextStyle *ts,
WEReference we);

Field descriptions

mode On input, a selector specifying the attributes to test.
On output, a selector specifying which of the tested attributes are continuous 
over the selection range.

ts The continuous style attributes are returned here.
we The WE instance.

DESCRIPTION

Call WEContinuousStyle to determine whether a given set of text attributes is continuous over the
selection range. On input, you specify in mode which attributes are to be tested for continuousness.
On output, mode specifies which ones were found to be continuous over the current selection range
and the corresponding fields of ts are set to the continuous attributes. The function result is TRUE if
all tested attributes are continuous, FALSE otherwise.

On output, the weDoFace bit is set in mode if at least one Quickdraw style is continuous over the
selection range: in this case ts.tsFace specifies only the continuous styles. If weDoFace is set and
ts.tsFace is zero (i.e., the empty set), then the whole selection range is plain text.

If the selection range is empty, the returned attributes are copied from an internal null style record
holding the styles to be applied to the next character typed.

If WEContinuousStyle detects that the keyboard script has changed since the null style record was
last updated, it changes the font in the null style record to match the new keyboard script. The new
font is searched among the fonts preceding the insertion point; if none is found, the default
application font for the keyboard script is used.

EXAMPLES

WEStyleMode mode;
TextStyle ts;

mode = weDoAll; // check all attributes
WEContinuousStyle(&mode, &ts, we); // ignore function result

if (mode & weDoFont)
MyCheckFontMenu(ts.tsFont);

if (mode & weDoSize)
MyCheckSizeMenu(ts.tsSize);

WASTE Documentation 10



if (mode & weDoFace)
MyCheckStyleMenu(ts.tsFace);

if (mode & weDoColor)
MyCheckColorMenu(&ts.tsColor);

WECopyRange

Makes a copy of the text, the styles and/or the embedded object data in the specified range.

pascal OSErr WECopyRange(SInt32 rangeStart, SInt32 rangeEnd, Handle hText,
StScrpHandle hStyles, WESoupHandle hSoup,
WEReference we);

Field descriptions

rangeStart Offset to the beginning of the range.
rangeEnd Offset to the end of the range.
hText Handle to a relocatable block where a copy of the text is returned.
hStyles Handle to a relocatable block where a copy of the styles is returned.
hSoup Handle to a relocatable block where a copy of the embedded object data is
returned.
we The WE instance.

DESCRIPTION

WECopyRange makes a copy of the text, the style information and/or the embedded object data in the
specified range. You pass valid handles in hText, hStyles and hSoup and these handles are resized
appropriately; you can also pass nil in any parameter if you do not want the corresponding
information returned. The style information is returned in the standard TextEdit style scrap format
(the same format used for the styl Clipboard data type). Be aware that while this format is very
simple to use, it is also very inefficient space-wise and it can take up a lot of memory. Furthermore, if
there are more than 32,767 style runs in the specified range, the scrpNStyles field of the style scrap
(a signed, 16-bit integer value) will be pinned at 32,767. The hSoup parameter, if supplied, is filled
with information describing the objects embedded within the specified range (if any). This
information can be saved and later passed to WEInsert to restore the embedded objects in their old
places within the text stream. If there are no objects in the specified range, the hSoup handle is set to a
zero-size block.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECountLines

Returns the number of lines.

pascal SInt32 WECountLines(WEReference we);

Field descriptions

we The WE instance.

WASTE Documentation 11



DESCRIPTION

WECountLines returns the number of lines of text associated with the specified WE instance, initially
one. If the last character in the text is a carriage return (ASCII 13), the last line is not taken into account
by WECountLines.

WEOffsetToLine

Returns the line number corresponding to the specified character offset.

pascal SInt32 WEOffsetToLine(SInt32 offset, WEReference we);

Field descriptions

offset The byte offset to the desired character.
we The WE instance.

DESCRIPTION

WEOffsetToLine returns the index of the line containing the specified character. The index is zero-
based, i.e., the index of the first line is zero and the index of the last line equals WECountLines(we)
- 1.

WEGetLineRange

Given a line index, returns the offsets to the beginning and to the end of the corresponding line.

pascal void WEGetLineRange(SInt32 lineIndex, SInt32 *lineStart,
SInt32 *lineEnd, WEReference we);

Field descriptions

lineIndex The index to the desired line.
lineStart The offset to the first character of the line is returned here (you can pass nil if 

you are not interested in this value).
lineEnd The offset immediately following the last character of the line is returned here 

(you can pass nil if you are not interested in this value).
we The WE instance.

DESCRIPTION

WEGetLineRange returns the text range corresponding to a given line index.

WEGetHeight

Returns the cumulative pixel height of a given line range.

pascal SInt32 WEGetHeight(SInt32 startLine, SInt32 endLine,
WEReference we);

Field descriptions

startLine Index to the first line in the range.
endLine Index to the last line in the range.
we The WE instance.

WASTE Documentation 12



DESCRIPTION

WEGetHeight returns the cumulative pixel height of the specified line range. The startLine and
endLine parameters specify positions between lines (just as byte offsets specify positions between
characters): 0 specifies the top of the destination rectangle, 1 specifies the position between the first
and the second line, etc. Alternatively, you can think of startLine and endLine as line indices (the
first line being line zero), but in this case keep in mind that WEGetHeight returns the pixel height
from startLine inclusive to endLine exclusive, while the TextEdit routine TEGetHeight includes
both lines in the computation. StartLine and endLine are pinned to the range 0..nLines and
reordered if necessary. If the last character in the text is a carriage return (ASCII 13), the height of the
last line is not taken into account by WEGetHeight. The data structures used by WASTE make
WEGetHeight a cheap call (much faster then TEGetHeight when endLine - startLine is large).

WEGetPoint

Returns the screen position corresponding to a given text offset.

pascal void WEGetPoint(SInt32 offset, SInt16 direction,
LongPt *thePoint, SInt16 *lineHeight, WEReference we);

Field descriptions

offset A byte offset into the text.
direction Used to disambiguate the caret position at direction boundaries.
thePoint The screen position is returned here.
lineHeight The line height is returned here (you can pass nil if you are not interested in this

value).
we The WE instance.

DESCRIPTION

WEGetPoint converts a text offset into a screen position, expressed in local coordinates. The screen
position corresponds to the top left corner of the rectangle enclosing the character glyph at the
specified offset; the height of this rectangle is returned in lineHeight. The value passed in the
direction parameter must be one of leftCaret, rightCaret and hilite (these constants are
defined in <QuickdrawText.h>) and is only used when the offset value is ambiguous and can
refer to two different screen positions. This situation occurs when a bidirectional script is installed and
offset falls on a direction boundary (see IM:Text for a thorough explanation). For most practical
purposes, you should pass hilite in the direction parameter.

WEGetOffset

Returns the offset/edge pair corresponding to a given screen position.

pascal SInt32 WEGetOffset(const LongPt *thePoint, WEEdge *edge,
WEReference we);

Field descriptions

thePoint A screen position, in local coordinates.
edge The edge value is returned here (you can pass nil if you are not interested in this

value).
we The WE instance.

WASTE Documentation 13



DESCRIPTION

WEGetOffset converts a screen position into a byte offset into the text. The function result is the
offset to the nearest character glyph; the value returned in the edge parameter specifies whether the
given point falls on the leading (kLeadingEdge) or trailing (kTrailingEdge) edge of this glyph.

WASTE can also return the value kObjectEdge in this parameter, indicating that the given position
lies in the middle half of an embedded object, but this feature can be disabled by setting the compiler
switch WASTE_OBJECTS_ARE_GLYPHS to TRUE.

WECalText

Recalculates line breaks and other data structures used internally to keep track of line layout for the
whole text.

pascal OSErr WECalText(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WECalText recalculates line breaks and other data structures related to line layout for the whole text.
You normally do not need to call this function during normal editing operations since WASTE
performs all the necessary recalculations automatically. You do need to call WECalText, however, if
you called WEUseText to completely replace the text or if you called some editing routines with
automatic recalculation turned off (see WEFeatureFlag for details on how to disable automatic
recalculation). WECalText is an expensive call which can easily take several seconds to complete, so
use it sparingly.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEUpdate

Call WEUpdate in response to an update event in the view rectangle.

pascal void WEUpdate(RgnHandle updateRgn, WEReference we);

Field descriptions

updateRgn Handle to the region to redraw, in local coordinates.
we The WE instance.

DESCRIPTION

WEUpdate draws the portion of text specified by updateRgn. You tipically call this function after
getting an update event in the view rectangle. Be sure to erase the update area to the background
color before calling WEUpdate, otherwise the text may not be redrawn correctly.

If you pass nil in updateRgn, the whole view rectangle is erased and redrawn.

SPECIAL CONSIDERATIONS

If you use WEUpdate within a standard printing loop for imaging the text to a printer, be sure to turn
off offscreen drawing, otherwise the Quickdraw bottlenecks set up for printing will only intercept
_StdBits calls instead of _StdText calls, with possible ill effects on print quality.

WASTE Documentation 14



WEActivate

Call WEActivate when the window that owns the WE instance receives an activate event.

pascal void WEActivate(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEActivate marks the specified WE instance as active and redraws the current selection range
accordingly. If a TSM document record is associated with the WE instance, WEActivate notifies the
Text Services Manager of the change. You should call WEActivate before calling WEClick or WEKey;
otherwise the selection range may not be drawn correctly.

WEDeactivate

Call WEDeactivate when the window that owns the WE instance receives a deactivate event.

pascal void WEDeactivate(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEDeactivate marks the specified WE instance as inactive and redraws the current selection range
accordingly. If a TSM document record is associated with the WE instance, WEDeactivate notifies
the Text Services Manager of the change.

WEIsActive

Call WEDeactivate to determine whether the specified WE instance is active or inactive.

pascal Boolean WEIsActive(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEIsActive returns true if the specified WE instance is active.

WEScroll

Call WEScroll to scroll the text within the view rectangle by a given amount of pixels.

pascal void WEScroll(SInt32 hOffset, SInt32 vOffset, WEReference we);

Field descriptions

hOffset Amount to scroll horizontally, in pixels.
vOffset Amount to scroll vertically, in pixels.
we The WE instance.

WASTE Documentation 15



DESCRIPTION

WEScroll offsets the destination rectangle by the specified amount of pixels, horizontally and/or
vertically, and it updates the text in the view rectangle to reflect the change. Positive values of
hOffset move the text to the right. Positive values of vOffset move the text down.

WEScroll may be called internally by other WASTE routines if you enabled the auto scrolling
feature: when this happens, the scroll callback routine (see the description of the WESetInfo routine),
if present, is invoked. The scroll callback is not invoked, however, when you call WEScroll directly.

WESelView

Call WESelView to ensure that the current selection range is visible.

pascal void WESelView(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WESelView checks to see if the current selection range (specifically, the free endpoint of the selection
range) is within the view rectangle. If it isn’t, WESelView scrolls the text to show the selection range.

If automatic scrolling is disabled (see the description of the WEFeatureFlag routine), WESelView
has no effect.

WEStopInlineSession

WEStopInlineSession stops the ongoing inline input session (if any) and causes all unconfirmed
text in the active input area to be confirmed.

pascal void WEStopInlineSession(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEStopInlineSession terminates the ongoing input session (if any) by calling the TSM function
FixTSMDocument, which in turn calls a component function in the current input method, which
finally results in an Apple event being sent to the specified WE instance to close the active input area.
If the Text Services Manager is not available, nothing happens.

WEKey

Call WEKey when you receive a keyDown or autoKey event directed to the window that owns a
given WE instance.

pascal void WEKey(SInt16 key, EventModifiers modifiers, WEReference we);

Field descriptions

key The character code.
modifiers The modifiers field of the event record.
we The WE instance.

WASTE Documentation 16



DESCRIPTION

WEKey inserts the specified character at the insertion point. If the current selection is not empty, it is
replaced by the new character.

If key is the backspace character, WEKey deletes the character preceding the insertion point or, if the
selection range is not empty, it deletes the current selection. Similarly, if key is the forward delete
character (ASCII 0x7F), WEKey deletes the character following the insertion point or, if the selection
range is not empty, it deletes the current selection. Do not forget that these keys delete characters, not
bytes.

If key is an arrow key, WEKey moves the insertion point accordingly or, if the selection range is not
empty, it collapses the current selection to one of its endpoints. The modifiers parameter is taken
into account when handling arrow keys: option+left/right arrow moves the insertion point to the
nearest word boundary in the respective direction, command+left/right arrow moves the insertion
point to the beginning/end of the line, option+up/down arrow moves the insertion point to the
beginning/end of the page, command+up/down arrow moves the insertion point to the
beginning/end of the document and the shift key can be used in combination with any of the above
modifiers to extend or shrink the selection.

If a double-byte script system is installed and key is the first half of a double-byte character, key is
not immediately inserted into the text, but rather it is cached internally. When the second byte arrives,
the whole character is inserted.

If undo support is enabled, changes made by a series of WEKey calls (called a typing sequence) are
recorded internally so that they can be later undone. A typing sequence can include any number of
backspace and forward delete characters and is interrupted only when the insertion point is moved to
a different location or when another undoable WASTE routine is called. You can call WEIsTyping to
find out whether a WEKey call would be part of an ongoing typing sequence or would cause a new
one to be started.

WEClick

Call WEClick in response to a mouse-down event in the view rectangle.

pascal void WEClick(Point hitPt, EventModifiers modifiers,
UInt32 clickTime, WEReference we);

Field descriptions

hitPt The hit point in local coordinates.
modifiers The modifiers field of the event record.
clickTime The when field of the event record.
we The WE instance to activate.

DESCRIPTION

WEClick handles key-down events directed to the view rectangle of the WE instance, retaining
control until the mouse button is released. The current selection range is continuously modified as the
mouse moves and the highlighting is redrawn accordingly.

If the shift key was not held down, the hit point becomes the new anchor point of the selection range
while the position where the mouse button is released becomes the new free endpoint. If the shift key
was held down, the anchor point is not changed, but the free endpoint can be moved.

A double-click selects a word, and dragging the mouse or shift-clicking afterwards extends or shrinks
the selection word by word. Triple-clicks do the same, but this time line by line.

If drag-and-drop text editing is enabled and the Drag Manager is available, clicking in the selection
range and dragging starts a new drag, consisting of a single drag item. Ordinarily, this drag item has
three flavors, namely TEXT, styl and SOUP (the latter is empty most of the times). If the selection
range consists of a single embedded object, however, WASTE uses its type tag as the flavor type for
the drag item, so that, for example, dragging a single picture to the desktop creates a picture clipping.

WASTE Documentation 17



If WEClick detects that the drop location for the drag is the trash, it deletes the original selection
range (this operation is undoable, however).

You can install a callback routine that is called repeatedly while the mouse is being tracked by
WEClick: call WESetInfo with selector set to weClickLoop and *info set to the UPP of your
callback routine. This routine is meant to be used to implement text auto-scrolling when the mouse is
outside the view rectangle. This callback may be invoked by WETrackDrag as well (see below).

Your callback should be a function of type WEClickLoopProcPtr, declared as follows:

pascal Boolean MyClickLoop(WEReference we);

The we parameter contains the WE instance where mouse tracking is taking place. Your callback
routines should normally return true. Returning false causes mouse tracking to be immediately
stopped and WEClick to return to its caller.

You should never call WEClick when the WE instance is inactive.

WETrackDrag

Call WETrackDrag from your application drag tracking handler to provide drag feedback for the
specified WE instance.

pascal OSErr WETrackDrag(DragTrackingMessage message, DragReference drag,
 WEReference we);

Field descriptions

message Selector used to distinguish the phases of a drag: should be
dragTrackingEnterWindow, dragTrackingInWindow or
dragTrackingLeaveWindow.

drag The drag reference.
we The WE instance.

DESCRIPTION

WETrackDrag determines whether the specified drag can be accepted and provides the necessary
drag feedback, blinking the caret at the offset where the drag would be inserted, highlighting the view
rectangle appropriately and removing the feedback when the drag leaves the view rectangle. When
WETrackDrag detects that the drag has remained outside the view rectangle for more than 10 ticks, it
calls the click loop routine (see WEClick) so that auto-scrolling can be implemented.

RESULT CODES

noErr 0 No error
badDragRefErr -1850 Invalid drag reference

WEReceiveDrag

Call WETrackDrag from your application drag receive handler to insert the contents of a drag into
the specified WE instance.

pascal OSErr WEReceiveDrag(DragReference drag, WEReference we);

Field descriptions

drag The drag reference.
we The WE instance.

WASTE Documentation 18



DESCRIPTION

WEReceiveDrag calculates the text offset corresponding to the drop location, extracts the relevant
data from the drag and inserts it into the WE instance. If the drag originates from the same WE
instance, the selection range is moved, rather than copied, to the new destination. A copy can be
forced by holding down the option key either at the beginning or at the end of the drag. Intelligent
cut-and-paste rules are applied if the corresponding feature has been enabled. The effects of
WEReceiveDrag can be undone, if undo support is enabled.

For each item in the drag, WEReceiveDrag first tries to extract a TEXT flavor: if TEXT is available, it
looks for the (optional) accompanying styl and SOUP information. If no TEXT is available,
WEReceiveDrag tries to extract flavor types matching the registered object types, as WEPaste does
for scrap types. For example, if you have installed a ‘new’ handler for ‘snd’ objects, WEReceiveDrag
tries to extract a sound from the drag item: if one is found, your ‘new’ handler is called to initialize a
new sound object which is then inserted in the text.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
badDragRefErr -1850 Invalid drag reference
badDragFlavorErr -1852 At least one drag item contains no acceptable

flavor
dragNotAcceptedErr -1857 Invalid drop location
weReadOnlyErr -9476 The specified WE instance is read-only

WEIdle

Call WEIdle when your application receives a null event to ensure a regular blinking of the caret.

pascal void WEIdle(UInt32 *maxSleep, WEReference we);

Field descriptions

maxSleep The maximum time (in ticks) that should be allowed to elapse before the next call
to WEIdle is returned here (you can pass nil if you are not interested in this 
value).

we The WE instance.

DESCRIPTION

WEIdle blinks the caret if the WE instance is active, the selection range is empty and if at least
CaretTime (a system global variable) ticks have elapsed since the last time the caret was blinked.
MaxSleep is set to the amount of time remaining before the caret must be inverted again to ensure a
regular blinking. Pass nil in this parameter if you do not want this value returned.

SPECIAL CONSIDERATIONS

When a bidirectional script is installed and the insertion point is at a direction boundary (a single
byte offset into the text corresponding to two different screen positions), WASTE will draw either a
dual caret (also known as split caret) or a single caret (also known as jumping caret), according to a
system global setting that end users can modify using the Text control panel.

WEAdjustCursor

Call WEAdjustCursor periodically to give WASTE a chance to set the cursor when the mouse is
within the view rectangle.

pascal Boolean WEAdjustCursor(Point mouseLoc, RgnHandle mouseRgn,

WASTE Documentation 19



WEReference we);

Field descriptions

mouseLoc The mouse location, in global coordinates.
mouseRgn Handle to a region within which the cursor is to retain its shape.
we The WE instance.

DESCRIPTION

WEAdjustCursor checks to see if the given mouse location is within the view rectangle of the
specified WE instance. If yes, it sets the cursor to an I-beam (or to an arrow, if the Drag Manager is
available and the mouse location is within the selection range) and returns TRUE; otherwise
WEAdjustCursor does not set the cursor and it returns FALSE. The mouseRgn parameter can be
either nil or a valid region handle. In the latter case, rgnHandle is intersected with a region within
which the cursor is to retain its current shape.

WEGetSelection

Returns the endpoint offsets of the current selection range.

pascal void WEGetSelection(SInt32 *selStart, SInt32 *selEnd,
WEReference we);

Field descriptions

selStart The start of the selection range is returned here.
selEnd The end of the selection range is returned here.
we The WE instance.

DESCRIPTION

WEGetSelection returns the offsets to the start and the end of the current selection range.
SelStart is always set to a value less than or equal to selEnd, regardless of which one is the anchor
point.

WESetSelection

Use WESetSelection to set the selection range.

pascal void WESetSelection(SInt32 selStart, SInt32 selEnd, WEReference we);

Field descriptions

selStart The byte offset to the anchor point.
selEnd The byte offset to the free endpoint.
we The WE instance.

DESCRIPTION

WESetSelection sets the selection range and redraws the highlighting appropriately. SelStart
and selEnd are pinned to the range 0..textLength and reordered if necessary, but selStart
always becomes the new anchor point. If auto scrolling is enabled, the text may be scrolled to make
the free endpoint visible. WESetSelection works correctly even if the WE instance is inactive and
outline highlighting is enabled, but when the WE instance is active, WESetSelection is optimized to
highlight only the difference between the old and the new selection range.

WASTE Documentation 20



EXAMPLES

/* selects the whole text */
WESetSelection(0, LONG_MAX, we);

/* displays the caret at the beginning of the text */
WESetSelection(0, 0, we);

/* selects the range 5 to 10; 10 becomes the new anchor point */
WESetSelection(10, 5, we);

WEInsert

Inserts the specified text at the insertion point.

pascal OSErr WEInsert(Ptr textPtr, SInt32 textLength, StScrpHandle hStyles,
WESoupHandle hSoup, WEReference we);

Field descriptions

textPtr Pointer to a text buffer.
textLength Size of the text buffer.
hStyles Handle to a style scrap (optional).
hSoup Handle to a soup (optional).
we The WE instance.

DESCRIPTION

WEInsert inserts the specified text at the insertion point (if the current selection range is not empty, it
is replaced by the inserted text). You can optionally specify style information and embedded object
information (“soup”) accompanying the text by passing a standard TextEdit style scrap in hStyles
and/or a WESoupHandle in hSoup. WEInsert calls are undoable and are affected by intelligent cut-
and-paste rules if the corresponding features are enabled.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

WEDelete

Deletes the selection range.

pascal OSErr WEDelete(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEDelete removes the text in the current selection range. WEDelete calls are undoable and are
affected by intelligent cut-and-paste rules if the corresponding features are enabled.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WASTE Documentation 21



weReadOnlyErr -9476 The specified WE instance is read-only

WESetStyle

Use WESetStyle to modify the style attributes associated with the current selection range.

pascal OSErr WESetStyle(WEStyleMode mode, const TextStyle *ts,
WEReference we);

Field descriptions

mode A selector specifying which attributes are to be changed and how.
ts A TextStyle record describing the new style attributes.
we The WE instance.

DESCRIPTION

WESetStyle applies the specified style attributes to the current selection range. The mode parameter
is interpreted as a set of bits specifying which attributes are to be changed and how.

If weDoAddSize is specified, the tsSize field of the ts record is added to the font sizes in the
selection range, rather than replacing them; the sum is pinned to the positive integer range.

The rules for applying Quickdraw styles (the tsFace field of the ts record) are rather complex:
tsFace replaces the target styles outright if it is zero (i.e., the empty set) or if weDoReplaceFace is
specified in mode. Otherwise tsFace is interpreted as a selector indicating which styles are to be
altered — all other styles are left intact. What exactly happens to the styles indicated in tsFace
depends on whether weDoToggleFace is specified in mode or not. If weDoToggleFace is specified,
a style is turned off if it is continuous over the selection range, else it is turned on. If
weDoToggleFace is not specified, the indicated styles are always turned on.

You can also turn some style attributes on and some off in a single call by specifying weDoFaceMask
in the mode parameter: in this case, the filler byte of the TextStyle record is interpreted as a bit
mask specifying which attributes are to be affected by WESetStyle.

WeDoPreserveScript and weDoExtractSubscript can be used in conjunction with weDoFont
to affect the way WESetStyle changes the character encoding of the selection (see the Special
Considerations section below).

WESetStyle calls are undoable.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

SPECIAL CONSIDERATIONS

The WorldScript routines used by WASTE determine the character encoding (e.g., Roman or Cyrillic)
associated with a given style run by looking at the associated font number (see IM:Text for further
information), so changing the font of the selection in a multi-script environment can potentially
disrupt the character encoding.

For instance, suppose that the current selection range contains style runs in Helvetica (a Roman font)
and Osaka (a Japanese font), and suppose that the Osaka runs include both one-byte Romaji
characters (equivalent to Roman characters) and double-byte Kanji characters (which have no
equivalent in a Roman font). If you apply the Palatino font to this selection, you implicitly change the
character encoding of the Kanji characters from Japanese to Roman, causing the underlying byte codes
to be re-interpreted as extended ASCII characters, a situation which is likely to produce garbage on
the user’s screen. To address this problem, WASTE supports the use of two modifiers,
weDoPreserveScript and weDoExtractSubscript, meant to be used in conjunction with
weDoFont (on Roman-only systems, these modifiers have no effect whatsoever).

WASTE Documentation 22



By specifying weDoPreserveScript, you instruct WASTE to skip style runs whose character
encoding does not match the encoding associated with the font you are applying, so that, in the above
example, only the characters in Helvetica would be changed to Palatino.

If you further specify weDoExtractSubscript, WASTE searches the text in mismatched style runs
for blocks of “subscript text” whose character encoding can be changed without affecting the meaning
of the characters, and applies the font change to those blocks as well. In the above example, specifying
weDoExtractSubscript (in addition to weDoFont and weDoPreserveScript) causes WASTE to
apply the Palatino font to both the characters in Helvetica and the Romaji characters in Osaka,
without touching the Kanji characters.

EXAMPLES

TextStyle ts;
OSErr err;

/* Set the font of the selection to "Helvetica", without affecting */
/* non-Roman characters. Choosing Helvetica from the Font menu of */
/* an international-savvy WASTE-based application should do this. */
Str255 fontName = "\pHelvetica";
GetFNum(fontName, &ts.tsFont);
err = WESetStyle(weDoFont + weDoPreserveScript +

weDoExtractSubscript, &ts, we);

/* Set the font of the selection to "Helvetica" regardless of   */
/* character encodings. You should allow the user to do this if  */
/* the option key is held down while Helvetica is chosen.     */
err = WESetStyle(weDoFont, &ts, we);

/* Decrease the font size of the selection by two points.     */
ts.tsSize = -2;
err = WESetStyle(weDoAddSize, &ts, we);

/* Remove all style attributes. */
/* Choosing Plain Text from a Style menu should do this.      */
ts.tsFace = normal;
err = WESetStyle(weDoFace, &ts, we);

/* Set the style of the selection to bold (without affecting other */
/* styles). If the selection is already uniformly bold, remove the */
/* bold attribute. Choosing Bold from a Style menu should do this. */
ts.tsFace = bold;
err = WESetStyle(weDoFace + weDoToggleFace, &ts, we);

/* Set the bold style and remove the italic style at the same   */
/* time, without affecting any other style.            */
ts.tsFace = bold;
ts.filler = bold + italic;
err = WESetStyle(weDoFaceMask, &ts, we);

WEUseText

Replaces the text in the specified WE instance with a given text handle.

pascal OSErr WEUseText(Handle hText, WEReference we);

WASTE Documentation 23



Field descriptions

hText Handle to the text.
we The WE instance.

DESCRIPTION

WEUseText replaces the text handle in the specified WE instance with the given handle. The original
handle is released. You should call WEUseText soon after creating a WE instance with WENew,
possibly to restore text from a previously saved file. WEUseText does not automatically recalculate
line breaks or redraw the text: you must call WECalText explicitly. This call is not undoable.

RESULT CODES

noErr 0 No error

WEUseStyleScrap

Applies the specified style information to the current selection range.

pascal OSErr WEUseStyleScrap(StScrpHandle hStyles, WEReference we);

Field descriptions

hStyles Handle to a style scrap.
we The WE instance.

DESCRIPTION

WEUseStyleScrap applies the specified style scrap to the selection range. This call is not undoable.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WECopy

Copies the selection range to the Clipboard.

pascal OSErr WECopy(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WECopy copies the selection range to the desk scrap. Ordinarily, three scrap types are put into the
scrap, i.e., the standard TEXT/styl pair plus a possibly empty SOUP used to save embedded object
information. If the selection range consists of a single embedded object, however, its type tag is used
as scrap type and its associated data is put into the scrap. For a variety of reasons, you should exercise
care when calling this function for more than 32K of text. This call is not undoable.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
weEmptySelectionErr -10013 The selection range is empty

WASTE Documentation 24



WECut

Copies the selection range to the Clipboard and removes it from the text.

pascal OSErr WECut(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WECut combines the functions of WECopy and WEDelete. It is undoable, but the previous contents of
the desk scrap are not saved. If the given WE instance is read-only, WECut copies the selection range
to the Clipboard but does not delete it and returns an error code.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only
weEmptySelectionErr -10013 The selection range is empty

WEPaste

Pastes the contents of the Clipboard at the insertion point.

pascal OSErr WEPaste(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEPaste first looks in the desk scrap for a pasteable item: if one is found, it is inserted into the text at
the insertion point (if the selection range is not empty, it is replaced by the pasted item). WEPaste first
looks for a TEXT item; if one is found, WEPaste looks for the (optional) accompanying styl and
SOUP information. If no TEXT is found, WEPaste tries to get a scrap type matching one of the
registered object types, as WEReceiveDrag does for flavor types.

RESULT CODES

noErr 0 No error
noTypeErr -102 No pasteable items in the desk scrap
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only

WECanPaste

Determine whether the current contents of the Clipboard can be pasted into the specified WE
instance.

pascal Boolean WECanPaste(WEReference we);

Field descriptions

we The WE instance.

WASTE Documentation 25



DESCRIPTION

WECanPaste checks the contents of the desk scrap looking for pasteable items: if one is found, it
returns TRUE.

WEUndo

Undoes the most recent undoable operation.

pascal OSErr WEUndo(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEUndo reverses the effects of the most recent undoable operation, if any. Use WEGetUndoInfo to
find out what kind of action can be undone by calling WEUndo. WEUndo is itself an undoable operation
and the only one which decrements, rather than increment, the modification count (the modification
count is incremented, however, when you undo an undo).

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory
weReadOnlyErr -9476 The specified WE instance is read-only
weCantUndoErr -10015 The undo buffer is empty

WEClearUndo

Clears the undo buffer associated with the specified WE instance.

pascal void WEClearUndo(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEClearUndo destroys the contents of the undo buffer associated with the specified WE instance.

WEGetUndoInfo

Returns a description of the most recent undoable operation.

enum {
weAKNone = 0, /* null action */
weAKUnspecified = 1, /* action of unspecified nature */
weAKTyping = 2, /* some text has been typed in */
weAKCut = 3, /* the selection range has been cut */
weAKPaste = 4, /* something has been pasted */
weAKClear = 5, /* the selection range has been deleted */
weAKDrag = 6, /* drag and drop operation */
weAKSetStyle = 7 /* some style has been applied */

};

WASTE Documentation 26



pascal WEActionKind WEGetUndoInfo(Boolean *redoFlag, WEReference we);

Field descriptions

redoFlag On output, this is set to TRUE if calling WEUndo would cause a “redo” to occur.
we The WE instance.

DESCRIPTION

WEGetUndoInfo returns a code describing the kind of operation that would be undone by calling
WEUndo. For example, after calling WECut, WEGetUndoInfo would return weAKCut. If the undo
buffer is empty, WEGetUndoInfo returns weAKNone. Unlike the other undoable operations, WEUndo
does not change the current action kind, but rather negates the current setting of the redoFlag.

WEIsTyping

Determines whether a typing sequence is in progress.

pascal Boolean WEIsTyping(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEIsTyping returns TRUE if the specified WE instance is currently tracking a typing sequence, i.e., if
the next character will add to, rather than replace, the contents of the undo buffer. WEIsTyping
returns FALSE if Undo has not been enabled.

WEGetModCount

Returns the modification count for the specified WE instance.

pascal UInt32 WEGetModCount(WEReference we);

Field descriptions

we The WE instance.

DESCRIPTION

WEGetModCount returns the modification count for the specified WE instance. This is an internal
count initialized to zero by WENew and incremented by one by undoable WASTE calls. This call can be
handy to determine whether a given WE instance is “dirty” (i.e., whether is has been modified since
the last time it was saved). The modification count is actually decremented by one by WEUndo (unless
it is undoing an undo) so that undoing a single action that has dirtied an otherwise clean instance
makes the instance clean again.

WEResetModCount

Resets the modification count for the specified WE instance and clears the undo buffer.

pascal void WEResetModCount(WEReference we);

Field descriptions

we The WE instance.

WASTE Documentation 27



DESCRIPTION

WEResetModCount sets the modification count for the specified WE instance to zero and clears the
undo buffer. If you use a WE instance’s built-in modification count to keep track of a document’s
“dirty” state, you may want to call WEResetModCount every time the on-disk version of the
document gets synchronized with the in-memory version, i.e., after a save or a revert command.

WEInstallObjectHandler

Installs a routine to handle the specified operation (e.g., drawing) for a given type of objects.

/* values for the selector parameter */

enum {
weNewHandler = 'new ', /* new handler */
weDisposeHandler = 'free', /* dispose handler */
weDrawHandler = 'draw', /* draw handler */
weClickHandler = 'clik', /* click handler */
weStreamHandler = 'strm' /* stream handler */

};

pascal OSErr WEInstallObjectHandler(FlavorType objectType,
WESelector selector, UniversalProcPtr handler,
WEReference we);

Field descriptions

objectType Specifies the object type to which the handler applies.
selector Specifies the handler type.
handler The address of the handler routine.
we The WE instance for which the handler is registered, or nil for global handlers.

DESCRIPTION

Use WEInstallObjectHandler to register “object handlers” with WASTE. Currently, WASTE
defines handlers for five different purposes:

weNewHandler Creating a new object from raw data coming from the desk scrap or from a drag.
weDisposeHandler Disposing of objects.
weDrawHandler Drawing objects.
weClickHandler Responding to mouse-down events in active objects.
weStreamHandler Streaming objects to the clipboard, to a drag or to a SOUP.

A description of these handlers is given in the section about application-supplied routines.

If you pass nil in we, the handler will be registered in a global handler table that can be accessed by
all WE instances throughout your application, whereas if you pass a valid WE instance in we, the
handler will be registered in an instance-specific handler table.

If you call WEInstallObjectHandler passing weRefCon in the selector parameter, WASTE will
set the refCon of newly created objects of the specified type to the value you pass in the handler
parameter, before calling your ‘new’ handler.

RESULT CODES

noErr 0 No error
weUndefinedSelectorErr -50 Invalid selector
memFullErr -108 Out of memory

WASTE Documentation 28



WEInsertObject

Embeds an object at the insertion point.

pascal OSErr WEInsertObject(FlavorType objectType, Handle objectDataHandle,
Point objectSize, WEReference we);

Field descriptions

objectType Qualifies the data type passed in objectDataHandle.
objectDataHandle The actual data for the object.
objectSize Desired height and width for the rectangle enclosing the object (optional).
we The WE instance.

DESCRIPTION

Use WEInsertObject to embed an “object” at the current insertion point (if the selection is not
empty, it will be replaced by the inserted object). By the time you call WEInsertObject, you should
have registered handlers to initialize, dispose and draw objects of the specified type.
WEInsertObject will call the appropriate handlers to set up any additional data structures, to figure
out the height and width of the rectangle enclosing the object and to draw the object.

WEInsertObject looks for handlers for the specified object type, first in the instance-specific
handler table, then in the global handler table (see the description of WEInstallObjectHandler).
WEInsertObject will return successfully even if no handlers are found for the specified object type.

You normally pass {0,0} in the objectSize parameter, indicating that you want to use the default
size for the object as calculated by the new handler. A nonzero value overrides the default size.

Here is a brief explanation of the internals of embedded object implementation. The inserted object is
represented within the text stream by a single control character (ASCII 0x01, to be precise, but this is
an implementation detail you should not depend on). This control character lives in a style run of its
own, marked internally by WASTE as an embedded object. An internal data structure is created to
track the attributes of the object: its type, size, data handle, owner instance and “reference constant”.
Your application can access these attributes by using accessor functions.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEGetSelectedObject

Use this call to find out whether an object is currently selected and to get a reference to it.

pascal OSErr WEGetSelectedObject(WEObjectReference *objectRef,
WEReference we);

Field descriptions

objectRef Set to a reference to the selected object, or nil if none is found.
we The WE instance.

DESCRIPTION

If the selection range consists of exactly one embedded object, WEGetSelectedObject returns a
reference to it in objectRef, otherwise a weObjectNotFoundErr result code is returned and
objectRef is set to nil.

RESULT CODES

noErr 0 No error

WASTE Documentation 29



weObjectNotFoundErr -9477 Object not found

WEFindNextObject

Call this routine repeatedly to find all embedded objects in a given WE instance .

pascal SInt32 WEFindNextObject(SInt32 offset, WEObjectReference *objectRef,
WEReference we);

Field descriptions

offset The search starts at (offset + 1).
objectRef Set to a reference to the next object, or nil if none is found.
we The WE instance.

DESCRIPTION

WEFindNextObject looks for the first embedded object following offset: if one is found, a reference
to it is returned in objectRef and the byte offset to the object in the text stream is returned as
function result. If there is no object following the specified offset, WEFindNextObject returns -1 as
function result and sets objectRef to nil.

EXAMPLE

WEObjectReference objectRef = nil;
SInt32 offset = -1;

do {
offset = WEFindNextObject(offset, &objectRef, we);
if (objectRef != nil)
{

// do something with the object
}

} while (offset >= 0);

WEGetObjectType / WEGetObjectDataHandle / WEGetObjectSize /
WEGetObjectOwner/WEGetObjectRefCon / WESetObjectRefCon

These calls let you access attributes of embedded objects.

pascal FlavorType WEGetObjectType(WEObjectReference objectRef);
pascal Handle WEGetObjectDataHandle(WEObjectReference objectRef);
pascal Point WEGetObjectSize(WEObjectReference objectRef);
pascal WEReference WEGetObjectOwner(WEObjectReference objectRef);
pascal SInt32 WEGetObjectRefCon(WEObjectReference objectRef);
pascal void WESetObjectRefCon(WEObjectReference objectRef, SInt32 refCon);

Field descriptions

objectRef The object reference.
refCon A “reference constant” for use by your application.

DESCRIPTION

You typically use these accessor functions from within your object handlers.

WASTE Documentation 30



WEFeatureFlag

Use WEFeatureFlag to enable, disable and test miscellaneous features of a WE instance.

/* values for the action parameter */

enum {
weBitToggle = -2, /* toggles the specified feature */
weBitTest = -1, /* returns the current setting */
weBitClear = 0, /* disables the specified feature */
weBitSet = 1 /* enables the specified feature */

};

/* values for feature parameter */

enum {
weFAutoScroll = 0, /* automatic scrolling */
weFOutlineHilite = 2, /* outline highlighting */
weFReadOnly = 5, /* disallows changes */
weFUndo = 6, /* undo support */
weFIntCutAndPaste = 7, /* intelligent cut and paste */
weFDragAndDrop = 8, /* drag and drop support */
weFInhibitRecal = 9, /* inhibits line break recalculation */
weFDrawOffscreen = 11 /* offscreen drawing */

};

pascal SInt16 WEFeatureFlag(SInt16 feature, SInt16 action, WEReference we);

Field descriptions

feature Identifies the feature being set or tested.
action Identifies the action being performed.
we The WE instance.

DESCRIPTION

Specify weBitToggle, weBitSet, weBitClear or weBitTest to toggle, set, clear or just test the
setting of the specified feature. In all four cases, the old setting is returned. A number of features can
be controlled, including automatic scrolling, outline highlighting, drag and drop editing, undo
support, intelligent cut and paste and offscreen drawing. WEFeatureFlag can also be used to
temporarily disable automatic recalculation of line breaks during editing operations and to disallow
changes to the text. All features are initially set according to the flags parameter passed to WENew.

AUTOMATIC SCROLLING

When automatic scrolling is enabled, the destination rectangle is automatically scrolled to keep a
particular text position centered in the middle of the view rectangle. This position is normally the
insertion point or, if the selection range is not empty, the free endpoint of the range, but an input
method may instruct WASTE to scroll a different range into view using an appropriate Apple event.
You can set up a callback routine if you want to be notified of implicit calls to WEScroll (see the
description of the WESetInfo routine). If this feature is disabled, only an explicit call to WEScroll
can scroll the text.

OUTLINE HIGHLIGHTING

When outline highlighting is enabled, the selection range is framed with the highlight color while the
WE instance is inactive. When outline highlighting is disabled, no highlighting is applied to the text
while the WE instance is inactive. Contrary to the behavior of TextEdit, the caret is never drawn while
the WE instance is inactive.

WASTE Documentation 31



READ-ONLY

This feature flag disallows modifications to the text: when it is set, a number of WASTE routines do
nothing and return the error code weReadOnlyErr. Although it may seem that simply avoiding text-
modifying calls is enough to prevent changes to the text, there are a number of subtle cases difficult to
catch (e.g., when WASTE receives an appropriate Apple event from an inline input component or
when the user drags the selection range to the trash), hence the need for this flag.

UNDO SUPPORT

Set the weFUndo feature flag if you want to be able to call the WEUndo routine: when this feature is
enabled, WASTE maintains an internal undo buffer holding the information needed to reverse the
effect of the following calls: WEKey, WEInsert, WEInsertObject, WEDelete, WESetStyle, WECut,
WEPaste, WEReceiveDrag and WEUndo itself.

Clearing this flag does not automatically dispose of the undo buffer (you must call WEClearUndo for
this), so you can call any of the above routines without affecting it.

INTELLIGENT CUT AND PASTE

When this flag is set, WASTE uses “intelligent cut and paste” rules to remove and/or add extra blank
characters according to the context when you call WEInsert, WEDelete, WECut, WEPaste and
WEReceiveDrag. For example, when this flag is set, you can change the following text:

Returns are only accepted if the merchandise is damaged.

to this:

Returns are accepted only if the merchandise is damaged.

by double-clicking the word “only” (thus selecting four characters and no spaces) and dragging it
after the word “accepted” or before the word “if”. Without intelligent cut and paste, the result would
look like this:

Returns are  acceptedonly if the merchandise is damaged.

which would make drag and drop editing less useful.

NOTE: currently, the only character which may be added or removed by WASTE is the Roman space
character (ASCII 32): WASTE will do nothing with blank characters found in non-Roman script
systems, like the “zenkaku” (double-byte) space found in the Japanese script.

DRAG AND DROP SUPPORT

WEClick and WEAdjustCursor change their behavior to support drag and drop if the Drag
Manager is available and if your application sets the weFDragAndDrop feature flag: WEClick will let
clicks in the selection start a drag and WEAdjustCursor will change the cursor shape to an arrow
when the mouse is over the selection. Please do not forget that in order for drag and drop editing to
work correctly, your application has to install drag tracking and receive handlers: WASTE will not do
this for you.

OFFSCREEN DRAWING

When offscreen drawing is enabled, text is first drawn to an offscreen buffer and then copied to the
screen when an editing operation requires one or more lines to be redrawn. Since the text is always
drawn in srcOr mode (to allow for character glyphs superimposing one another), portions of the
view rectangle would need to be erased before redrawing, possibly resulting in a flicker effect.
Offscreen drawing avoids this need and ensures smooth visual results. Offscreen drawing is not used
when WEUpdate is called with a non-nil updateRgn parameter (since the area to redraw is assumed

WASTE Documentation 32



to have already been erased anyway) or when not enough memory is available for the offscreen
buffer. The offscreen buffer is allocated dynamically (possibly from temporary memory) and is always
made purgeable or altogether disposed of before control is returned to the application.

INHIBITING LINE BREAK RECALCULATION

When the weFInhibitRecal bit is set, line breaks are not recalculated and text is not redrawn
during editing operations. In certain situations, for example when you have to apply a long sequence
of editing operations to a WE instance, you can achieve a significant performance boost by inhibiting
line break recalculation before starting the sequence and doing a complete recalculation (with
WECalText) when you are finished.

WEGetInfo / WESetInfo

Retrieve and set miscellaneous information associated with a specified WE instance.

pascal OSErr WEGetInfo(WESelector selector, void *info, WEReference we);
pascal OSErr WESetInfo(WESelector selector, const void *info,

WEReference we);

Field descriptions

selector Four-letter tag identifying the information being requested.
info Pointer to storage where the requested information is to be copied to or from.
we The WE instance.

DESCRIPTION

WEGetInfo and WESetInfo provide an extensible mechanism to retrieve and set internal fields of a
WE instance without knowledge of where these fields are actually stored. The currently defined fields
are all 32-bit wide, but nothing prevents the addition of fields of different sizes in a future release.

Here is a list of the selectors currently defined.

weCharByteHook 'cbyt' Address of the CharByte hook.
weCharToPixelHook 'c2p ' Address of the CharToPixel hook.
weCharTypeHook 'ctyp' Address of the CharType hook.
weClickLoop 'clik' Address of the click loop callback routine.
weCurrentDrag 'drag' Drag currently being tracked by WEClick, or zero if none.
weDrawTextHook 'draw' Address of the text drawing hook.
weEraseHook 'eras' Address of the erase hook.
weHiliteDropAreaHook 'hidr' Address of the drop-area highlighting hook.
weLineBreakHook 'lbrk' Address of the line-breaking hook.
wePixelToCharHook 'p2c ' Address of the PixelToChar hook.
wePort 'port' Pointer to the associated graphics port.
weRefCon 'refc' Reference constant for use by the client application.
weScrollProc 'scrl' Address of scroll callback routine.
weText 'text' Handle to the text.
weTSMDocument 'tsmd' Associated TSM document ID.
weTSMPreUpdate 'pre ' Address of the TSM pre-update callback routine.
weTSMPostUpdate 'post' Address of the TSM post-update callback routine.
weWordBreakHook 'wbrk' Address of the word-breaking hook.

The fields specified by the callback selectors (like weScrollProc and weTSMPreUpdate, etc.) can
be set to nil (as they are initially) to indicate that no callback should be invoked at all. The fields
specified by the low-level hook selectors (like weDrawTextHook, weLineBreakHook, etc.) can be
set to nil to indicate that the default low-level hook should be used. The default low-level hooks are
essentially built-in wrappers for the corresponding Toolbox calls: for example, the default low-level

WASTE Documentation 33



hook for text drawing calls DrawJustified, and the default low-level hook for line breaking calls
StyledLineBreak. Refer to the section “Application-Supplied Routines” for a description of the
hooks and callbacks listed above.

The routine addresses are actually universal procedure pointers, i.e., they point to either classic 68K
code or to routine descriptors for Code Fragment Manager-based code. WASTE provides macros (for
C/C++) or glue routines (for Pascal) that let you easily build routine descriptors for all application-
supplied routines. Please notice that what you pass to WESetInfo is a pointer to a UPP, and not the
UPP itself.

EXAMPLES

/* install a click loop callback routine */

static WEClickLoopUPP sClickLoopUPP = nil;
OSErr err;

if (sClickLoopUPP == nil)
{

sClickLoopUPP = NewWEClickLoopProc(MyClickLoop);
}

err = WESetInfo(weClickLoop, &sClickLoopUPP, we); // notice the & operator!

RESULT CODES

noErr 0 No error
weUndefinedSelectorErr -50 Invalid selector

WESetUserInfo

Attaches an arbitrary piece of information to a WE instance.

pascal OSErr WESetUserInfo(WESelector tag, SInt32 userInfo,
WEReference we);

Field descriptions

tag A four-letter tag identifying the information being set.
userInfo An arbitrary 32-bit value to be attached to the given WE instance.
we The WE instance.

DESCRIPTION

You can use WESetUserInfo to attach an arbitrary 32-bit value (identified by a four-letter tag) to a
WE instance, which can be retrieved later using WEGetUserInfo. This is equivalent to having
multiple “reference constants” for use by your application, and a convenient way for custom low-
level hooks to store instance-specific data that must be preserved across calls.

RESULT CODES

noErr 0 No error
memFullErr -108 Out of memory

WEGetUserInfo

Retrieves a 32-bit value previously attached by WESetUserInfo.

pascal OSErr WEGetUserInfo(WESelector tag, SInt32 *userInfo,
WEReference we);

WASTE Documentation 34



Field descriptions

tag A four-letter tag identifying the information being retrieved.
userInfo An arbitrary 32-bit value previously attached to the given WE instance.
we The WE instance.

DESCRIPTION

Use WEGetUserInfo to retrieve information previously attached to the given WE instance using
WESetUserInfo. If no information is associated with the specified four-letter tag, an error is
returned.

RESULT CODES

noErr 0 No error
weUndefinedSelectorErr -50 Invalid selector

WASTE Documentation 35



Application-Supplied Routines

This section describes the callback routines and the low-level hooks your application can supply to
WASTE to customize its behavior.

MyDrawText

Your application may supply this low-level hook to customize text drawing.

pascal void MyDrawText(Ptr pText, SInt32 textLength, Fixed slop,
JustStyleCode styleRunPosition, WEReference we);

Field descriptions

pText A pointer to the beginning of the text segment.
textLength The length in bytes of the text segment pointed to by pText.
slop The “slop” value used for fully justified text.
styleRunPosition Specifies the position of the segment on the display line.
we The WE instance.

DESCRIPTION

WASTE calls this low-level hook to draw all text, one segment for each call. A segment is the portion
of a style run that lies completely on one line, and is described by pText and textLength. The slop
parameter specifies the number of extra pixels that must be added to extend or condense the text, and
is only used for fully justified text — in all other cases, the slop value is set to zero. The
styleRunPosition parameter can be one of the constants onlyStyleRun, leftStyleRun,
rightStyleRun or middleStyleRun and specifies the position of the segment on the display line.

The standard hook just calls DrawJustified. Refer to Inside Macintosh: Text for a complete
description of the parameters.

MyCharToPixel

Your application may supply this low-level hook to customize the conversion from byte offsets into
the text to screen positions on the display line.

pascal SInt16 MyCharToPixel(Ptr pText, SInt32 textLength, Fixed slop,
SInt32 offset, SInt16 direction,
JustStyleCode styleRunPosition, SInt16 hPos, WEReference we);

Field descriptions

pText A pointer to the beginning of the text segment.
textLength The length in bytes of the text segment pointed to by pText.
slop The “slop” value used for fully justified text.
offset The byte offset from pText to the character within the text segment whose pixel

location on the display line is to be measured.
direction Used to disambiguate the caret position at direction boundaries.
styleRunPosition Specifies the position of the segment on the display line.
hPos The pixel width of the segments measured so far from the leftmost edge of the

line.
we The WE instance.

WASTE Documentation 36



DESCRIPTION

WASTE calls this low-level hook to convert byte offsets within a text segment to a screen position, in
order to draw the caret or the highlighting. The direction parameter can be one of the constants
hilite, leftCaret or rightCaret and is used to disambiguate the caret position at direction
boundaries when a bidirectional script is installed. The hPos parameter is the cumulative pixel width
of the preceding segments on the line which has been measured so far, starting from the leftmost edge
of the line. The function result must be the pixel location of the character specified by the offset
parameter, relative to the beginning of the text segment.

The standard hook just calls CharToPixel. Refer to Inside Macintosh: Text  for a complete description
of the parameters.

MyPixelToChar

Your application may supply this low-level hook to customize the hit-testing process, i.e., the
conversion from screen positions on the display line to byte offsets into a text segment.

pascal SInt32 MyPixelToChar(Ptr pText, SInt32 textLength, Fixed slop,
Fixed *width, WEEdge *edge, JustStyleCode styleRunPosition,
Fixed hPos, WEReference we);

Field descriptions

pText A pointer to the beginning of the text segment.
textLength The length in bytes of the text segment pointed to by pText.
slop The “slop” value used for fully justified text.
width On input, the screen position to be hit-tested, relative to the leftmost edge of the

text segment. On output, the special value 0xFFFF0000 if the specified screen
position falls within the given segment, otherwise the width of the given segment
is subtracted from the input value.

edge On output, specifies whether the leading or trailing edge of the glyph was hit.
styleRunPosition Specifies the position of the segment on the display line.
hPos The pixel width of the segments measured so far from the leftmost edge of the

line.
we The WE instance.

DESCRIPTION

WASTE calls this low-level hook to perform all hit-testing, i.e., to convert screen positions on a
display line to offset/edge pairs. The screen position to be hit-tested, relative to the leftmost edge of
the text segment, is passed in the width parameter as a 16:16 fixed-point value. The hook should
determine whether this position is within the text segment specified by pText and textLength or
not. If the specified screen position is indeed within the segment, the hook should return in the
function result the byte offset to the character whose glyph is at this position, set the edge parameter
to either kLeadingEdge or kTrailingEdge and set width to the special value 0xFFFF0000. If the
specified screen position is beyond the segment, the hook should subtract the whole width of the
segment from the width parameter.

The standard hook just calls PixelToChar. Refer to Inside Macintosh: Text  for a complete description
of the parameters.

MyLineBreak

Your application may supply this low-level hook to customize the line breaking process.

pascal StyledLineBreakCode MyLineBreak(Ptr pText, SInt32 textLength,
SInt32 segmentStart, SInt32 segmentEnd, Fixed *pixelWidth,

WASTE Documentation 37



SInt32 *breakOffset, WEReference we);

Field descriptions

pText A pointer to the beginning of the script run on the current line to be broken.
textLength The length in bytes of the script run.
segmentStart The byte offset to the beginning of a style run within the script run.
segmentEnd The byte offset to the end of a style run within the script run.
pixelWidth The remaining pixel width on the line.
breakOffset On input, this is set to 1 for the first script run on the line, and 0 for subsequent

script runs. On output, the byte offset from pText to the position where the line
is to be broken.

we The WE instance.

DESCRIPTION

WASTE calls this low-level hook to calculate line breaks. The standard hook just calls
StyledLineBreak. Refer to Inside Macintosh: Text for a complete description of the parameters.

MyClickLoop

Your application may supply this routine to perform additional actions during a call to WEClick or
WETrackDrag.

pascal Boolean MyClickLoop(WEReference we);

Field descriptions

we The WE instance where mouse tracking is taking place.

DESCRIPTION

The click loop callback is very similar to its TextEdit counterpart and was typically used to provide
auto-scrolling behavior during calls to WEClick or to WETrackDrag. Starting from version 1.2,
WASTE has its own built-in click loop routine that takes care of auto-scrolling, so a custom click loop
routine is rarely needed. You can use the scroll callback to keep your scroll bars in sync with the text
while the built-in click loop scrolls the destination rectangle. The built-in click loop does nothing if
auto-scrolling is disabled (see the description of WEFeatureFlag).

Notice that while WEClick keeps calling the click loop routine, WETrackDrag only calls it when the
mouse has been outside the view rectangle for at least 10 ticks. If you have a custom click loop
routine, here is how you could determine whether it is being called by WETrackDrag:

DragReference currentDrag = 0L;
Boolean fromTrackDrag =
(WEGetInfo(weCurrentDrag, (void *) &currentDrag, we) == noErr)
&& (currentDrag != 0L);

MyScroll

WASTE calls this application-supplied routine when the destination rectangle is changed.

pascal void MyScroll(WEReference we);

Field descriptions

we The WE instance.

WASTE Documentation 38



DESCRIPTION

When the auto-scrolling feature is enabled (see WEFeatureFlag), WEScroll may be called
internally in order to keep the selection range visible. If you want your application to be notified
when this happens (e.g., in order to keep the scroll bars in sync with the text), you can install a scroll
callback. Notice that if you call WEScroll directly, your callback will not be invoked.

The scroll callback will also be called when an editing action changes the text height, and therefore the
destination rectangle: destRect.bottom will be updated so that (destRect.bottom -
destRect.top) equals the pixel height of the whole text, including any blank lines at the bottom.

MyTSMPreUpdate

WASTE calls this application-supplied routine immediately before handling an Update Active Input
Area Apple event sent by a text service component.

pascal void MyTSMPreUpdate(WEReference we);

Field descriptions

we The WE instance where inline input is taking place.

DESCRIPTION

This callback was provided in WASTE 1.0 mainly for compatibility with existing TextEdit-based
applications relying on the TSMTE extension to provide inline input support. Please refer to the
technical note TE 27, Inline Input for TextEdit with TSMTE, for information about the TSMTE extension.
A typical use of this callback in WASTE 1.0 (and in TextEdit) is to save information needed to
implement the Undo functionality. This use is no longer necessary in WASTE 1.1 if you use the built-
in Undo routines, designed to work seamlessly with inline input.

MyTSMPostUpdate

WASTE calls this application-supplied routine immediately after handling an Update Active Input
Area Apple event sent by a text service component.

pascal void MyTSMPostUpdate(WEReference we,
SInt32 fixLength, SInt32 inputAreaStart, SInt32 inputAreaEnd,
SInt32 pinRangeStart, SInt32 pinRangeEnd);

Field descriptions

we The WE instance where inline input is taking place.
fixLength The length of the confirmed text in the active input area.
inputAreaStart Offset to the beginning of the active input area.
inputAreaEnd Offset to the end of the active input area.
pinRangeStart Offset to the beginning of the range to scroll into view.
pinRangeEnd Offset to the end of the range to scroll into view.

DESCRIPTION

Like the TSM pre-update routine (see above), this callback is provided mainly for compatibility with
existing TextEdit-based applications relying on the TSMTE extension to provide inline input support.
Typical uses of this callback in TextEdit-based applications include updating the scroll bars (in case
the text was scrolled or the total text height changed), keeping track of Undo information and
marking a document as “dirty”. In WASTE 1.1 you can use a scroll callback to update scroll bars and,
if you use the built-in Undo support, you can use WEGetModCount to determine if a document has
been “dirtied” by an Update Active Input Area event.

WASTE Documentation 39



MyNewObject

WASTE calls this application-supplied routine when a new embedded object must be created from
raw data coming from the Clipboard, from a drag or from a direct call to WEInsertObject.

pascal OSErr MyNewObject(Point *objectSize,
WEObjectReference objectRef);

Field descriptions

objectSize The default height and width of the object.
objectRef Reference to the embedded object being created.

DESCRIPTION

WEInsertObject calls this handler when creating a new embedded object from raw data
(WEInsertObject, in turn, may be called internally by other WASTE routines, like WEPaste and
WEReceiveDrag). Your handler can examine the raw data handle (using
WEGetObjectDataHandle), manipulate it if necessary and possibly associate auxiliary data
structures with the object (each object has a “reference constant” that you can use for this purpose).
Finally, your handler should set *objectSize the size (height and width, in pixels) of the rectangle
which is to enclose the object when it is drawn.

EXAMPLES

/* new handler for PICT objects */

pascal OSErr MyHandleNewPicture(Point *objectSize,
WEObjectReference objectRef)

{
PicHandle thePicture;
Rect theFrame;

/* get handle to object data (in this case, a picture handle) */
thePicture = (PicHandle) WEGetObjectDataHandle(objectRef);

/* figure out object size by looking at the picFrame record */
theFrame = (*thePicture)->picFrame;
OffsetRect(&theFrame, -theFrame.left, -theFrame.top);
*objectSize = botRight(theFrame);

return noErr;
}

MyDisposeObject

WASTE calls this application-supplied routine when it needs to delete an embedded object.

pascal OSErr MyDisposeObject(WEObjectReference objectRef);

Field descriptions

objectRef Reference to the embedded object being deleted.

DESCRIPTION

Your handler should take whatever actions are necessary to destroy the specified embedded object,
including disposing of the data handle associated with the object and of any other additional data
structures set up by the new handler. If you do not supply a dispose handler, WASTE will just call
DisposeHandle on the object data handle.

WASTE Documentation 40



MyDrawObject

WASTE calls this application-supplied routine to draw embedded objects.

pascal OSErr MyDrawObject(const Rect *destRect,
WEObjectReference objectRef);

Field descriptions

destRect The rectangle in which the object must be drawn, in local coordinates.
objectRef Reference to the embedded object to draw.

DESCRIPTION

WASTE calls this handler to draw an embedded object. The Quickdraw graphics port will have been
set up correctly.

EXAMPLES

/* draw handler for PICT objects */

pascal OSErr MyHandleDrawPicture(const Rect *destRect,
WEObjectReference objectRef)

{
PicHandle thePicture;

/* get handle to object data (in this case, a picture handle) */
thePicture = (PicHandle) WEGetObjectDataHandle(objectRef);

/* draw the picture */
DrawPicture(thePicture, destRect);

return noErr;
}

MyClickObject

WASTE calls this application-supplied routine to give you a chance to intercept mouse clicks in a
selected object.

pascal Boolean MyClickObject(Point hitPt, EventModifiers modifiers,
UInt32 clickTime, WEObjectReference objectRef);

Field descriptions

hitPt The hit point, in local coordinates.
modifiers The modifiers field of the mouse-down event record.
clickTime The when field of the mouse-down event record.
objectRef Reference to the embedded object to draw.

DESCRIPTION

WASTE calls this handler when a selected object is clicked. Your handler should determine whether it
wants to intercept the click, in which case it should return TRUE, or whether it wants WASTE to
handle the click normally, in which case it should return FALSE. Typically, your handler will want to
intercept double clicks and leave single clicks to WASTE (intercepting all clicks indiscriminately is not
a good idea, because it stops the user from starting a drag by clicking in the selected object). To make
life easier for your handlers, WASTE sets the low bit of modifiers on double clicks.

WASTE Documentation 41



EXAMPLES

/* click handler for sound objects */

pascal Boolean HandleClickSound(Point hitPt, EventModifiers modifiers,
UInt32 clickTime, WEObjectReference objectRef)

{
SndListHandle theSound;

if (modifiers & 0x0001) // look for double-clicks
{

theSound = (SndListHandle) WEGetObjectDataHandle(objectRef);
SndPlay(nil, theSound, false);
return true;

}
else

return false;
}

MyStreamObject

You supply this callback if you want to customize the process by which WASTE “flattens” an object
and writes its raw data to the clipboard, to a drag or to a SOUP.

enum {
weToScrap,
weToDrag,
weToSoup

};

pascal OSErr MyStreamObject(SInt16 destKind, FlavorType *theType,
Handle putDataHere, WEObjectReference objectRef);

Field descriptions

destKind Can be weToScrap, weToDrag or weToSoup.
theType Return the flavor type of the streamed data here.
putDataHere Handle where the raw data should be written to, or nil if no data is requested.
objectRef Reference to the embedded object to stream.

DESCRIPTION

By default, WASTE streams an object to a destination (the clipboard, a drag or a SOUP) by copying
the contents of the object’s data handle. While this is generally appropriate for simple objects such as
pictures and sounds in which all the persistent data is kept in a single flat handle, you may want to
customize the streaming process by installing a streaming handler, which can provide its own
flattened data to be streamed and even change the flavor type used to “tag” the flattened data
(writing multiple flavors to the destination is not supported, however).

If the putDataHere parameter is non-nil, you can assume it is a valid handle that you should resize
and fill with the flattened data. If putDataHere is nil, WASTE is calling your handler just to know
what flavor type you are going to supply when the actual data is needed. You should set *theType
in both cases, using the same flavor type (changing your mind between invocations is not allowed).

Returning weNotHandledErr causes WASTE to use its default streaming method.

WASTE Documentation 42



Distribution & Licensing

You can use the WASTE library in any way you like in freeware, shareware and commercial
programs, subject to the following conditions:

• I, Marco Piovanelli, retain all rights on the library and on the original source code.

• You expressly acknowledge and agree that use of this software is at your sole risk. This software
and the related documentation are provided “AS IS” and without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. Under no circumstances including negligence, shall I be liable for any incidental,
special or consequential damages that result from the use or inability to use the software or related
documentation, even if advised of the possibility of such damages.

• You give me credit in your program’s about box and/or in the printed documentation (if any), by
including the following line:

WASTE text engine © 1993-1998 Marco Piovanelli
• You notify me that you are using my code. This allows me to keep the list of WASTE-using
programs up-to-date.

• I have the right to request one complimentary copy of the finished product, either electronically or
by postal mail. For shareware and commercial programs, this means that I get a fully registered copy
of the complete package. This item does not apply to in-house applications.

The WASTE 1.3 package can be freely distributed in electronic form on computer networks. It cannot,
however, be distributed by other means (such as in printed form, on magnetic media or on CD-ROM)
without permission from the author. Special permission is granted to the following companies for
including the WASTE 1.3 package in their respective CD-based products:

Apple Computer, Inc. Developer Series

Celestin Company Apprentice

Metrowerks CodeWarrior

Pacific HiTech, Inc. Info-Mac

The latest news about WASTE is available from the WASTE web page:

<http://www.boingo.com/waste/>

The latest version of the WASTE distribution can be downloaded from the WASTE ftp archives:

<ftp://ftp.boingo.com/dan/WASTE/>

An informal WASTE mailing list dedicated to all developers working with WASTE. To join the list,
send a message to:-

<mailto:requests@rhino.harvard.edu>

with the words:

subscribe waste

in the body of the message (the subject field is ignored).

WASTE Documentation 43



Acknowledgements

I’d like to thank the following people for their help and inspiration, in no particular order:

• Dan Crevier, for the C port of the original Pascal version, without which WASTE could never
become popular. Dan also wrote a set of wrapper classes for the THINK Class Library, gave me many
suggestions and pointed out a number of bugs.

• John C. Daub (aka Hsoi), for volunteering to port the WASTE Demo to C and for all those
questions. ;-)

• Jonathan Kew, who is largely responsible for the bidirectional script support code that made its
debut in version 1.3a1.

• Timothy Paustian, for the PowerPlant wrapper classes and for replying to all those questions on the
WASTE mailing list.

• Mark Alldritt, who used WASTE in his cool Script Debugger application and showed me a way to
implement tabs.

• Greg Galanos and all the good people at Metrowerks for the free copy of CodeWarrior. They’re a
great company, aren’t they?

• Matthew Xavier Mora, for nominating WASTE for the Usenet Macintosh Programming Award
(UMPA) in the freeware category.

• Michael F. Kamprath, who made a lot of questions and pointed out several weaknesses.

• Mark Lanett, for a lengthy e-mail exchange about embedded objects which inspired the current
implementation.

• Alan Steremberg, for more chat about embedded objects and for maintaining the original WASTE
Mailing List.

• Matsubayashi Kohji, for his careful explanation of the Japanese way of using a Macintosh and for
testing WASTE with KanjiTalk.

• Stefan Kurth, Leonard Rosenthol, Jud Spencer and many others, who suggested several
improvements.

• Rick Giles, early adopter of WASTE.

• Ari Halberstadt, for his insightful comments and suggestions.

• René G.A. Ros, for all his generous aid during the past few years.

• Paul Celestin, for all the Apprentice CDs.

• Adrian Le Hanne, for indirectly suggesting the signature of the WASTE Demo (this is cryptic, I
know).

• Steven Stapleton and Andrew M. McKenzie, for their beautiful music.

Hardware and software used to develop WASTE 1.3:

• Power Macintosh 7600/132 (32 MB RAM, 1.2 GB HD)

• MacOS 8.0

• Metrowerks CodeWarrior Pro 2

• MacsBug 6.5.4a3c1

• ResEdit 2.1.3

WASTE Documentation 44


