
 

ð

 

Developer Press
Apple Computer, Inc.

 

ð

 

Using the Apple Dylan 
Development Environment

 

Preliminary

 

 

This document was created with FrameMaker 4.0.4



 

ð

 

Apple Computer, Inc.

 



 

 1993–1995 Apple Computer, Inc.
All rights reserved. 
No part of this publication may be 
reproduced, stored in a retrieval 
system, or transmitted, in any form 
or by any means, mechanical, 
electronic, photocopying, recording, 
or otherwise, without prior written 
permission of Apple Computer, Inc., 
except in the normal use of the 
software or to make a backup copy 
of the software. The same 
proprietary and copyright notices 
must be affixed to any permitted 
copies as were affixed to the 
original. This exception does not 
allow copies to be made for others, 
whether or not sold, but all of the 
material purchased (with all backup 
copies) may be sold, given, or 
loaned to another person. Under the 
law, copying includes translating 
into another language or format. 
You may use the software on any 
computer owned by you, but extra 
copies cannot be made for this 
purpose.
Printed in the United States of 
America.
The Apple logo is a trademark of 
Apple Computer, Inc. Use of the 
“keyboard” Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal 
and state laws.
No licenses, express or implied, are 
granted with respect to any of the 
technology described in this book. 
Apple retains all intellectual 
property rights associated with the 
technology described in this book. 
This book is intended to assist 
application developers to develop 
applications only for Apple 
Macintosh computers.
Every effort has been made to 
ensure that the information in this 
manual is accurate. Apple is not 

responsible for printing or clerical 
errors.

 

This is a draft document. All 
information herein is subject to 
change without notice.

 

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, 
Macintosh, Macintosh Quadra, 
MPW, PowerBook, and ResEdit are 
trademarks of Apple Computer, Inc., 
registered in the United States and 
other countries.
ResEdit is a trademark of Apple 
Computer, Inc.
Adobe Illustrator, Adobe 
Photoshop, and PostScript are 
trademarks of Adobe Systems 
Incorporated, which may be 
registered in certain jurisdictions.
Docutek is a trademark of Xerox 
Corporation.
FrameMaker is a registered 
trademark of Frame Technology 
Corporation.
Helvetica and Palatino are 
registered trademarks of Linotype 
Company.
ITC Zapf Dingbats is a registered 
trademark of International Typeface 
Corporation.

PowerPC is a trademark of 
International Business Machines 
Corporation, used under license 
therefrom.
QuickView is a trademark of Altura 
Software, Inc.
RAM Doubler is a registered 
trademark of Connectix, Inc.
Mercutio MDEF from Digital 
Alchemy
Copyright 

 



 

 Ramon M. Felciano 
1992–1995, All Rights Reserved
Simultaneously published in the 
United States and Canada.

 

LIMITED WARRANTY ON MEDIA 
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS 
MANUAL, INCLUDING IMPLIED 
WARRANTIES OF 
MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, ARE 
LIMITED IN DURATION TO NINETY 
(90) DAYS FROM THE DATE OF THE 
ORIGINAL RETAIL PURCHASE OF 
THIS PRODUCT.

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS MANUAL, ITS 
QUALITY, ACCURACY, 
MERCHANTABILITY, OR FITNESS 
FOR A PARTICULAR PURPOSE. AS A 
RESULT, THIS MANUAL IS SOLD “AS 
IS,” AND YOU, THE PURCHASER, 
ARE ASSUMING THE ENTIRE RISK 
AS TO ITS QUALITY AND 
ACCURACY.

IN NO EVENT WILL APPLE BE 
LIABLE FOR DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES 
RESULTING FROM ANY DEFECT OR 
INACCURACY IN THIS MANUAL, 
even if advised of the possibility of such 
damages.

THE WARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLUSIVE 
AND IN LIEU OF ALL OTHERS, ORAL 
OR WRITTEN, EXPRESS OR IMPLIED. 
No Apple dealer, agent, or employee is 
authorized to make any modification, 
extension, or addition to this warranty.

Some states do not allow the exclusion 
or limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights 
which vary from state to state.

 

 

This document was created with FrameMaker 4.0.4



 

iii

 

Contents

 

Preface

 

Preface

 

vii

What to Read vii
Conventions Used in This Book viii

Special Fonts viii
Types of Notes viii

For More Information ix

 

Chapter 1

 

Learning Apple Dylan

 

1

Introducing the Apple Dylan development environment 1
Running Apple Dylan 8

Running the development environment 9
Opening a sample project 11
Running a sample application 15

Using browsers 15
Browsing a project 16
Using the built-in browsers 24
Linking panes and browsers 34
Showing different aspects of objects 42
Changing aspects 46
Using the browser References To 49
Using the browser Info for Selected Class 53
Customizing browsers 58
Saving a browser configuration 61

Editing in Apple Dylan 66
Copy, Cut and Paste in Apple Dylan 67

Copy Special and Insert Special commands 68
Undo and Clear commands 69
Replace and Find commands 69
Formatting commands 70
Importing and exporting Dylan text files 70
Macintosh and Emacs-style editing commands 71

 

 

This document was created with FrameMaker 4.0.4



 

iv

 

Macintosh-style key commands 71
Emacs-style key commands 72

Editing code 76
Customizing the development environment 83

Setting development environment preferences 84
Setting editing defaults 85
Setting Listener interaction defaults 87

Using icons in Apple Dylan 88

 

Chapter 2

 

Using Apple Dylan

 

95

Apple Dylan User Model 95
The Project 95

What goes into a project? 97
What’s

 

 really 

 

in a project? 101
What happens when you open a project? 101
The active project 102

Targeting 68K and PowerPC Platforms 103
Application or library? 104

Library version numbers 106
The Application Nub 107
Keeping your project synchronized 109

Orphan definitions in the runtime 111
Status indicators and synchronization 111
Restoring synchronization 112

Apple Dylan Listener 113
Inspector windows 116
Bailing out of Apple Dylan 117
Building standalone applications 118

Starting a project 119
Creating a new project 120
Setting the project type for an application 126
Setting the project type for a library 128
Saving a project 130
Saving the objects in a pane 130
Adding a subproject or resource file 130



 

v

 

Adding the framework 131
Including C code 132

Compiling your project 133
Launching the runtime 135
Untethering from the runtime 136
Checking code status 136
Compiling a selection 139
Compiling all uncompiled code 140
Compiling code from the Listener 141
Excluding code from compilation 143
Including code in compilation 143
Running an application in Apple Dylan 144
Tethering to a running application 145

Debugging a project 146
Inspecting the stack 148
Inspecting Listener results 151
Inspecting heaps 153
Inspecting modules 154
Metering expressions 156
Monitoring an individual function 159

Creating a user interface 161
Adding the Apple Dylan interface builder 162
Adding the new user interface 163
Sharing your user interface 164

Building your application or library 164
Building your standalone application 164
Building a library 166

Sharing code 167
Sharing projects 168
Sharing code by exporting 168
Retrieving code by importing 171

 

Chapter 3

 

Apple Dylan Reference

 

173

Key Command Shortcuts 173
Command Reference 175



 

vi

 

Stack window commands 222
Inspector window commands 223

 

Glossary

 

273

 

Index

 

279



 

vii

 

P R E F A C E

 

Preface

 

This book, 

 

Using the Apple Dylan Development Environment, 

 

gives you a good 
look at the user interface and program development environment in Apple 
Dylan. You’ll find that the Apple Dylan tools allow flexible programming and 
full access to information about your program.

The term 

 

Apple Dylan 

 

refers to the development environment and associated 
tools, extensions and capabilities developed by Apple Computer for 
programming in the 

 

Dylan

 

 language, an 

 

object-oriented dynamic language

 

. 

For more information on programming in the Apple Dylan language, see the 
books 

 

Programming in Apple Dylan

 

 and 

 

Apple Dylan Extensions and Framework 
Reference

 

. For more details on creating a user interface for your application, see 
the book 

 

Creating a User Interface in Apple Dylan

 

. For information on how to 
install and configure Apple Dylan on your system, see the booklet 

 

Apple Dylan 
Quickstart

 

.

 

What to Read 0

 

This book has three chapters, a glossary, and an index. You can either read it 
sequentially or move around in it from one topic to another.

 

■

 

Learning Apple Dylan—introductions to and explorations of the 
development environment. This chapter should give you a chance to learn 
how to interact with the development environment without a lot of 
explanation. This chapter primarily familiarizes you with the browsing and 
editing features of the Apple Dylan environment.

 

■

 

Using Apple Dylan—deeper understanding and in-depth tasks described. 
This chapter opens with a description of the Apple Dylan User Model, 
which is the chain of actions and events that takes you from starting to write 
code, through compiling, and finally to creating a running standalone 
application.

 

 

This document was created with FrameMaker 4.0.4



 

viii

 

 

 

P R E F A C E

 

■

 

Apple Dylan Reference—alphabetical listing of all commands used in Apple 
Dylan, along with examples. This chapter opens with a list of the keyboard 
equivalent shortcuts for each command.

 

■

 

Apple Dylan Glossary—all words introduced in

 

 bold 

 

are defined in the 
glossary, along with many other terms used in Apple Dylan. 

All chapters include many examples, and Learning Apple Dylan and Using 
Apple Dylan include many step-by-step descriptions of common tasks. 

Apple Dylan is probably different from any development environment you 
have used in the past. By following the information presented in this book you 
will soon find yourself interacting with the programs you develop in an 
entirely different way, not as an editor buffer full of code or as a flow chart, but 
as a living program. All of the program’s features are directly under your 
control and organized, not by the requirements of a language or compiler, but 
according to the way the program actually works. 

 

Conventions Used in This Book 0

 

This book uses various conventions to present certain types of information.

 

Special Fonts 0

 

All code listings, reserved words, and the names of data structures, constants, 
fields, parameters, and functions are shown in a monospaced font (

 

this is 
monospaced

 

).

When new terms are introduced, they are in

 

 boldface.

 

 These terms are defined 
in the glossary.

 

Types of Notes 0

 

There are several types of notes used in this book.



 

ix

 

P R E F A C E

Note

 

A note like this contains information that is interesting but 
possibly not essential to an understanding of the main text. 
Often, these Notes include additional information. See for 
instance,“The active project” on page 102.

▲ W A R N I N G

 

A note like this contains information that is especially 
important. As this is an early release of Apple Dylan, not 
all interactions are as smooth as we want them to be. For 
instance, the warning in “The active project” on 
page 102.

 

▲

 

For More Information 0

 

APDA is Apple’s worldwide source for hundreds of development tools, 
technical resources, training products, and information for anyone interested in 
developing applications on Apple platforms. Customers receive the 

 

APDA 
Tools Catalog 

 

featuring all current versions of Apple development tools and the 
most popular third-party development tools. APDA offers convenient payment 
and shipping options, including site licensing.

To order products or to request a complimentary copy of the 

 

APDA Tools 
Catalog

 

, contact 

APDA 
Apple Computer, Inc. 
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511 

AppleLink APDA



 

x

 

 

 

P R E F A C E

 

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com



 

Introducing the Apple Dylan development environment

 

1

 

C H A P T E R  1

 

Learning Apple Dylan 1

 

Dylan is a new programming language and Apple Dylan is a development 
environment designed to be used with Dylan. The language provides 
automatic memory management, type checking at both compile-time and 
run-time, and a high-level exception handling mechanism. The Apple Dylan 
framework further simplifies programming.

The Apple Dylan development environment supports incremental compilation 
and the Apple Dylan Listener for executing individual expressions without 
having to create the code scaffolding around them. User-interface design can be 
performed in the graphically-oriented user-interface builder, which allows you 
to see what your user interface will look like before you have written any code 
for it, thus cutting down on recoding.

This chapter provides a general introduction to Dylan and the Apple Dylan 
development environment, including installation, examples of interacting with 
the browsers, and editing. See the chapter “Using Apple Dylan” on page 95 for 
more specific information on using the environment to develop applications.

 

Introducing the Apple Dylan development environment 1

 

In Apple Dylan, you write code, compile, debug and build an 

 

application

 

, but 
the way you go about it is probably different from what you are used to. For 
instance, the source code for an application is not written in files, but is broken 
into individual 

 

source records

 

, each method and class in its own source record. 
Each construct of the Dylan language is an object that is stored individually in 
a database and can be manipulated independently making the concept of 
header files and object files obsolete. Everything that you have compiled is 
stored in a 

 

database 

 

that can be viewed and manipulated through Apple Dylan 
browsers.

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  1  

 

Learning Apple Dylan

 

2

 

Introducing the Apple Dylan development environment

 

The 

 

source

 

 database contains all your source code with all its links and 
structure. What you see is a 

 

project

 

 displaying objects of finer and finer 
granularity, right down to the source code. The largest containers in a project 
are modules, which contain source folders. The source folders hold source 
records, which contain the source code. All of these containers can be dragged, 
dropped, and copied as if you were in the Finder.

The development environment displays the project in

 

 browsers

 

, windows with 
one or more linked

 

 panes

 

. The browsers operate as if a set of panes were tiled 
next to each other and then bound together so they could interact. Most 
browsers are linked together in such a way that the object you select in one 
pane has its contents displayed in another pane. This way you can browse 
through a list of objects in the first pane, examining the contents of each in turn. 
Information displayed in each pane is under your control. 

A number of browsers are supplied with Apple Dylan but you can also create 
browsers of your own. The main

 

 

 

browser for a project is called the 

 

project 
browser

 

. The browser in the following figure is the 

 

default project browser 

 

shipped with Apple Dylan. When you first open or create a project, this 
browser configuration is displayed. In this example, the sample project 
text-app was opened. 

The default project browser has three panes linked to display the text-app 
project. The title bar for the browser displays the project’s name, as does the 
header of the pane in the upper-left. That pane displays the major components 
of the project, mostly modules and subprojects. This is the 

 

root pane

 

 of the 
browser because it is the browser’s upper-left pane. The root pane’s 

 

basis

 

 (or 
source) is the project itself.



 

C H A P T E R  1

 

Learning Apple Dylan

Introducing the Apple Dylan development environment

 

3

 

The pane in the lower-left displays the contents of whatever object you select in 
the upper-left pane. The panes have been linked in the project browser to 
display that relationship, although that 

 

link

 

 could be changed to display other 
relationships. Likewise, in the default project browser the contents of any object 
selected in the lower-left pane are displayed in the pane on the right. 

In the previous figure the module named text-app has been selected in the 
upper-left pane. That module holds the code for the project that the project’s 
author wrote. Its contents appear in the lower-left pane. Notice that some of the 
contents have been expanded within the pane using 

 

disclosure triangles

 

, just 
as you would in the Finder. The last object in the lower-left pane, a source 
folder named text-app, has been selected, so its contents appear in the pane on 
the right. In the pane on the right the numerous source records are listed and 
some of them have been expanded. There is even a warning that has been 
generated during compilation. The warning appears at the end of the source 
code for the source record behavior-setup-menus. 

The following figure shows the two left-hand panes of the browser in the 
previous figure. This figure identifies some of the features on the panes and on 
the browser, which surrounds the panes. The browser’s name is on the bar at 
the top of the figure. In this example, the name is “Project: text-app”.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

4

 

Introducing the Apple Dylan development environment

 

The 

 

information line

 

 prompts you with ephemeral information depending on 
what you have selected. If you have selected a function, its arguments are 
displayed. If you are dragging an object, you are told whether it can be 
dropped or not. In general, the information line gives feedback on current 
activities in the browser; it is sometimes called the prompt area or status line. 
The information line may be blank. The current module is displayed to its left.

The following figure identifies the features of the pane on the right side of the 
browser.

Name of project

Icon representing

project

Outgoing link

Zoom boxName of project

Status indicator

Status indicator

Vertical splitter

Resource file

Icon representing

module

Expanded

source folder

Close pane box

Disclosure triangle

Name of module

Status indicator visible in pane

Module
Information line



 

C H A P T E R  1

 

Learning Apple Dylan

Introducing the Apple Dylan development environment

 

5

 

There are many other types of browsers provided or supported by the 
development environment to help you understand your project. You can create 
a browser based on any 

 

aspect

 

 of an object. For instance, you could get a list of 
the family of methods and the generic function a method belongs to. In 
addition to the browsers supplied with Apple Dylan, you can create your own, 
suited to the needs and nature of your project.

The development environment provides a means of executing individual 

 

expressions

 

 outside the browsers. The Apple Dylan Listener allows you to type 
in an expression and execute it independently of the project’s structure of 

 

containers

 

. The Listener allows you to try out coding ideas without creating an 
entire structure to hold the code. In addition, all values returned and other 
program results are printed to the Listener window for any code executed 
anywhere in the development environment, even in the browsers. 

Status

indicator

Unexpanded

source record

Icon

representing

source folder

Close pane box

Aspect visible

in pane

Incoming link

Name of

source folder

Zoom box

Horizontal

splitter

Warning

generated

during

compilation

Expanded

source

record with

an error in it

Expanded

source record

Status

indicator

column



 

C H A P T E R  1  

 

Learning Apple Dylan

 

6

 

Introducing the Apple Dylan development environment

 

You can enter any Dylan expression into the Listener for immediate execution. 
For example, you can call functions in the Listener (including your 
application’s startup function), and you can define functions, variables, and 
classes in the Listener. The following figure shows the Apple Dylan Listener 
window with a simple expression, 3 plus 4, entered at the prompt and the 
return value, 7, returned by the Listener. The Listener is ready for the next 
expression, as indicated by the waiting prompt, 

 

>

 

.

Your application under development can run under the control of the Apple 
Dylan development environment. It doesn’t need to be complete and built as a 
standalone application to do so. While you are still developing the program, 
your code can run loaded into a small, “nub” of an application called the

 

 
Application Nub, 

 

which is tethered to the development environment. The code 
you write is added to the application nub every time you compile the code, 
allowing you to slowly build up to your final standalone application. 

The following figure shows Apple Dylan tethered to the Application Nub, as it 
is while you are developing your application. 



 

C H A P T E R  1

 

Learning Apple Dylan

Introducing the Apple Dylan development environment

 

7

 

When your project is complete and you build your standalone application, the 
services provided by the application nub and the code in your project are 
bundled together. The connection to the development environment is severed.

The following figure shows that when you build your standalone application, 
the Application Nub and your application have become one and it has been 
severed from the development environment.

Application nub

LibrariesDatabase

AppleDylan

Project sources

Caches Library

debug info



 

C H A P T E R  1  

 

Learning Apple Dylan

 

8

 

Running Apple Dylan

 

This means that from your point of view as a programmer, the application 
under development and the standalone application are equal. Just as you can 
interact with an unfinished project connected to the application nub, so too can 
you interact with a standalone application that was already been built in Apple 
Dylan. You might need to do this for further debugging of the application.

The browsers and the Listener help you write your source code and compile it, 
but you need to debug it too. For that the development environment provides 
inspector windows. When you have a problem, inspector windows let you 
examine runtime objects to help you determine the cause of the problem. 

 

Running Apple Dylan 1

 

When you have your system configured, you can install Apple Dylan by 
following the instructions in the pamphlet 

 

Apple Dylan Quickstart

 

.

To use Apple Dylan you must run it and open a project, either a sample project 
or a new one. You might also want to run some of the sample projects’ 
standalone applications in the Finder to see what they do. You can run the 
interface builder’s standalone version from the Finder if you want to see how it 
works. To use it as you write your application, run it from inside the 

Your application

LibrariesDatabase

AppleDylan

Project sources

Caches Library

debug info



 

C H A P T E R  1

 

Learning Apple Dylan

Running Apple Dylan

 

9

 

development environment. See the chapter “Using Apple Dylan” on page 95 
for more information.

You can run Apple Dylan on two machines by installing the Application Nub 
and any pre-built libraries on a separate machine from the rest of the 
development environment. The pre-built libraries, such as the Dylan library or 
any libraries you have included with your application, must be in the same 
folder as the Application Nub or in the Extensions folder on the separate 
machine. If you wish to do two-machine development, see the book 

 

Apple 
Dylan Quickstart

 

 for more information on memory and special setup 
requirements.

 

Running the development environment 1

 

Apple Dylan is an application in the Apple Dylan folder you copied from the 
Apple Dylan CD to your computer. You can run Apple Dylan SI instead, if 
don’t have enough RAM to run the standard Apple Dylan. Depending on the 
amount of RAM available on your system, you might want to quit any other 
applications before running Apple Dylan.

Ordinarily, to run Apple Dylan you simply double-click its executable file. In 
the following task you also adjust the memory. That is something you only 
need to do the first time you run Apple Dylan.

You can run Apple Dylan on two machines by installing the Application Nub 
and any pre-built libraries on a separate machine from the rest of the 
development environment. The pre-built libraries, such as the Dylan library or 
any libraries you have included with your application, must be in the same 
folder as the Application Nub or in the Extensions folder on the separate 
machine. If you wish to do two-machine development, be sure to select that on 
the Application Nub sheet of the Preferences command. See the book 

 

Apple 
Dylan Quickstart

 

 for more information on memory and special setup 
requirements for two-machine development.

 

1. Follow the instructions in 

 

Apple Dylan Quickstart

 

 to set up your machine 
properly.

2. Open the Apple Dylan folder.

 

The Apple Dylan folder contains two main folders, Apple Dylan and Apple 
Dylan documentation. The Apple Dylan applications are in the folder Apple 
Dylan.

 

 

This document was created with FrameMaker 4.0.4P2



 

C H A P T E R  1  

 

Learning Apple Dylan

 

10

 

Running Apple Dylan

 

3. Double-click on the Apple Dylan application.

 

You can also run Apple Dylan by double-clicking on Apple Dylan SI.
When you run Apple Dylan, the development environment displays the 
unconnected Listener and the Apple Dylan menu bar. To use Apple Dylan 
you should open a project. For more information on that, see the next task.

 

4. Double-click on the file Application Nub from the Finder.

 

The Application Nub file is in the folder Apple Dylan: Apple Dylan Files: 
Application Nub. 
You must set the preferred memory for both the Application Nub and Apple 
Dylan files to leave at least 50K unused when both are running. This is 
because the system heap in Apple Dylan cannot expand properly when all 
available memory has been allocated to applications. When you run Apple 
Dylan in the future, after resetting the preferred size for these two files, you 
don’t need to run the Application Nub file as well.
You will notice that the Application Nub has no user interface within Apple 
Dylan, so even when it’s running, there is no menubar for it. That is because 
it is the nub, or core of, the application you create. You create the menubar 
and other user interface elements in the course of creating your application. 
Ordinarily you launch and quit the Application Nub from within Apple 
Dylan. 

 

5. Quit Apple Dylan and choose About This Macintosh from the Apple 
menu.

 

Note how much unused memory is left when both applications are running.

 

6. Set the preferred size for both Apple Dylan and the Application Nub 
using the Get Info command.



 

C H A P T E R  1

 

Learning Apple Dylan

Running Apple Dylan

 

11

7. Double-click on the Apple Dylan icon from the Finder and then 
double-click on the Application Nub.

8. Choose About This Macintosh from the Apple menu.

 

Verify that at least 50K of unused memory is available.

 

9. Double-click on Quit Application Nub from the Finder.

 

When you have the memory adjusted properly, quit the Application Nub 
before proceeding with any other tasks in this chapter. The Quit Application 
Nub file is in the folder Apple Dylan: Apple Dylan Files: Application Nub.
Ordinarily you launch and quit the Application Nub from within Apple 
Dylan. However, in this case and other rare cases, you might need to quit the 
Application Nub using this executable file in the Finder. 

 

Opening a sample project 1

 

Several sample projects have been included with Apple Dylan. You can find the 
samples in the Sample Code subfolder or via an alias to more samples that is in 
Sample Code. To open a project, you use the Open command on the File menu 
and select its project file, which has the suffix ”.

 

π

 

”. You can also open a project 
by double-clicking on its project file in the Finder. This will also launch Apple 
Dylan if it’s not already running.

Open one, such as the puzzle project, to see how it looks in the development 
environment. The sample project puzzle is interesting because it includes the 
Apple Dylan framework, which is a subproject called dylan-framework in the 
root (upper-left) pane of the project browser. It also includes mac-toolbox, 
which allows access to existing Macintosh toolbox code.

The first project you open in each session of Apple Dylan is automatically 
made the 

 

active project

 

. If you open other projects in the same session, they are 
inactive. Only one project can be active at one time and only the active project 
has full Apple Dylan functionality in it, such as being able to compile it or see 
its various aspects. You can change the active project using the Activate Project 
command.

 

1. Choose Open from the File menu.

 

A dialog box allows you to choose the sample project you want to open.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

12

 

Running Apple Dylan

 

2. Choose the alias “More Samples” to go to more sample code.

 

In the folder Sample Code in Apple Dylan, you will find several sample 
projects, as well as an alias to other samples. The alias takes you to samples 
that use the framework.

 

3. Find the puzzle project, which is in the puzzle folder, and select the file 
that ends with “

 

.

 

π

 

“.

 

Click OK when you have selected the file puzzle.

 

π

 

. 
The puzzle project opens displaying its default project browser. It consists of 
three panes. The pane in the upper-left is the root pane for the project 
browser. You can see the name of the project in the browser’s name, “Project: 
puzzle,” as well as in the header of the root pane. The icon for a project is 
also in the root pane’s header. 

 

4. Resize the project browser for easier viewing, if you want.

 

You can expand the browser, if you want, by zooming the window with its 
zoom box. You can also drag the browser and each pane with their resizing 
boxes in their bottom right-hand corners. 
Notice the six objects in the root pane. Three are libraries, which are 
represented with the subproject icon in Apple Dylan, two are modules and 
one is a resource file.



 

C H A P T E R  1

 

Learning Apple Dylan

Running Apple Dylan

 

13

 

Dylan is a library that contains the basic definitions of the Dylan language 
and the Apple Dylan extensions. This subproject is automatically included in 
all projects and cannot be removed or modified. 
Mac-toolbox is a library containing the Macintosh toolbox calls that have 
been included with this project. It is up to you to add this library and 
include any of the Macintosh toolbox calls you want to use in your project.
Dylan-framework is a library containing the Apple Dylan application 
framework. You must add the framework to your project if you want to use 
it; it is not automatically added to a new project. Since the source code for 
the framework is included in Apple Dylan, you could modify it if you want, 
however, this is not a common practice, nor is it recommended.
Dylan-user is a module. Every project has its own individual Dylan-user 
module. In very simple projects all the code for the project can be in the 
Dylan-user module. More commonly, it is standard practice for the 
Dylan-user module to contain the module definition and library definition 
used to structure the rest of the project. You will have to write your own 
module definition and library definition for your project.
The puzzle module is a container for most of the source code for this project. 
You will create your own module for your project that will contain your 
source code.
The file puzzle.rsrc is the resource file used by the puzzle project. If you 
want to use resource files in your project, you must add them to your project 
using the Add to Project command.

 

5. Choose the Preferences command from the Edit menu.

6. Increase the icon size from the Environment sheet.

 

By changing the Browser Icon Size setting to 16 (or even 32), the differences 
between icons are easier to see. If you do that, you might want to increase 
the font size to 10 or more as well. For a complete listing of the icons in 
Apple Dylan, see the section “Using icons in Apple Dylan” on page 88. You 
can set other preferences from the other Preferences sheets. They can be 
reached from the Category pull-down list at the top of the Preferences dialog 
box.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

14

 

Running Apple Dylan

 

The following figure shows part of a pane with the icon size at 12, which is the 
default.

The following figure shows part of a pane with the icon size increased to 16.



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers

 

15

 

Running a sample application 1

 

You can run the sample applications from the Finder to see what they do as 
standalone applications. To run applications from inside Apple Dylan, use the 
Run command; see the section “Running an application in Apple Dylan” on 
page 144.

 

1. Open the Apple Dylan folder, if it’s not already open.

 

The Dylan Files folder contains several folders, including Sample Code, 
which contains the sample projects and their standalone applications. It also 
contains an alias to samples that use the framework.

 

2. Open the Sample Code folder and choose the alias to more samples.

 

This takes you to samples that use the framework.

 

3. Double-click on a sample application, such as the puzzle application.

 

The application’s executable file appears just as all executables files do on 
the Macintosh. 
The following figure shows the puzzle application running. The game is to 
move the squares on the puzzle around until an image appears. The puzzle 
application has a menu bar that allows you to create new puzzles and to 
quit. When you’re done observing the sample application’s behavior, quit 
the application.

 

Using browsers 1

 

Browsers are windows with one or more panes. The panes are tiled so none are 
in the background or foreground in relationship to one other and can be linked 
to work together. Browsers are where you will do most of your coding and 
compiling.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

16

 

Using browsers

 

If you have just launched the development environment, you need to open a 
project before you can open any browsers. The project browser must remain 
open as long as you are working on that project. To close the project browser is 
to close the project. 

Once you have opened a project or created a new one, you can open other 
browsers to get other views of the project. Several built-in browsers are listed in 
the third and fourth sections of the Browse menu. To get a complete list of all 
browsers available to you, choose List of Browsers from the Browse menu. You 
can have several browsers other than the project browser open at once and 
closing them does not close the project. 

You can change the configuration of the panes in an existing browser, create 
new browsers, and save a browser’s configuration. You don’t need to save the 
code changes you make in a browser when you close it, but if you have 
changed the configuration of the browser, you can choose to save that new 
configuration with the Save Browser command. 

The code changes are not lost when you close a browser (unless that browser 
was the project browser and you specifically chose not to save any changes). To 
save code changes, you select the pane containing the changes, and then choose 
Save from the File menu. Likewise, you can save all the code in an entire 
project by issuing a Save All command or simply choosing to save it when 
prompted to do so as you close its project browser.

You can open a project from inside the development environment or from the 
Finder. Double-clicking on a project file, which has the suffix “.

 

π

 

”, launches 
Apple Dylan (if it’s not already running) and opens that project. 

The sample projects provided with Apple Dylan include puzzle, text-app, tiles, 
paint-app, hello, Online Insultant, and skeleton, among others. The sample 
projects can be found in the folder Sample Code, or the alias in it. Some have a 
Read Me file with them, either as a file in their folder or within their project 
itself as a text file.

 

Browsing a project 1

 

When you open a project, its project browser appears. In the upper-left pane, or 
root pane, of that browser the contents of the project are listed. 

Every project has a Dylan subproject, which always appears first on the list in 
the root pane of the project browser. This is the library containing the Dylan 



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers

 

17

 

language itself. The Dylan subproject is created automatically and you cannot 
edit it. 

Every project also has a Dylan-user module. It is also created automatically 
when you create a new project, but it must be edited to specify your project’s 
library and module definitions.

If a project uses the framework or the mac-toolbox library, these also appear as 
subprojects. You can add these to a project using the Add to Project command 
on the File menu.

The default project browser has three panes that are linked so they can work 
together to display a project in detail. Whether you click an object’s disclosure 
triangle, icon, or name produces different results in a browser. Double-clicking 
produces still other results. You can change the aspect visible in a pane, if you 
wish, using the Aspect command on the Browse menu.

 

1. Open the puzzle sample project, if it’s not open already, and make sure it’s 
the active project.

 

Use the Open command and choose the file puzzle.

 

π

 

. The sample projects 
can be found in the Sample Code folder or the alias in it. If you had another 
project open before opening puzzle, you will need to click in the puzzle 
project once you open it, and then use the Activate Project command from 
the Project menu. If puzzle were not the active project, the project browser’s 
name would read “Project: puzzle (inactive)” and the root pane’s name 
would read “puzzle (inactive)”.

 

2. When puzzle opens, click on the icon or name of the subproject Dylan.

 

You will see that you can’t open it and a message prints “No applicable 
aspect”. This subproject is the library containing the Dylan language, which 
you cannot change (or even view) from within the development 
environment.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

18

 

Using browsers

 

3. Click the icon and then the disclosure triangle for the subproject 
mac-toolbox.

 

You can see the contents of an object by clicking on the disclosure triangle to 
its left. When you click its disclosure triangle, the contents of mac-toolbox 
are displayed much as they would be in the Finder. The contents are Dylan, 
Dylan-user, and mac-toolbox. These are references to the Dylan project, the 
Dylan-user module, and the mac-toolbox module.



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers

 

19

 

For now, click the disclosure triangle again to collapse the list of the contents 
of mac-toolbox.

 

4. Click the disclosure triangle left of the subproject dylan-framework to 
expand its contents inline. 

 

This is the Apple Dylan framework, which you might want to study later. Its 
contents are Dylan, mac-toolbox, Dylan-user, dylan-framework, and 
dylan-framework.rsrc. Don’t be concerned about efficiency or memory and 
disk space when you see redundant references to such objects as Dylan or 
mac-toolbox. These are only references to these objects, which are not being 
duplicated with each reference.
As shown in the following figure, since you did not select the name or icon 
of dylan-framework, only its disclosure triangle, you have not selected 
dylan-framework. The subproject mac-toolbox was your last selection so its 
contents are displayed in the other two panes in the project browser.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

20

 

Using browsers

 

5. Click the icon or name of the Dylan-user module in the root pane, then 
click the disclosure triangles for its library and module source records in 
the pane on the right.

 

As shown in the following figure, the module Dylan-user has been selected 
so its contents, the source folder library & module, appear in the lower-left 
pane. Then library & module has been selected so its contents appear in the 
pane on the right. This is because the three panes are linked in this way.



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers

 

21

 

When you click the name or icon of an object in a pane, such as the root 
pane, you see its contents displayed in the pane it’s linked to, the lower-left 
pane in this case. The name and icon for the selected object, in this case the 
Dylan-user module, also appear in the header of the other pane. As seen in 
the preceding figure, the header for the lower-left pane shows the 
Dylan-user module’s name and icon, as well as its default aspect, Contents 
of. 
The lower-left pane is linked to the right-hand pane, so the contents of the 
object selected in the lower-left pane appear on the right. In this case, the 
contents of the library & module source folder in the lower-left pane appear 
in the right-hand pane. The contents of the source folder are the source 
records. The header for the pane on the right now has the name and icon for 
the library & module source folder in its header. Its default aspect is also 
Contents of.
Within library & module are the two source records, the puzzle library 
definition and puzzle module definition. As shown in the preceding figure, 
they have been expanded in the pane on the right to reveal their source 
code. Notice that a dark line surrounds the content area of the right-hand 
pane in the following figure, indicating that it is the active pane. When you 
click in a pane, you make it the active pane.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

22

 

Using browsers

 

6. Select the module puzzle in the root pane.

 

The puzzle module contains the source folder puzzle, which in turn contains 
numerous source records. The source records appear in the pane on the right.

 

7. Expand the contents of the puzzle source folder by clicking its disclosure 
triangle in the lower-left pane.

 

When you expand the puzzle source folder in the lower-left pane, you see its 
contents listed inline in the lower-left pane. If you select the puzzle source 
folder, its contents are also listed in the right-hand pane because these two 
panes have been linked. You could edit this code in either pane and the 
other pane would immediately update. For now, just click disclosure 
triangles in the right-hand pane to see the code in individual source records. 
You can click the pane’s zoom box for more space or drag its resizing box to 
make it bigger.



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers

 

23

8. Double-click on any object, such as the source record initialize.

 

You can double-click on any object, which means its icon or name, to open a 
new, separate browser for it. In the following figure, the source record 
initialize has been expanded and it has also been double-clicked. 
Double-clicking on an object opens a new browser which, in the following 
figure, has been dragged below the project browser so you can see both 
browsers. You could change the source code in either browser and the other 
would be updated immediately.
The default aspect of the double-clicked object determines which aspect of 
the object is displayed in the new browser. In this case, the default aspect for 
initialize is Source Code of +Warnings of. That is the default aspect for all 
source records.



 

C H A P T E R  1  

 

Learning Apple Dylan

 

24

 

Using browsers

 

9. Double-click the object puzzle.rsrc in the root pane of the project browser.

 

You might need to scroll the root pane so you can see the resource file. You 
cannot edit a resource file from within Apple Dylan, but must use the 
resource editor of your choice from the Finder. You add a resource to a 
project using the Add to Project command.

 

Using the built-in browsers 1

 

There are many other browsers in Apple Dylan in addition to the project 
browser and the single-paned, new browser described in the previous task. 
These built-in browsers display various aspects of the active project and its 
contents. Using these browsers, you can see such aspects as all the unsaved 
source records in the active project or see a graph of a class’s inheritance 



 

C H A P T E R  1

 

Learning Apple Dylan

Using browsers 25

hierarchy. For more information on aspects, see “Showing different aspects of 
objects” on page 42 and “Changing aspects” on page 46.

The built-in browsers are available on the Browse menu. The browsers listed in 
the third section of the Browse menu work with the project as their bases, while 
those in the fourth section work with selected objects as their bases. You can 
open only one of each browser from the third section, but as many as you want 
from the fourth section, if you choose different objects as their bases. For 
example, the browser Unsaved Source Records from the third section lists all 
the unsaved source records for the entire active project. Only one such browser 
is necessary, so only one can be opened. By contrast, each of the browsers in the 
fourth section can have many versions open at once, since you could select any 
number of classes, for example, and open a Direct Methods browser for each.

The List of Browsers browser in the third section lists all the browsers available 
and includes commands from the Browse menu. The objects on List of 
Browsers have drag and drop functionality, which makes it a handy browser to 
keep open as you are using Apple Dylan. 

For more information on List of Browsers, see its reference entry in the third 
chapter.



C H A P T E R  1  

Learning Apple Dylan

26 Using browsers

1. Open the puzzle sample project, if it’s not already open, and make sure it 
is the active project.
The sample projects can be found in the Sample Code folder or an alias in it. 
In the following figure you can see that the module puzzle has been selected 
in the root pane. Its contents are listed in the lower-left pane. In addition to 
the puzzle module being highlighted in the root pane, it is also named at the 
bottom of the project browser as the active module. The puzzle source folder 
has been selected in the lower-left pane, thus revealing its source records in 
the right-hand pane.

2. Select a source record for a class in the right-hand pane, such as the class 
<puzzle-view>, and choose Direct Methods from the Browse menu.
The class <puzzle-view> is the third source record from the top in the 
right-hand pane of the project browser. The top source record is a comment. 
For more information on the icons in Apple Dylan, see the section “Using 
icons in Apple Dylan” on page 88.
In the following figure you can see all the direct methods for <puzzle-view> 
listed in the Direct Methods browser that opens. You can investigate each of 
these source records further, if you wish, expanding them to see their source 
code or opening other browsers for them. If you edit their source code here, 
the changes are updated in all the browsers immediately. To save the code 
changes, click in any pane where the source code is displayed (even if it is 



C H A P T E R  1

Learning Apple Dylan

Using browsers 27

currently out of view due to scrolling) and use the Save command from the 
File menu.

Drag the Direct Methods browser off the project browser before continuing.

3. Select the class <puzzle-view> in the project browser and choose Direct 
Slots from the Browse menu.
Another browser, Direct Slots, opens with <puzzle-view> as its basis as well. 
This browser lists all the direct slots for <puzzle-view>. You are now able to 
view two aspects of <puzzle-view> in the new browsers, its direct methods 
and its direct slots. 



C H A P T E R  1  

Learning Apple Dylan

28 Using browsers

If you drag the Direct Slots browser off the project browser and expand the 
<puzzle-view> source record inline, you see its source code inline. As shown 
in the following figure, you would be viewing three aspects of 
<puzzle-view> simultaneously. In fact, a built-in browser named Info for 
Selected Class is very similar to this. For more information on it, see the task 
“Using the browser Info for Selected Class” on page 53.



C H A P T E R  1

Learning Apple Dylan

Using browsers 29

4. Select a source record for a method in the right-hand pane, such as 
initialize, and choose Call Grapher from the Browse menu.
The initialize method is the third source record from the top in the 
right-hand pane of the project browser. 
In the following figure you can see all the callers and callees of initialize 
graphed in the Call Grapher browser that opens. You can investigate these 
calls further, if you wish, by expanding or collapsing the arrows on the bars 
that graph the calls. For more information on how to use grapher panes, see 
the task “Using the browser Info for Selected Class” on page 53.



C H A P T E R  1  

Learning Apple Dylan

30 Using browsers

Drag the Call Grapher browser off the project browser before continuing.

5. Select initialize in the project browser and choose Function Family from 
the Browse menu.
Notice that another browser, Function Family, opens with initialize as its 
basis as well. This browser lists all the other initialize functions in the active 
project. You are now able to view two aspects of initialize in the new 
browsers. 

Drag all the browsers off the project browser before continuing.



C H A P T E R  1

Learning Apple Dylan

Using browsers 31

6. Expand the class <puzzle-view> in the project browser and type an extra < 
into its definition.
Notice that a small square appears in the gray, status indicator column to the 
left of the source record. This is a status indicator. If you click the status 
indicator, its name appears on the information line at the bottom of the 
browser. In this case, it is the Unsaved indicator, meaning that you have 
changed this source record but haven’t saved it yet.
There are several other status indicators in Apple Dylan, including the 
Uncompiled indicator and Warnings indicator. You can see the list of 
indicators using the Status Indicators command on the Browse menu. For 
more information on using them, see the chapter “Using Apple Dylan” on 
page 95.

7. Scroll down the source records in the right-hand pane and expand some 
source records until <puzzle-view> is no longer visible.
Notice that, although you cannot see the unsaved source record anymore, 
you can see that the source folder it’s in, puzzle, has an Unsaved indicator in 
the lower-left pane marking it as containing something unsaved. The puzzle 
module in the root pane has one as well. If you had gone on to editing other 
source records and forgotten exactly which source records were still 
unsaved, you might have a difficult time finding them. In that case, you 
would want a way to list all the unsaved source records in the project.



C H A P T E R  1  

Learning Apple Dylan

32 Using browsers

8. Choose Unsaved Source Records from the Browse menu.
The Unsaved Source Records browser opens, listing <puzzle-view>. Notice 
that the puzzle project icon appears in the pane’s header of the Unsaved 
Source Records browser. It does not matter if you have anything selected 
when you choose this command; as with all browsers in the third section of 
the Browse menu, they work on the entire active project regardless of 
selection.

9. Expand the source record and delete the extra < from the source code.



C H A P T E R  1

Learning Apple Dylan

Using browsers 33

You will notice that the code is still marked as unsaved with a status 
indicator and still listed in the Unsaved Source Records browser.

10. Click in the Unsaved Source Records browser and choose Save from the 
File menu.
Notice that <puzzle-view> is no longer listed in the Unsaved Source Records 
browser.



C H A P T E R  1  

Learning Apple Dylan

34 Using browsers

Close the empty browser or move it off the project browser before 
continuing. Notice that the source code in the project browser has been 
updated, as has all the status indicators.

Linking panes and browsers 1

The panes in a browser can work together through links. The contents of an 
object you select in one pane show up in another pane through a link between 
them. You can create, remove or redirect links. 

To see a link’s origin or destination, hold the mouse down over the link’s inbox 
or outbox. The inbox is a small right-pointing arrow at the left edge of a pane’s 
header. The outbox is a small right-pointing arrow at the right edge of a pane’s 
header. When you hold down the mouse on an inbox or outbox, the name of 
the pane it’s linked to is displayed. If no link has been established, no name is 
displayed and the inbox or outbox is gray. When a link has been created, the 
inbox and outbox turn red. You can create a link by dragging the outbox from 
one pane onto the inbox of another pane. An aspect of the object selected in the 
first pane is displayed in the second pane. That object selected in the first pane 
is called the basis of the second pane.



C H A P T E R  1

Learning Apple Dylan

Using browsers 35

You can open one of the browsers on the Browse menu or you can create a new 
browser of your own, either by double-clicking on an object or selecting it and 
choosing the New Browser. A new browser has only one pane, so if you want 
to have more than one pane in the browser, you split the pane in two. The new 
pane is automatically linked to the original pane. You can close an individual 
pane within a multi-pane browser by using its close box in the upper left 
corner of its header.

1. Open the puzzle project, if it’s not open already, and make it the active 
project.
The sample projects can be found in the Sample Code folder, or by using the 
alias in that folder. 
The following figure shows the project browser for puzzle with the module 
Dylan-user selected in its root pane and the source folder library & module 
selected in its lower-left pane. The contents of the source folder are 
displayed in the pane on the right.

2. Hold down the mouse on the outbox of the root pane without releasing 
the mouse.
The outbox displays the outgoing link, which in the following figure is from 
the puzzle project’s root pane to the lower-left pane. 
Release the mouse when you have seen the link’s name.



C H A P T E R  1  

Learning Apple Dylan

36 Using browsers

3. Hold down the mouse on the inbox of the lower-left pane.
The inbox displays the incoming link, which in the following figure is from 
the puzzle project’s root pane above. 
Release the mouse when you have seen the link’s name.



C H A P T E R  1

Learning Apple Dylan

Using browsers 37

4. Hold down the mouse on the outbox of the lower left pane.
The following figure shows the destination of the outbox’s link is the pane to 
the right, which has “library & module” as its basis, as noted in its pane’s 
header.
Release the mouse when you have seen the link’s name.

5. Select the puzzle module in the root pane and the puzzle source folder in 
the lower-left pane.

6. Select a class, such as <puzzle-view> in the right-hand pane and choose 
the browser Info for Selected Class from the Browse menu. 
Leave the project browser open as you work with the other browser.
The browser shown in the following figure opens with <puzzle-view> as its 
basis, as noted in the browser’s name and in its root pane’s header. The class 
<puzzle-view> is automatically selected in the grapher pane at the top of the 
browser, while its direct slots and direct methods are listed in the two lower 
panes, as shown in the following figure. 



C H A P T E R  1  

Learning Apple Dylan

38 Using browsers

If this browser were already open, you could have dragged the 
<puzzle-view> class from the project browser to the inbox of the root pane 
in this browser. This would have made <puzzle-view> the basis of this 
browser. Dragging an object from one browser to the inbox of the root pane 
on a separate browser is similar to linking them, but it does not create a link. 
This is drag and drop behavior that is common to all browsers. The dragged 
object is simply the basis for the separate browser; the two browsers are not 
linked. The project browser’s outbox and the separate browser’s inbox are 
still gray and no link exists.

7. Examine all the links on the inboxes and outboxes for the Info for 
Selected Class browser, just as you did for the project browser.
Notice the inboxes and outboxes. The two outgoing links in the lower panes 
are not red; they are not linked to anything yet.

8. Drag the outbox for the lower-left pane to the inbox of the lower-right 
pane.
In the following figure the inbox for the lower-right pane is red as the 
outbox from the other pane is being dragged onto it. 



C H A P T E R  1

Learning Apple Dylan

Using browsers 39

Release the mouse on the inbox and the two panes are linked.

9. Click the puzzle-pict-setter source record in the lower-left pane.
Notice that the selected source record is now the basis for the lower-right 
pane. In the following figure the source record puzzle-pict-setter is selected 
in the lower-left pane and is named as the basis of the lower-right pane in its 
header. Examine all the links. 

Notice that the outbox of the lower-left pane names the lower-right pane as 
its destination, as shown in the following figure. 



C H A P T E R  1  

Learning Apple Dylan

40 Using browsers

Direct methods is not a valid aspect for puzzle-pict- setter, but you can easily 
change it to show one that is, such as the variable definitions of it in the 
active project. For more information on how to change aspects in Apple 
Dylan, see the task “Changing aspects” on page 46.

10. Drag the outbox from the right-hand pane on the project browser to the 
inbox of the root pane on the Info for Selected Class browser.
You can link two separate browsers by dragging the outbox from a pane in 
one browser onto the inbox of any pane in the other browser. This allows 
you to create complex sets of browsers. 
Notice that the inbox of the Info for Selected Class browser turns red as you 
drag the outbox from the project browser onto it, as shown in the following 
figure.



C H A P T E R  1

Learning Apple Dylan

Using browsers 41

11. Release the mouse.
You will notice that the outbox and inbox of the two browsers are now red. 
The outbox on the project browser names the <puzzle-view> class as its 
basis and the <puzzle-view> class is also the basis of the Info for Selected 
Class browser. Any other class you select in the right-hand pane of the 
project browser will be displayed in this Info for Selected Class browser. 
This link applies only to this particular Info for Selected Class browser. 
Furthermore, if you close it, this link is lost. 



C H A P T E R  1  

Learning Apple Dylan

42 Using browsers

12. Click the class <puzzle-behavior> in the project browser to see it as the 
new basis for the Info for Selected Class browser.
In the following figure, <puzzle-behavior> has been selected in the project 
browser, which causes it to become the basis for the other browser. Examine 
the outgoing link from the project browser.

Showing different aspects of objects 1

You can view each object in Apple Dylan in different ways. The various aspects 
available for objects include some basic qualities, such as a source folder’s 
contents, or relationships between objects, such as what calls what, class 
relationships, families of functions, etc. Aspects are only available for the active 
project.

An aspect is displayed in a pane. You can see the list of aspects available by 
clicking in a pane and choosing the Aspect command from the Browse menu. A 
list of available aspects is displayed. If you do not select any object in the pane 
when you click in it, the aspects listed are for the basis of the pane. If you select 
an object in the pane, the selected object’s aspects are listed instead.

1. Open the puzzle sample project, and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or using the 
alias in it. 



C H A P T E R  1

Learning Apple Dylan

Using browsers 43

2. Click in the puzzle project’s root pane, without selecting anything, and 
then choose Aspect from the Browse menu.
On the submenu of the Aspect command, the aspects available for a project 
are listed. All projects have the same aspects available for them. You could 
choose to view an aspect other than Contents of this project, such as Classes 
of, but if you do, choose Default (Contents of) again before continuing.

3. Select the puzzle module in the project’s root pane.
Notice that the pane displaying the contents of the module (the pane on the 
lower left) has the aspect “Contents of” in its header. This is the default 
aspect for a module. The puzzle module’s name and icon appear in the 
header of the pane at the bottom as well.

4. Click in the lower-left pane without selecting anything, and then choose 
Aspect from the Browse menu.
In the following example, notice that the top line of the list of aspects is the 
default aspect for modules, Contents of. It is the contents of the puzzle 
module that you see in the bottom pane. You can select an aspect from the 
list to view a different aspect. For our purposes, continue on without 
choosing a different aspect or, if you do, reselect the default before 
continuing.



C H A P T E R  1  

Learning Apple Dylan

44 Using browsers

5. Select the puzzle source folder in the lower-left pane and then click in the 
right-hand pane without selecting anything.
The right-hand pane now displays the contents of the puzzle source folder.

6. Display the pop-up list of aspects from the header of the right-hand pane.
You can display an object’s list of aspects from the header of the pane its 
contents are displayed in. You do this by clicking in the pane without 
selecting anything, holding down command-option, and then holding the 
mouse down on the object’s name or icon in the header. You will see all the 
aspects available just as you would if you had used the Aspect command 
from the Browse menu. 
In the following example, the aspects available for source folders are 
displayed on the pop-up list because the puzzle source folder is the basis for 
the pane. For our purposes, don’t select one or, if you do, reselect the default 
before continuing.



C H A P T E R  1

Learning Apple Dylan

Using browsers 45

7. Hold down the Command and Option keys, then click the initialize 
source record in the right-hand pane.
The list of aspects for source records is displayed. Notice that its default 
aspect is Source Code of +Warnings of. 



C H A P T E R  1  

Learning Apple Dylan

46 Using browsers

8. Double-click on the source record initialize.
If you double-click on an object to open a new browser for it, the default 
aspect is displayed. The new browser that opens has the object as its basis, 
so the object’s icon, its name, and the name of its default aspect appear in the 
header of the new browser’s pane. In the following example, the default 
aspect Source Code of +Warnings of is named in the header.

Changing aspects 1

The easiest way to see a different aspect for an object is to select the object and 
choose a built-in browser from the Browse menu. Several browsers have been 
built into the development environment for your convenience. They each show 
a different aspect, as noted in their names on the Browse menu. When you 
choose one, a new browser opens displaying the aspect for the selected object. 

However, not all aspects have built-in browsers already made for them. Also, 
you might want to change the aspect in a pane you created in a custom 
browser or some other existing pane, not open an entirely separate browser. In 
that case, you can choose to change the aspect within a pane. Also, if you 
change the basis for a pane, the new basis might have a different default aspect, 
so that new aspect will consequently be displayed in the pane.

Many aspects are available only for the active project.

If you change the aspects in a browser and want to keep that browser 
configuration for use later, you must save it before closing the browser. See the 
task “Saving a browser configuration” on page 61 for more information.

1. Open the puzzle sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or using the 
alias in it.



C H A P T E R  1

Learning Apple Dylan

Using browsers 47

2. Double-click on a source record, such as initialize.

3. Click in the pane but don’t select anything, then choose the Aspect 
command from the Browse menu.
You will see that the aspects for a source record are listed. Its default, Source 
Code of +Warnings of, is the first item on the list. You can choose to see any 
of the other aspects on the list and can go back to the default by choosing it 
again later.

4. Select another aspect from the list, such as Function Family.
You will see the aspect appear in the pane, replacing the previous aspect. No 
new pane or browser opens. Notice that the aspect named in the header of 



C H A P T E R  1  

Learning Apple Dylan

48 Using browsers

the pane has changed in the following figure. The pane’s basis, initialize, has 
not changed, but its aspect has. 

5. Select an object, such as the source record is-puzzle-solved in the project 
browser.

6. Drag the is-puzzle-solved source record to the inbox on the pane’s header 
in the new browser.
The inbox, a small arrow on the left of the pane’s header, turns red when the 
object is on it.

7. Release the mouse with the cursor still over the inbox.
The is-puzzle-solved source record becomes the new basis for the pane in 
the Function Family browser. However, the inbox to the Function Family 
browser is not red. This is because you have not created a link by dragging 



C H A P T E R  1

Learning Apple Dylan

Using browsers 49

in another source record, you have only changed the basis of the pane. The 
icon and name of is-puzzle-solved are shown in the pane’s header in that 
browser.

Ordinarily when you expand an object within a pane, you see its default 
aspect. For example, if you expand a source record its Source Code of 
+Warnings of aspect is displayed inline. You can change that aspect to 
another aspect by selecting the object’s name or icon and then using the 
Aspect command to select a different one. The new aspect is revealed inline 
with the object; no new pane is created, nor is a new browser opened.

Using the browser References To 1

You can use browsers to gather information when writing code. The References 
To browser displays all the references to a selected class, function or variable in 
a project. You can use it to see such things as what makes references to a certain 
slot or to use the sample projects and the framework for useful code. For 
example, if you wanted to create an Import Picture command in your 
application, you might assume that StandardGetFile or some variant was 
probably what would help you and that it’s probably in the framework. The 
active project in the following example of this usage is puzzle.



C H A P T E R  1  

Learning Apple Dylan

50 Using browsers

1. Open the puzzle sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or by using the 
alias in it. 

2. Type the name of the class, method or variable in question, 
StandardGetFile in this case, into the Listener.
This simply identifies the class or method you want to investigate. You 
could type it into a source record in a pane and select it there.

3. Choose the dylan-framework module from the Listener’s Module popup.
You must set the module you want to search in using the Module popup in 
the lower-left corner of the Listener window. For more information on using 
the Listener, see the section “Running an application in Apple Dylan” on 
page 144.

4. Select StandardGetFile in the Listener and choose the References To 
browser from the Browse menu.
The References To browser opens and shows that StandardGetFile is called 
by a framework function called choose-document.



C H A P T E R  1

Learning Apple Dylan

Using browsers 51

5. Expand the source record for choose-document and search for 
StandardGetFile.
StandardGetFile is not highlighted automatically. You have to search for it. 
The arguments to StandardGetFile are displayed in the following example. 
You might conclude that it is a bit too raw for your purposes and that you 
would be better off using the calling function choose-document since the 
framework has provided a wrapper. 



C H A P T E R  1  

Learning Apple Dylan

52 Using browsers

6. Select choose-document and use the Browse menu to select the References 
To browser again.
We want to see how choose-document is used. We see there is a 
behavior-event and a do-event.

7. Click the disclosure triangle for do-event.
Choose-document and its arguments are displayed so you can see how to 
make a call to it. 



C H A P T E R  1

Learning Apple Dylan

Using browsers 53

Using the browser Info for Selected Class 1

You use the Info for Selected Class browser to see several aspects of a class. The 
top pane is a graph of the class hierarchy for a class and the two other panes in 
this browser show a list of its direct methods and a list of its direct slots. 

This browser’s root pane is a grapher pane, which means it visually represents 
the relationships between the objects on a graph instead of listing objects. Click 
the arrows on the graph to expand and collapse it. Other built-in browsers with 
grapher panes are the Call Grapher and Class Grapher browsers. You can have 
several of each of these browsers open at once. See also the Grapher Pane 
command on page 213 for more information.

Only the basis of the browser is fully represented on the graph in a grapher 
pane; you have to change the basis of the browser to get full representation for 
another object. For classes, that means you can see multiple inheritance and 
subclass relationships only for the basis of the browser. 

As with other browsers, when you select an object before opening the browser, 
you make that object the basis for the browser. Then, to change the browser’s 
basis, you can drag any other appropriate object, such as a class, into its inbox 
from any browser. However, in grapher panes you can also change the basis of 
the browser by doing a control-click on another object within the browser to 
make that object the new basis. 

1. Open the Streams sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or by using the 
alias in it. If you had another project open before opening Streams, you need 
to click in the Streams project once you open it, and then use the Activate 
Project command from the Project menu. If Streams were not the active 
project, the project browser’s name would read “Project: Streams (inactive)” 
and the root pane’s name would read “Streams (inactive)”.

2. Select a class in the Streams project, such as <stream> in the stream basics 
source folder.



C H A P T E R  1  

Learning Apple Dylan

54 Using browsers

3. Choose the browser Info for Selected Class from the Browse menu.
The browser opens, showing the graph for <stream> along with its direct 
slots and direct methods.
The graph displays the five subclasses of <stream>. Notice that the class 
<object> has no arrow to its left. That means it is the root of this hierarchy.

4. Click the first subclass on the list, <byte-stream>.
Its direct slots and direct methods are listed in the two lower panes, as 
shown in the following figure.



C H A P T E R  1

Learning Apple Dylan

Using browsers 55

Continue clicking the other subclasses, to see their direct methods and direct 
slots, if you want. Resize the browser slightly so you can see the full names 
of the five subclasses.

5. Click the arrow to the right of <byte-stream> on the graph.
This further expands the graph. Notice that there are two more subclasses, 
but they are not fully visible. Resize the browser more to see the full names 
of the two subclasses.
Continue expanding subclasses until there are no more arrows to the right of 
any subclass, if you have room on your monitor. You could reveal all the 
classes of the hierarchy by continually expanding and resizing the browser, 
but you would need a very large monitor.



C H A P T E R  1  

Learning Apple Dylan

56 Using browsers

6. Select an arrow on a bar separating two classes and click the arrow to 
collapse that part of the hierarchy.
The following figure shows the arrow to click to collapse the graph at that 
point.

The following figure shows the result of clicking the arrow.



C H A P T E R  1

Learning Apple Dylan

Using browsers 57

Collapse the hierarchy back to its original size.

7. Control-click on a class on the graph, such as <byte-stream>. 
This changes the basis of the browser to the <byte-stream> class. The 
following figure shows the result of making <byte-stream> the new basis for 
the browser. The <byte-stream> class has also been selected on the graph to 
show its direct slots and direct methods. You will now be able to examine 
multiple inheritance and the subclasses of <byte-stream> in depth.



C H A P T E R  1  

Learning Apple Dylan

58 Using browsers

8. Click the <stream> class in the grapher pane.
Notice that you can no longer see all the subclasses of <streams> as you 
could when it was the basis of this browser.

Customizing browsers 1

You can customize any browser, either an existing one or a new one you create. 
You create a new browser by double-clicking on an object in a pane, which will 
open a new, separate browser with that object as its basis. You can also create a 
new browser by selecting an object and using the New Browser command on 
the Browse menu. 

To customize a browser, you can change the links between its panes as 
described previously in this section. Furthermore, you can change the aspects 
visible in the panes. For more information on aspects, see the tasks “Showing 
different aspects of objects” on page 42 and “Changing aspects” on page 46. 

You can also add panes or resize existing panes. A new browser has one pane 
and its basis is the object selected prior to creating it. The selected object is 
specifically the basis for the root pane of the new browser and can, therefore, be 
considered the basis of the new browser. The default aspect for the selected 
object dictates the type of aspect displayed in the new browser’s pane. 

If you want more than one pane in the new browser, you can split the pane in 
two. Each of the two new panes can also be split, both horizontally and 
vertically. You split a pane with its splitter controls; the horizontal splitter 



C H A P T E R  1

Learning Apple Dylan

Using browsers 59

control is a short, horizontal bar just above the scroll bar on the right of a pane. 
The vertical splitter control is a short, vertical bar just to the left of the scroll bar 
at the bottom on a pane. To split a pane, hold down the mouse on the splitter 
control and then drag the dashed line that appears to wherever you want the 
pane split. Another way to split a pane is to drag an outbox onto a splitter; the 
pane splits in half and a link is created from the original pane to the new pane.

You can resize existing panes to create different relative sizes. The resize control 
in the lower-right corner of each pane and each browser can be dragged to 
create new sizes. You can also drag a horizontal line up and down and a 
vertical line from side to side between panes.

You can close a pane by clicking its close box in the upper left corner of its 
header. If you want to save the configuration of a customized browser, do so 
before you close it. For more information on saving browsers, see the task 
“Saving a browser configuration” on page 61.

In the following task, the browser Info for Selected Class is customized by 
adding a pane.

1. Open the sample project Streams, if it’s not already open, and make sure 
it’s the active project.
The sample projects can be found in the Sample Code folder or by using the 
alias in it. 

2. Select the <stream> class in the stream basics source folder, and choose 
Info for Selected Class from the Browse menu.
The Info for Selected Class browser opens with <stream> as its basis.

3. Examine the outbox of the lower-right pane.
Notice that it is not linked to anything, so the outbox in the pane’s header is 
gray. In addition, the outbox says “Not Linked”, as shown in the following 
figure.



C H A P T E R  1  

Learning Apple Dylan

60 Using browsers

4. Drag the outbox of the pane onto its own vertical splitter control.
You can split a pane in one of two ways, by dragging its outbox to one of its 
own splitters or by dragging a splitter control to the desired location for the 
split. 

 

n the vertical splitter control is a short, vertical bar just to the left of the 
scroll bar at the bottom of a pane. 

 

n the horizontal splitter control is a short, horizontal bar just above the 
scroll bar on the right of a pane. 

The following figure shows the lower-right corner of the browser with the 
outbox of the lower-right pane being dragged onto its vertical splitter. The 
splitter control turns red when the outbox is on it.

This splits the pane vertically and creates a link to the new pane. Notice the 
outbox is now red on the pane you split, which is half its original width, and 



C H A P T E R  1

Learning Apple Dylan

Using browsers 61

the inbox of the new pane to its right is also red. Nothing has been selected 
in the split pane, so the new pane does not display anything yet. 

5. Click buffer-end in the middle-lower pane.
You can now click an object in the original pane and it is displayed in the 
new pane. The basis for the new pane in this example is buffer-end, as 
shown in the following figure. The aspect Source code of is the default 
aspect for buffer-end, so that is the aspect displayed in the new pane.

6. Leave this browser open as you start the next task, “Saving a browser 
configuration.”
To keep a customized browser configuration for use later, you must save it 
before closing the browser. See the task “Saving a browser configuration” on 
page 61 for more information.

Saving a browser configuration 1

When you save a browser configuration, you give it a name, which is added to 
the list of browsers on the Browse menu. The new browser is also listed on the 
List of Browsers browser. Any changed links and aspects within the new 
browser are saved. Saving a browser does not save the code within it, nor any 
of its external links, only its internal configuration of panes. 

The saved browser is saved to disk as a file in the Browsers folder. If you want 
to share a saved browser with someone, you can send them the file. You can 
delete a browser from the lists of browsers available in the development 



C H A P T E R  1  

Learning Apple Dylan

62 Using browsers

environment by moving the browser’s file out of the Browsers folder in Apple 
Dylan. You do this by leaving Apple Dylan and dragging the file into another 
folder or into the Trash. The browser remains on the development 
environment’s lists of browsers until the development environment is restarted.

1. Select the customized browser from the previous task.
If you don’t have the customized browser from the previous task still open, 
open any built-in browser from the Browse menu. You don’t need to 
customize it to save it with another name. 
Neither do you have to have any particular project open to accomplish this 
task, although in this example the Streams project is open and active. You 
could even create a new project by choosing New Project from the File 
menu. The browsers you save are available in any project you work on in 
Apple Dylan.

2. Look at the Browse menu to see what browsers are currently listed.
The built-in browsers are in the third and fourth sections of the Browse 
menu. Any previously saved browsers are in the fourth section.



C H A P T E R  1

Learning Apple Dylan

Using browsers 63

3. Click in the customized browser you created in the previous task and 
choose the Save Browser command on the Browse menu.
Because the active browser is saved, be sure to make active the browser you 
want to save before choosing the Save Browser command. You don’t have to 
customize a browser to save it with a new name, although that is the 
common reason for saving a browser.

4. Locate the Browsers folder using the dialog box, enter a name for the new 
browser, and click Save.
A browser should be saved into a file in the Browsers folder of Apple Dylan 
or one of its two subfolders. You can save any browser, whether an existing, 
new, or changed browser, and give it the name you want. If an existing 
browser has the same name, it is overwritten. The objects in the browser are 
not saved, just the configuration of panes and all links internal to the 
browser. 

If you save the browser to a file in the main Browsers folder, the browser 
appears in the fourth section of the Browse menu. This type of browser 
responds to a selection for its basis, such as a class. If you save the browser 
to a file in the subfolder _Ignore Selection Browsers, the browser appears in 
the third section of the Browse menu. This type of browser does not respond 
to a selection, but instead uses the active project as its basis. If you save the 
browser to a file in the subfolder _System Browsers, the new browser does 
not appear on the Browse menu, but only on the List of Browsers browser. 
You might do this if you wanted to create a new configuration for the default 
project browser.
You can now copy the file, mail it to others, and handle it in many ways as 
any file on the Macintosh. You can open it by double-clicking it in the Finder.



C H A P T E R  1  

Learning Apple Dylan

64 Using browsers

The new browser is now listed on the Browse menu and probably in List of 
Browsers. In addition, the customized browser now shows the new name, 
such as Modified Class Info in this example.

5. Check the Browse menu to see the new browser is listed. 
In the following figure you can see that the new browser was saved to the 
main Browse folder as it appears in the fourth section of the Browse menu.



C H A P T E R  1

Learning Apple Dylan

Using browsers 65

6. Close the saved browser.

7. Click on another class in the project browser and choose Modified Class 
Info from the Browse menu.
You see its basis is now the other class, but it has the same configuration of 
panes and their links.



C H A P T E R  1  

Learning Apple Dylan

66 Editing in Apple Dylan

8. In the Finder, go to the Browsers folder in Apple Dylan to see the new file.

Editing in Apple Dylan 1

In Apple Dylan you edit in place in the browsers. You don’t have to go to a 
special editing window. Editing commands are available from the Edit and Text 
menus and work in the content area of panes. You can edit the names of 
objects, move them in the pane relative to one another, edit their contents, and 
more. Apple Dylan provides Copy Special and Insert Special commands that 
directly support coding in the Dylan language by creating templates for you 
based on existing code. Editing commands are also supported in the Listener 
and the New Text Window command on the File Menu.

In most cases, each source record is treated as a buffer with its own separate 
editor. To edit a source record, you could expand it inline using its disclosure 
triangle or double-click on it to open a new browser for it. You could also 
export the source folder it’s in and edit that outside of Apple Dylan in the word 
processor of your choice. These files can then be imported back into Apple 
Dylan.

Key shortcuts provide not only common Macintosh editing commands, but 
also emulate Emacs-style editing commands. 

Editing tools discussed in this section include:



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 67

 

n Copy, Cut and Paste and related Apple Dylan commands from the Edit 
menu

 

n Clear and Undo and related commands from the Edit menu

 

n Replace and Find and related commands from the Text menu

 

n Formatting commands on the Text menu

 

n Importing and exporting Dylan text files from the File menu

 

n Macintosh and Emacs-style editing key commands

In combination, these tools allow you to perform complex editing of Dylan 
sources while remaining within the structure of your project as displayed by 
the development environment.

The best way to learn editing in Apple Dylan is to do it. You can practice using 
the sample projects. When you are through practicing, use Revert from the File 
menu to bring the sample project back to normal, or simply do not save 
changes when you close the sample project.

▲ W A R N I N G

These tools have been assembled from a variety of sources 
and may not behave with complete consistency. In 
particular, the contents of the Clipboard and the 
Emacs-style kill ring are not always synchronized.

Copy, Cut and Paste in Apple Dylan 1

The Apple Dylan development environment supports the conventional Copy, 
Cut and Paste commands on the keys Command-C, Command-X, and 
Command-V, respectively. These commands are on the Edit menu and use the 
Clipboard in the usual way. These commands operate on text only, not on 
objects.

In addition to the conventional Copy command, Copy Title Text appears when 
the selected object is a valid title, such as the name of a module or subproject. 
Copy Title Text is invoked by Command-C and also uses the Clipboard in the 
usual way.



C H A P T E R  1  

Learning Apple Dylan

68 Editing in Apple Dylan

Copy Special and Insert Special commands 1

Apple Dylan also offers the Copy Special and Insert Special commands, which 
are specialized for Dylan programming. These commands are on the Edit menu 
and support two different styles of template-based editing.

Copy Special puts a template on the Clipboard and Insert Special puts the 
information directly in an editor buffer without affecting the Clipboard.

These commands work only in the active project and require a valid selected 
object. This can be either text that names an object, such as a method name, or a 
source record icon. Three kinds of information are available, depending on the 
nature of the object selected:

 

n Argument List—provides a prototype argument list for the selected 
method

 

n Class Template—provides a prototype template for a subclass of the class 
or classes selected

 

n Method Template—provides a prototype template for the selected generic 
function or method

Copy Special appears on the Edit menu when an object is selected. The action 
of the command writes the chosen prototype information to the Clipboard. You 
can also use the key shortcut Command-J if you want just the argument list, or 
Command-T if you want a template. The available template changes from class 
to method depending on what you have selected.

Insert Special does not appear on the Edit menu, but is available by pressing 
the option key when you click on Copy Special. Insert Special does not use the 
Clipboard, but places the prototype information directly in the current editor 
buffer. You can also use the key shortcut Command-Option-J if you want to 
insert just the argument list or Command-Option-T if you want a template. The 
available template changes from class to method depending on what you have 
selected. Insert Special Argument List places the argument list just behind the 
insertion point, but deletes no text. Insert Special Template replaces the selected 
class or method with the new template. 

Use these commands to get the argument list of a method you want to call, or 
to create new methods and classes based on existing ones. In general, the Copy 
Special commands will be most used, but the Insert Special commands may be 
helpful in some situations. Say you wanted to create a method “moo” based on 
the existing method “foo”. Type “foo” into the Listener and select it, then press 
Command-Option-T and the template for “foo” replaces the name “foo” and 



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 69

you can proceed with your new method, making sure to change the name of 
the method in the first edit. 

See the reference documentation for more information on Copy Special and 
Insert Special and examples of their use. 

Undo and Clear commands 1

The Undo command is on the Edit menu. Use it to undo your last editing 
action. Undo is displayed as Undo Typing or Undo Format, depending on your 
last action. Once you have undone an action you are presented with the Redo 
command and the Undo More command. Undo More can undo up to the last 
20 editing actions.

Undo also works with the Clear command. Clear clears, that is, deletes, 
whatever you have selected. If you use Clear to delete an object, folder, library, 
or sub-project, you cannot undo it. Undo is supported only if you have used 
Clear to delete text. Using Clear and Undo to delete and restore text also 
activates the Redo Clear, Undo Clear, and Redo commands, as appropriate in 
the context. Clear puts nothing on the Clipboard.

Replace and Find commands 1

The Replace and Find commands are located on the Text menu. Key shortcuts 
are provided for all these commands.

These commands work across contents of the current pane. When the target 
text is found, the source record containing it is expanded and the target text is 
selected.

Use Find/Replace (Command-F) to find and optionally replace text, using the 
Find dialog box. Use Find Again (Command-G) to find another instance of the 
target text specified in a previous Find command. Use Replace & Find 
(Command-J) to replace target text with replacement text and then search for 
the next instance of the target text. 

All these actions can be performed from the Replace/Find dialog box, which 
also allows you to search in a single selected browser pane or throughout the 
entire project. The search includes any text you can display by expanding all 
source records. Searching the entire project is equivalent to searching the upper 



C H A P T E R  1  

Learning Apple Dylan

70 Editing in Apple Dylan

left pane of the default project browser. This means that if the source code of 
subprojects is available, it will be searched.

Note
Most editing in Apple Dylan operates on one source record 
at a time, not the entire project as in this case.

In addition to the conventional Find and Replace commands, the Text menu 
also provides Find Selection, which searches the current pane for the selected 
text. Find Selection is independent of the other Find/Replace commands; it 
performs no replacing and does not change what Find Again searches for.

Formatting commands 1

In addition to the Find/Replace commands, the Text menu permits you to 
change the Font, Size, Style, and Color of any text to which you have write 
access. Changing any of these items marks the source record for recompilation, 
but otherwise has no semantic effect. There are no established guidelines on 
text markup, but it is common to use bold for the name of the object being 
defined. Use text markup to highlight whatever distinctions are convenient for 
you and your project, such as assigning colors to individual code, or particular 
type sizes or styles to different functions. Autostyling is not available.

Text markup from Apple Dylan is exported and imported in .dylan text files. 
Text markup imported from other editors is ignored.

Importing and exporting Dylan text files 1

Apple Dylan supports the exporting and importing of Dylan text files. Dylan 
text files have the suffix “.dylan” and are a text version of a source folder (not a 
source record). Dylan text files can be mailed or edited outside of Apple Dylan.

Dylan text files can be created in a number of ways:

 

n Select the source folder to export and use the Export command from the 
File menu

 

n Use the New Text Window command from the File menu

 

n Use most text editors or word processors outside Apple Dylan and save 
the file with the .dylan suffix. Import the file into Apple Dylan.



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 71

The Export command performs only limited code checking. Export breaks a 
single source record with more than one top-level form or comment into an 
individual source record for each top-level form or comment when exported. 

You can bring Dylan text files into the Apple Dylan development environment 
using the Import command. 

You can export a project with partial source records, but you will not be able to 
reimport it. If any exported code within a source folder has the incorrect 
number of begins or ends, or is any other way seriously malformed, the source 
folder cannot be imported.

Importing or exporting has no effect on objects marked for exclusion or 
inclusion.

Macintosh and Emacs-style editing commands 1

Apple Dylan supports editing using both standard Macintosh key commands 
and Emacs-style key commands. In most cases you can intermix these 
commands, keeping in mind that the contents of Clipboard and the 
Emacs-style kill ring may be inconsistent when using both.

Macintosh-style key commands 1

The Macintosh-style scrolling commands (Page Up, Page Down, etc.) do not 
move the insertion point. Once you get where you’re going, you must click to 
move the insertion point. The Emacs-style cursor-movement commands move 
the insertion point.

The following table summarizes the Macintosh-style editing commands. In all 
cases, a source record is a buffer and vice versa.

cursor motion within a buffer forward back

character  ←  →
word Option → Option ←
down & up line  ↓  ↑
end & beginning of line Command → Command ←



C H A P T E R  1  

Learning Apple Dylan

72 Editing in Apple Dylan

Emacs-style key commands 1

The Emacs-style support is provided by a partial implementation of the Fred 
editor (Fred Resembles Emacs Deliberately), which originated in Macintosh 

down & up page Command ↓ Command ↑
last & first line of source record  Command-Option↓ Command-Option↑
end & beginning of source record Command-Option→ Command-Option←

motion across buffers forward back

next & previous open definition, move line by 
line through contiguous expanded records

Option ↓ Option ↑

expand & enter source record below & above. Command ↓ Command ↑
expand & enter source record below & above 
while closing current.

Command-Option↓ Command-Option↑

buffer -> object

select enclosing object Control ↑
select enclosing object & collapse Control-Option↑

motion object -> buffer,

expand and edit selected source record Command ↓  

motion at object level forward back

select source record  ↓  ↑
select last or first source record Option ↓ Option ↑
expand & collapse source record Command ← Command →
page forward or back page down page up

bottom or top end home

select 1st at new level (expanding if needed) Control ↓  Control ↑
end or Beginning of buffer, if already there, 
expand next

Command  ↓ Command ↑

select 1st at new level and expand or collapse Control-Option↓ Control-Option↑
beginning or end of buffer, if already there, 
expand next and collapse previous

Command-Option↓  Command-Option↑

cursor motion within a buffer forward back



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 73

Common Lisp. Fred is included for the convenience of those who already know 
Emacs.

Assigning meta to the option key, which you can do using the Preferences 
command, may conflict with some of the Macintosh key commands using the 
option key. In such cases, use Control-Q followed by the option key to insert a 
literal option key.

Meta-X commands are not implemented. The meta key must be pressed and 
released for each use, not held down like the Control or Command keys. Where 
the meta key is used in combination with other modifying keys, it works best 
to press the meta key and release it before pressing the rest of the key 
combination. 

The Fred kill ring contents may sometimes overwrite the Clipboard. Clipboard 
contents are not available from the Fred kill ring.

In addition to the usual use of the mouse to select text by dragging across it, 
two clicks selects a word, three clicks selects a line, and four clicks (tricky) 
selects the entire buffer, that is, the entire source record. 

You may discover other Emacs-style commands in Fred, but their employment 
is not supported as they may produce ambiguous or erroneous results. 

The table summarizes Emacs-style editing commands. This table is not 
intended as documentation of these commands, but as a checklist of those Fred 
commands that should work in Apple Dylan.

The meta key is assigned to escape by default. You can choose to use the option 
key as the meta key through the Editing Category on the Preferences dialog. 
This setting of the meta key conflicts with using the option key for 
Macintosh-style editing commands. In this case use Control-Q to quote the 
option key as itself.



C H A P T E R  1  

Learning Apple Dylan

74 Editing in Apple Dylan

Emacs-style Keys

cursor motion

• Control-B, ← Move the insertion point back one character.

• Control-F, → Move the insertion point forward one character.

• Meta-B, Meta← Move the insertion point back one word.

• Meta-F, Meta → Move the insertion point forward one word.

• Control-A Move the insertion point to the beginning of the line.

• Control-E Move the insertion point to the end of the line.

• Control-P, ↑ Move the insertion point up one line.

• Control-N, ↓ Move the insertion point down one line.

• Meta-V Scroll upward.

• Control-V Scroll downward.

• Meta-< Move the insertion point to the first line of the source 
record.

• Meta-> Moves the insertion point to the last line of the 
source record.

• Meta-M Moves the insertion point to the first 
non-white-space character in its current line.

Selection 

• Shift ← Move insertion point one character to the left and 
select.

•Shift → Move insertion point one character to the right and 
select.

• Meta-Shift ← Move insertion point one word to the left and select.

• Meta-Shift → Move insertion point one word to the right and select.

•Control-Shift-A Move insertion point to beginning of line and select.

•Control-Shift-E Move insertion point to end of line and select.

•Control-X H Select entire buffer and move to beginning.

•Shift ↑

•Control-Shift-P

Select to same point on previous line and move 
insertion point.



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 75

•Shift ↓

•Control-Shift-N

Select to same point on next line and move insertion 
point.

•Control-Shift Space Set mark.

Insertion 

•Control-O Insert new line but don’t move insertion point.

•Control-Meta-O Split line and indent.

•Control-Y Yank current kill ring. Replace selected text if any.

•Meta-Y Rotating yank.

•Control-Q Insert next keystroke quoted—use if Meta key 
assigned to Option and you need Option.

•Meta “ Insert pair of double quotes around insertion point.

•Meta-U Make rest of word uppercase and move insertion 
point to end. 

•Meta-L Make rest of word lowercase and move insertion 
point to end.

•Meta-C Capitalize first letter of rest of current word or 
selection and move insertion point.

•Control-T Transpose two characters surrounding insertion 
point.

•Meta-T Transpose two words surrounding insertion point.

•Command-click Replace the selected text with the Dylan expression 
you command-click on. Especially useful for 
replacing one name with another, less useful for 
other Dylan expressions; Dylan syntax is not well 
understood by the Fred editor.

Deletion

•Delete Delete character to left of insertion point.

•Meta-delete Delete word to left of insertion point.

•Control-D Delete character to right of insertion point.

•Meta-D Delete word to right of insertion point.

•Control-K Delete remainder of line.

Emacs-style Keys



C H A P T E R  1  

Learning Apple Dylan

76 Editing in Apple Dylan

Editing code 1

You can edit code and rearrange objects in a browser. You can drag objects 
between projects to copy them or copy code from individual source records 
between browsers or projects. You can also copy code to and from the Listener 
or a text file.

Several sample projects have been included with Apple Dylan. You can use 
code from them by copying it into your project. In addition you can use code 
from the framework, whose source code has been included in Apple Dylan. 

•Control-W Delete current selection and add to kill ring.

•Meta-W Copy current selection and add to kill ring.

•Control-X 
•Control-Space

Delete all spaces and tabs from insertion point to 
next character.

•Meta-Space Replace all spaces and tabs surrounding insertion 
point with a single space.

•Meta-\ Delete all whitespace characters to left and right of 
insertion point.

Undo

•Control-_ Undo previous command.

•Control-Meta-_ Display Undo history.

Numeric arguments

•Control-U Repeat next keystroke 4 times.

•Control-n. Meta-n Repeat next command n times.

Incremental search

•Control-S Initiate forward incremental search.

•Control-R Initiate reverse incremental search.

•Delete Delete last character typed from search string.

•Control-G Clear search string.

Emacs-style Keys



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 77

You can edit code in any project, it does not have to be the active project. 
However, you cannot compile code in anything but the active project.

1. Open the sample project Streams, if it’s not already open, and make it the 
active project.
The sample projects can be found in the Sample Code folder or by using the 
alias in it.

2. Create a new project using the New Project command on the File menu.
The following figure shows the default new project browser. Notice that the 
Dylan-user module is automatically selected, an untitled source folder 
automatically created within it and an empty source record within that. You 
could type or copy code into the source record, but for now click in the 
Streams project so you can work in it first.

3. Select a location for a new source record in the Streams project and choose 
New Source Record from the File menu.
Select an object in the pane you want the new object in. This is how you add 
modules, source folders, and source records to an existing project. In the 
following example the class <two-buffer-stream> has been selected in the 
Streams project browser and New Source Record chosen from the File menu.



C H A P T E R  1  

Learning Apple Dylan

78 Editing in Apple Dylan

The new source record appears after <two-buffer-stream, as shown in the 
following figure.



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 79

You could type or copy code into the new source record. To copy code, 
simply highlight the code you want to copy, whether it’s in another source 
record, even in another project, or in the Listener and then use the Copy 
command.

4. Select the icon of the source record output-buffer-position and drag it 
above output-buffer-offset.
This is how you can rearrange objects in Apple Dylan. You can also drag 
objects between panes, between browsers, and between projects. Dragging 
between projects copies the object, dragging within a project moves it.
Select the module streams-implementor and its source folder stream basics, 
if the source record output-buffer-position is not visible. In the following 
figure, notice the heavy black marker that indicates where the dragged 
source record will be inserted when the mouse is released.

When you release the mouse, the source record appears at the position of the 
heavy black line. In the following figure the drag has been completed and 
the source record output-buffer-position is above output-buffer-offset.



C H A P T E R  1  

Learning Apple Dylan

80 Editing in Apple Dylan

5. Expand the source record <two-buffer-stream> so you can see its source 
code.
You can edit its source code inline using the Edit and Text menu commands.

6. Select text within the expanded source record to delete and choose Clear 
from the Edit menu.
The text is deleted with the Clear command.

7. Choose Undo Clear from the Edit menu.
To reinstate the text, use Undo Clear. Notice that the exact wording of the 
Clear and Undo Clear commands change appropriately to match the type of 
action you can perform. You can undo up to 20 editing commands.

8. Double-click on the source record initialize. 
Although you could edit an expanded source record inline in the project 
browser, you will probably want to edit the code in a separate browser. You 
can edit this code using the Edit and Text menu commands. The following 
figure shows the new browser that opens with initialize as its basis.



C H A P T E R  1

Learning Apple Dylan

Editing in Apple Dylan 81

9. Select the name of the initialize method in the new browser to use it as a 
template for a new method.
The Copy Special and Insert Special commands use the language databases 
within Apple Dylan to retrieve code templates. 
In the following example, initialize has been selected and will be used as the 
basis of the template.

10. Choose the Copy Special command Method Template from the Edit menu.
The Method Template (Copy Special) command copies the template to the 
Clipboard. The following figure shows initialize selected and Method 
Template being chosen from the Edit menu.



C H A P T E R  1  

Learning Apple Dylan

82 Editing in Apple Dylan

11. Go to the source record where you want to use the template, click where 
you want the code placed, and choose the Paste command.
In this example, go to the newly created source record in the new project and 
click in the new source record. In the following figure the code template for 
initialize has been pasted into the new source record in the new project. You 
can see both the new project browser with the new code in its right-hand 
pane and the separate browser in front of it with initialize still selected in it. 
Click in the new source record to edit the template and create your own 
version of initialize by specializing at least one of the parameters.



C H A P T E R  1

Learning Apple Dylan

Customizing the development environment 83

The Insert Special commands work in a similar way to the Copy Special 
commands, but they do not use the Clipboard.

12. Choose Close from the Project menu to close the Streams project.
You can also use the close box on the project browser to close the project. 
Don’t save the changes to the Streams project. Close your new project, 
saving it if you wish.
There is no need to have any projects open for the next section because you 
set the preferences for the development environment as a whole, not for 
individual projects. 

Customizing the development environment 1

You can customize your projects in several ways, such as through the 
subprojects you choose to incorporate. In the development environment, you 
can also customize how you view and interact with all your projects. You can 
choose various settings through the selections you make in the Preferences 
sheets. You don’t need to have any projects open to complete the tasks in this 
section as the preferences you set apply to all projects.

Several categories of preferences can be set, including the font size of the 
environment itself, text editing conventions within each pane, interaction 
between the compiler and your code, and interaction between the runtime 
while you are debugging your code. You make these choices using the 
Preferences command on the Edit menu.

The Preferences command presents four dialog boxes, or sheets, for 
customizing the interface of the Application Nub, Environment, Editing, and 
the Listener. Choosing the Default button resets the defaults for all fields on all 
four sheets.



C H A P T E R  1  

Learning Apple Dylan

84 Customizing the development environment

Setting development environment preferences 1

You can customize your development environment so that you can work with 
every project in the same way. By setting fields in the Environment sheet, you 
can choose the font for browsers, the font size and icon size for browsers, 
whether to automatically open the Stack window if you get an error, whether 
you automatically launch the application nub whenever the active project is 
opened, and whether you want to automatically update the active project 
whenever the application nub is launched. 

1. Choose the Preferences command from the Edit menu.
The Environment sheet opens. The following figure shows the default values 
for the Environment sheet. Choosing the Default button resets the defaults 
for all fields on all three sheets.



C H A P T E R  1

Learning Apple Dylan

Customizing the development environment 85

2. Choose the type of font you want used for display in the browsers.

3. Choose the size for icons.
The icons in the development environment are clearer if you choose an icon 
size of 16 in the Browser Icon Size field.

4. Click Inspect Stack on Error if you want to open the Stack window on any 
error that occurs while compiling your code.
See the chapter “Using Apple Dylan” on page 95 for more information on 
the implications of this choice.

5. Click Launch Application Nub when Active Project is Opened if you want 
to launch the application nub whenever you open a project.
See the chapter “Using Apple Dylan” on page 95 for more information on 
the implications of this choice.

6. Click Update when Application Nub is Launched if you want to update 
the active project whenever you launch the application nub.
See the chapter “Using Apple Dylan” on page 95 for more information on 
the implications of this choice.

Setting editing defaults 1

You can customize your development environment so that your editing 
environment is the same whenever you edit code. By setting fields in the 



C H A P T E R  1  

Learning Apple Dylan

86 Customizing the development environment

Editing sheet, you can choose the font to use when editing code, the meta key 
you want to use, if any, how to automatically indent code, and whether you 
want to display warnings with the source code.

The following figure shows the default values for the Editing sheet. Choosing 
the Default button resets the defaults for all fields on all three sheets.

1. Choose the Editing sheet from the Category popup.
The following default sheet appears.

2. Choose the font family and size you want to use while editing code.
Changes you make in these fields apply only to edits you make after 
changing this.

3. Change the meta key for editing with the Emacs-style key commands, if 
you want.

4. Click in the boxes for the type of indentation you want applied to your 
code.

5. Click Auto Display Argument List if you want to automatically display 
the argument list.

6. Click Display Warnings with Source if you want to automatically display 
any warnings within source records.



C H A P T E R  1

Learning Apple Dylan

Customizing the development environment 87

Setting Listener interaction defaults 1

You can customize the way the Apple Dylan Listener acts. By setting fields in 
the Listener sheet, you can choose the font for the Listener, what truncation of 
lines, elements or levels you want, and whether you want to detect circularities.

The following figure shows the default settings for the Listener sheet. Choosing 
the Default button resets the defaults for all fields on all three sheets.

1. Choose the Listener sheet from the Category popup.
The following default sheet appears.

2. Choose the font family and size you want to use while editing code in the 
Listener.

3. Choose a maximum number of lines you want printed in the Listener, if 
you want to limit them.

4. Choose a maximum number of elements of a list you want printed in the 
Listener, if you want to limit them.

5. Choose a maximum number of break levels you want displayed in the 
Listener, if you want to limit them.

6. Click Detect Circularities if you want to stop printing after the first time 
around a code circularity.



C H A P T E R  1  

Learning Apple Dylan

88 Using icons in Apple Dylan

Using icons in Apple Dylan 1

Every object depicted in the Apple Dylan development environment has an 
icon associated with it. Icons are also used to convey other kinds of information 
in Apple Dylan.

For each object, there can be three kinds of icons:

■ First, there is the basic icon of a definition entity, in this case the definition 
entity of a class that is the compiled representation of a class:

■ Next there is the icon of a source record for a class, the basic icon 
superimposed on a standard document icon. This is the most commonly 
encountered form:

■ Finally, there is the icon of an excluded source record, the basic icon 
superimposed on a standard comment icon:

■ The ball icon indicates a generic object:

■ Thus, the following is a generic source record:



C H A P T E R  1

Learning Apple Dylan

Using icons in Apple Dylan 89

■ A ?, signifying a problem of some sort with the object: this may be 
superimposed on other icons.

You control the display size of icons through the Environment sheet of the 
Preferences command. See “Setting development environment preferences” on 
page 84.

■ default size, 12 points
:

■ 16 points

■ 32 points

Following is a summary of the most commonly encountered Apple Dylan icons, displayed in their most 
commonly encountered forms: 

■ Project



C H A P T E R  1  

Learning Apple Dylan

90 Using icons in Apple Dylan

■ Subproject, the same as project

■ Project File, document with .π suffix, seen in Finder

■ Generic source record

■ Application seen in Finder. The Application Nub and Apple Dylan have this 
icon.

■ Comment

■ Variable source record

■ Constant source record



C H A P T E R  1

Learning Apple Dylan

Using icons in Apple Dylan 91

■ Macro source record

■ Database source file

■ Note icon, usually no match. Usually accompanied by an explanation of 
what has not been matched, such as “Inapplicable aspect”.

■ Unrecoverable Error

■ Saved Browser

■ Top level form

■ Warning, recovery may be possible.



C H A P T E R  1  

Learning Apple Dylan

92 Using icons in Apple Dylan

■ Source folder

■ Source module

■ Class source record

■ Library file, .dl suffix.

■ Bare method source record

■ Generic function method source record

■ Generic Function source record



C H A P T E R  1

Learning Apple Dylan

Using icons in Apple Dylan 93

■ Source database in Finder

■ Compiler results database in Finder

■ Resource file

Close any open projects when you are done with this chapter. Don’t save the 
changes to the sample projects.



C H A P T E R  1  

Learning Apple Dylan

94 Using icons in Apple Dylan



 

Apple Dylan User Model

 

95

 

C H A P T E R  2

 

Using Apple Dylan 2

 

The Apple Dylan development environment is powerful and easy to use. You 
can create applications quickly because the environment is organized around 
objects, just as the Dylan language is. You will see that the various types of 
code elements appear in the environment with different icons so you can tell 
them apart. These objects can be manipulated by dragging and dropping, just 
as you would suppose.

 

Apple Dylan User Model 2

 

The Apple Dylan development environment is built around a number of 
assumptions, procedures, and expectations about how programming is done in 
Apple Dylan. These ideas and requirements are known collectively as the 
Apple Dylan user model. The user model is a description of the process you 
use to create applications and libraries in Apple Dylan, not a description of the 
internal implementation of Apple Dylan. 

This section introduces the user model by means of a walkthrough of the 
programming process, starting with organizing and writing source code and 
continuing all the way through to building a stand-alone application or library. 
Detailed descriptions of how to complete various tasks follow this overview.

 

The Project 2

 

The project is the central concept in Apple Dylan. A project is a set of 
documents that encompass all the elements of your programming effort:

 

n

 

libraries

 

n

 

subprojects

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  2  

 

Using Apple Dylan

 

96

 

Apple Dylan User Model

 

n

 

modules (sometimes called source modules)

 

n

 

source code

 

n

 

resource files

 

n

 

text files associated with the project

The Apple Dylan development environment allows you to examine and change 
all of these program elements. 

The container hierarchy in Apple Dylan is as follows, top-down:

 

n

 

Projects contain modules

 

n

 

modules contain source folders

 

n

 

source folders contain source records

 

n

 

source records hold source code.

In essence, a project is made from source records, individual definitions 
represented as individual objects that can be directly manipulated by the 
development environment or edited as text. Most of the other objects in Apple 
Dylan are means of organizing the source records. For instance, a module is the 
place where all your definitions are kept, usually within source folders. The 
source folders are simply a convenience for grouping and ordering the source 
records.



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

97

 

You can add libraries to a project, just as you can add any project to another. 
When you add them to a project, the added libraries and projects are 
represented as subprojects in it. These subprojects, along with any resource files 
you add, appear in the project at the same level in the hierarchy as modules. 

A library is a namespace for module names. They allow you to use other 
people’s libraries without causing name collisions between modules. Libraries 
are created with the “define library” statement. A module is a namespace for 
variables, so you can similarly avoid name collisions between variables when 
using other people’s libraries. Modules are created with the “define module” 
statement.

The end result of your work on a project is either an application or a library. An 
application runs when you double-click it. A library is a building block used by 
an application, allowing for sharing of reusable code.

A number of sample projects are included in the Apple Dylan distribution. 
These sample projects are used for all examples in this document as well as 
being available for independent learning.

 

What goes into a project? 2

 

When you start Apple Dylan, the first thing you see is the Listener. You can’t do 
much with the Listener without an active project open, so open a sample 
project, such as “paint-app”, using the Open command. Open the file in the 
Apple Dylan folder with the path Sample Code: More Samples: paint-app: 
paint-app.

 

π. 

 

(The 

 

π 

 

is the suffix that identifies the document as a Dylan project.)

You should see the default project browser open. The Dylan-user module is 
selected in the root pane in this example:



 

C H A P T E R  2  

 

Using Apple Dylan

 

98

 

Apple Dylan User Model

 

The root pane of the project browser (upper-lefthand pane) displays the major 
elements of the project. Each project contains one or more subprojects, which 
contain the libraries that the project’s library needs. Every library needs the 
“Dylan” library, one language library, one or more modules contained by the 
library (each library contains an implicitly defined “Dylan-user” module), and 
any text or resource files, if needed.

Here is what you see in the root pane of a typical project’s project browser (you 
might have to scroll or zoom the pane to see all its contents):

 

n

 

Dylan library—a subproject that contains the Dylan language itself. This 
subproject looks different from other subprojects because it has no source 
code. All projects include this library.

 

n

 

mac-toolbox—a subproject that contains a set of import statements in 
Dylan that give access to the (non-Apple Dylan) routines in the Macintosh 
Toolbox.

 

n

 

dylan-framework—a subproject that contains an object-oriented class 
library that implements (in Apple Dylan) a common set of features found 
in Macintosh applications.

 

n

 

Dylan-user—a module defined for each project. The module is intended 
primarily for setting up other modules and libraries, but is useful in small 
or experimental projects as a single module. 



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

99

 

n

 

paint-app—an additional module containing the code specific to this 
application. There can be any number of additional modules, or none at 
all.

 

n

 

paint-app.rsrc—a resource file used by the application. This file is 
optional. You may have several resource files and they need not be kept in 
the same folder as the project.

 

n

 

For some projects, you will also see other subprojects listed in the root 
pane. A subproject is a project or library that has been included in another 
project. Any project whose project type is “library” (see the Set Project 
Type command) can be included in another project.

 

n

 

For some projects, you may also see text files. It may be convenient to 
store these files—perhaps a README, notes or lists—with the rest of the 
project, but the development environment does little or nothing with 
these files.

Good practice requires that every project have a library definition. The library 
definition makes modules available for use. This is done with a 

 

define-library

 

 
statement in the Dylan-user module.

That a module or library/subproject name is displayed in a browser means that 
it is included in the compiler results database, but it does not mean that it is 
available to the application. Only clauses in a project’s define library statement 
makes modules from other libraries accessible to the project’s modules. The 

 

use

 

 
clause must be typed in. It does not appear automatically.

Each variable within a module is visible to all the code contained in that 
module, but variables must be explicitly exported (and then imported) to be 
visible to code in other modules. 

When you make a new module using New Module from the File menu, you are 
informing the development environment of the module. When you add a 

 

use

 

 
or 

 

export

 

 statement to your source code, you are informing the compiler of the 
module. You must do both because the integration of environment and 
language are not seamless in this release. This is one of the seams. 

There must be a single library definition including a 

 

use

 

 statement for each 
library and an explicit statement exporting the module that contains the startup 
function for an application.

There must also be one or more module definitions, showing which modules 
are accessible from that module and thus allowing access to all exported 
variables.



 

C H A P T E R  2  

 

Using Apple Dylan

 

100

 

Apple Dylan User Model

 

To see these definitions, move to the righthand pane of the project browser and 
expand the two paint-app objects by clicking on their disclosure triangles:

It is here that the scope of the project is defined, that is, which libraries and 
modules form part of the project.

Note

 

In this example, the module definition includes a 

 

use

 

 
statement for Apple-Dylan. If you were writing portable 
code for use in non-Apple environments, the 

 

use

 

 statement 
would name Dylan, not Apple-Dylan so the compiler 
would catch any use of Apple extensions. 

Note

 

The Dylan-user module is in each project, but you must 
define for each project a unique version of the Dylan-user 
module. It is possible to write a program without defining 
a library or any other modules by simply using Dylan-user 
for everything. With the exception of the tiniest 
experiments, this practice is not recommended as it 
circumvents the design of the language and the 
development environment. When you create a new project, 
you should create a new module or modules to hold all 
your code.



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

101

 

What’s

 

 really 

 

in a project? 2

 

Use the Finder to examine the directory for the paint-app sample project. You’ll 
find the following on your hard disk:

 

n

 

paint-app.

 

π

 

—the project file, which actually consists of pointers into other 
files. This is the file to open when you want to use a project in the 
development environment.

 

n

 

_Source Database—all source records for the project, in database rather 
than text form.

 

n

 

paint-app.rsrc—an optional resource file. Use ResEdit or another resource 
editor to change its contents. There may be no resource file, or many; they 
need not be in the project folder.

 

n

 

paint-app.dl—the project library file.

 

n

 

_Compiler Results Database—all compiled objects for the project.

 

n

 

_Library Model—equivalent to the compiler results database, but for 
libraries. Created by Create Library. 

 

n

 

paint-app (the executable file)—the standalone application itself, which 
can be double-clicked in the Finder to run paint-app.

Under normal circumstances you never do anything directly with any of these 
documents. The main reason to mention them is to point out that you have the 
option, in the case of a severe need for disk space, of deleting _Compiler 
Results Database and _Library Model. These documents are created when you 
compile your project and thus can be replaced. The document _Source 
Database cannot be replaced.

Note that these two files, _Compiler Results Database and _Library Model, 
grow along with your project but do not shrink along with it. As you 
repeatedly compile, old compiler results are not eliminated, but simply cut off 
from access. You may find it valuable from time to time to issue the command 
Compact Project to perform a garbage collection on these files. 

 

What happens when you open a project? 2

 

You open a project using the Open command on the File menu. When you do, 
you see an Open Project dialog box like this, giving you status as the project is 
being opened:



 

C H A P T E R  2  

 

Using Apple Dylan

 

102

 

Apple Dylan User Model

 

Here is what happens:

 

n

 

All files in the project are locked against other access and opened.

 

n

 

A project browser is created.

 

n

 

The development environment checks for an active project and if there is 
none, makes this the active project. Otherwise, this project is opened but 
is not the active project.

 

n

 

The source database index is loaded.

 

n

 

The compiler results database is loaded (as the dialog box mentions 
loading of caches and definitions). 

 

n

 

If you have selected “Launch Application Nub when Active Project is 
Opened” on the Preferences Environment sheet, the Application Nub is 
launched.

 

n

 

If you have selected “Update when Application Nub is Launched” on the 
Preferences Environment sheet, the Update Project command is issued.

 

The active project 2

 

Only the active project can be browsed completely. Only one project, the root 
project, can be active at one time, although all subprojects contained within 
that project are also active. No other project, open or closed, is active. The first 
project you open is the active project, but you can change active projects with 
the Activate Project command from the Project menu. If you close an active 
project, the project opened next becomes the active project.

Other open projects are inactive. You can browse the text portions of these 
projects, but you cannot browse any relationships that depend on compiler 
results. The source records of an inactive project can be edited and saved. You 
can also cut and paste between active and inactive projects. Changed text in an 
inactive project is marked as uncompiled when it is changed, but you cannot 
compile it until you make it the active project.



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

103

 

Only the active project and its subprojects can be fully browsed. You could 
think of the development environment as an interface to the compiler results 
database. In other words, all information displayed by a browser depicts what 
has actually been compiled. For instance, the call graphers and class graphers 
depict calling or class structures that have been successfully compiled, not 
what has been incorrectly written in the code and won’t compile. The same 
goes for all cross-references, debug information, or other relationships in the 
project. Keep in mind, you are working directly on your application or library, 
not a representation of it. 

Because each source record is a definition, individual definitions can be edited, 
and compiled without disturbing the rest of the program. Thus, in compilation, 
only modified definitions are compiled. This incremental compilation means 
that you can interactively change the active project with a very short compile 
time.

Note

 

The changes you make in the active project are not 
reflected in the compiler results database until you compile 
them. Therefore, many browsers do not reflect the changes 
until you compile.

▲ W A R N I N G

 

Since the compiler does not lock files, you are not 
prevented from editing while compiling. However, you 
absolutely should not do this. You should also not browse 
while compiling. 

 

Targeting 68K and PowerPC Platforms 2

 

You can target your final application or library to run on the Macintosh 68K or 
PowerPC platforms. You set an individual target architecture while you are 
developing a project. To do this, you make your project active and choose the 
preferred platform using the Target Architecture command. Then, when you 
build your final application or library, you can choose which architecture you 
want it to run on. If you want a single application to run on both architectures, 
you would choose to create a 

 

fat application

 

. A fat application should run 
equally well on both platforms as it contains native code for both. You can also 



 

C H A P T E R  2  

 

Using Apple Dylan

 

104

 

Apple Dylan User Model

 

choose to create a 

 

skinny application

 

. A skinny application is one that runs 
native on the 68K architecture but is emulated on the PowerPC.

Although you can switch back and forth between the two targets for any active 
project as often as you wish, you must issue an Update Project command every 
time you do so, which can slow development time. Therefore, if you want to 
develop for both platforms, you can decrease the number of times you have to 
switch between the two platforms by getting your project fairly solid for one 
before compiling it for the other. The common methodology is to target one of 
the platforms, develop your application or library through the debugging 
stage, then choose the other platform and recompile. You don't have to 
recompile your project with the other architecture targeted. You can instead 
create a fat application and test that.

The reason you must use the Update Project command every time you switch 
between platforms is that there is a separate compiler results database file and 
library model file for both platforms. These files are updated only for the 
current target; the other set of files are left as they were when you switched 
away from them. Therefore, an update is needed to refresh the contents of these 
files when you switch back to them.

 

Application or library? 2

 

Every project must have certain characteristics established, depending on 
whether it is an application or a library. This is done through the Set Project 
Type command from the Project menu. You can also use this command to 
examine the characteristics of any project.

Internally, applications and libraries are identical, with the single exception that 
an application includes a startup function. This means that an application can 
be started and achieve some end result. A library does nothing by itself and 
must be used as a building block of an application

For the sample project paint-app, you see the following dialog box when you 
choose Set Project Type from the Project menu:



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

105

 

This information is needed by the development environment to manipulate, 
load and run the application. You can see the paint-app project is an 
application. The startup function (similar to Main in a C program) is identified 
by name and location (i.e., which module it’s in). The file creator type is given, 
as are the suggested and minimum memory needs of the application. The box 
“Use separately loaded libraries” is checked.

If you check “Library” in the “Project Type” field, the dialog box changes, 
reflecting the differences between applications and libraries:



 

C H A P T E R  2  

 

Using Apple Dylan

 

106

 

Apple Dylan User Model

 

There is no startup function in a library, nor does a library have memory 
requirements. Also, libraries do not vary according to whether they are 
separately loaded or not. However, libraries do require versioning.

 

Library version numbers 2

 

Set Project Type allows you to specify a version and a minimum compatible 
version for each library.

Setting the version of a library controls which version is recorded in the 
compiler results database. When a library file is created from a project, the 
library versions of all of its subprojects are recorded in the library file header. 
Then at runtime, when the library is loaded, it will only accept those versions 
of the sublibraries that are compatible with the version of the sublibrary used 
at library creation time.

The minimum compatible version is the lowest version that a library is 
backward compatible with. The Min Version field is checked during runtime 
library search.



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

107

 

For example, suppose library A uses library B, and at the time the library file 
for A is built, library B was at version 17. Later, at runtime, when library A is 
being loaded, it will look for library B, version 17. 

 

n

 

If it finds an instance of library B that has version 17, that version is used. 

 

n

 

If it finds an instance of library B that has version 16, that version is not 
used. 

 

n

 

If it finds an instance of library B that has version 19, and the minimum 
version is 17 or less, that version is used, because even though that library 
has a later version, it claims to be backward compatible with version 17. 

 

n

 

If it finds an instance of library B that has version 19 and a minimum 
version of 18 or more, that version is not used, because that library is not 
compatible with version 17. 

 

n

 

If it finds more than one instance of library B which is compatible with 
version 17, it picks one at random.

If library B version 17 had a minimum version of 16 at the time Library A was 
built, it might seem that version 16 of Library B could be used, but it doesn’t 
work that way. If library B has version 17 and minimum version 16, that means 
only that version 17 is backward compatible with version 16. Thus, version 17 
could be used where version 16 was expected. However, it doesn't mean that 
version 16 is compatible with version 17. Library A could be using some new 
features of library B version 17 that weren't in B version 16. Thus, version 16 
cannot be used for libraries built on version 17, even if the minimum version is 
16 or less.

Note

 

In other words, there is no way to specify that a library is 
backward compatible.

 

The Application Nub 2

 

The Application Nub is a minimal application that communicates with the 
development environment. A project under development can be loaded into 
the Application Nub and run under the control of the development 
environment. 

The Application Nub also permits you to debug a standalone application (one 
that has already been built and runs outside of Apple Dylan). 



 

C H A P T E R  2  

 

Using Apple Dylan

 

108

 

Apple Dylan User Model

 

Your application cannot execute unless the development environment is 
tethered to either a standalone application or the Application Nub. The 
development environment can communicate either with a project loaded into 
the Application Nub or with any standalone application that has been built 
using Apple Dylan, providing you have the compiler results database for the 
standalone application. If so, you can run the application from outside of Apple 
Dylan, then return to Apple Dylan and download code to the application, 
insert breakpoints, insert 

 

print

 

 statements, use inspector windows, and test the 
project or portions of it using the Apple Dylan Listener. You have full access to 
such a standalone application, just as if it were still a project being run from 
within Apple Dylan.

In either case, tethered means tethered to the runtime, which is the actual 
running state of your project or application, and connected to the Apple Dylan 
Listener, which informs you of all values returned and permits direct 
interaction with the running application. 

Tethering the development environment to the Application Nub or a 
standalone application adds no overhead. All debugging information is 
included in the compiler results database and the source database, not in the 
standalone application or the Application Nub. All projects and shipped 
applications are fully debuggable, simply by tethering them to the 
development environment. 

Keep in mind that any development activity that is supported for a project 
loaded into the Application Nub while it is tethered to the development 
environment is also supported for any Apple Dylan application for which you 
have the compiler results database. That means that an important part of 
preparing an application for distribution is saving a copy of the compiler 
results database for the standalone applications you build. 

Anything compiled while tethered to the development environment is 
automatically downloaded to the runtime. The compiler results database is 
always synchronized with the runtime while tethered. 

Two closely related commands support tethering to the development 
environment:

 

n

 

Launch Application Nub from the Project menu launches the Application 
Nub, loads your project into it, and tethers it to the development 
environment.

 

n

 

Tether to Application assumes that a standalone application is already 
running and tethers the development environment to it. 



 

C H A P T E R  2

 

Using Apple Dylan

Apple Dylan User Model

 

109

 

Neither Launch Application Nub nor Tether to Application downloads any 
code to the Application Nub. Compiling code with a compilation command, 
such as Compile Selection or Update Project, does that.

Launch Application Nub has these effects: 

 

n

 

Starts the Application Nub running.

 

n

 

Establishes communication between the development environment and 
the Application Nub.

 

n

 

Initializes the runtime.

 

n

 

Loads the Dylan library. 

Note

 

Launch Application Nub does not run the project! 

Tether to Application has only a single effect:

 

n

 

Establishes communication between the development environment and a 
running standalone application or the Application Nub.

Note

 

The standalone application must already be running when 
you issue this command! You also must have the compiler 
results database for the standalone application.

You have the option on the Environment page of the Preferences dialog box 
from the Edit menu, to automatically launch the Application Nub when you 
make a project active. You also have the option of performing an Update 
Project whenever a project is launched. These options are off by default and 
independent of each other.

You are not limited to using the Application Nub supplied with Apple Dylan. 
You may also add to it to create a custom Application Nub of your own. This 
enables you to include object libraries from other languages or other resources 
from outside the domain of the Dylan language, such as Creole files.

 

Keeping your project synchronized 2

 

There are three sets of information for your project that must be kept in 
synchronization through your own actions. They are:



 

C H A P T E R  2  

 

Using Apple Dylan

 

110

 

Apple Dylan User Model

 

n source database—source records in text form as presented by the 
development environment, which can be changed by means of editing a 
source record and saving it.

 

n compiler results database—all code that has been compiled and related 
debugging information.

 

n runtime—all code that has been downloaded to the Application Nub.

Ordinarily, Apple Dylan allows you to switch smoothly from the runtime to the 
databases. A typical scenario would be to observe a problem in the running 
application that is attached to the Application Nub, use a browser to find the 
problem, and then use the editor to change the source and correct the problem. 
If you follow this activity with an Update Project command, your databases 
will be synchronized. 

However, there are many opportunities for your information to get out of 
synchronization. Moving or deleting Apple Dylan files while not in Apple 
Dylan can have bad consequences, as does renaming any folders. The 
development environment will not be able to find the object and report it as 
missing. Missing files need to be found and identified when the development 
environment is running or they will just be ignored during compilations. When 
they have been identified, the project must be recompiled and saved. While the 
development environment is not running you can move the entire Apple Dylan 
folder or a project’s entire folder and it will be OK.

Sometimes you may face an even more confusing situation, such as when you 
have coded an object and compiled it, then deleted the source. Then, when you 
use a browser, you might find the object is still there. This is because the 
browser is working off the compiler results database, not the database of source 
records. The running application attached to the Application Nub can show yet 
a third behavior because you may have downloaded a compiled definition that 
is no longer active. Further, if there are warnings or if there has been a 
downloading error, your code may have been compiled without being 
downloaded. While the Update Project command usually corrects 
desynchronization, it is up to you to keep in mind that you are working across 
three databases and that they do not necessarily reflect the same objects. 



C H A P T E R  2

Using Apple Dylan

Apple Dylan User Model 111

Note
Keep in mind that compiler results are saved to the 
compiler results database each time you compile anything, 
but the source database only changes when a source record 
or the active project is explicitly saved with the Save or 
Save All command, respectively.

Orphan definitions in the runtime 2

One form of desynchronization may be particularly confusing, objects that exist 
in the runtime, but have no apparent source. These are called orphan 
definitions and come from three causes:

 

n the source of the definition has been deleted or renamed

 

n the object was defined in the Listener and compiled, downloaded and 
executed from there

 

n the definition is in a library, and is consequently downloaded with the 
library when you launch the Application Nub.

In all cases, the result is a definition entity in the runtime that has no 
corresponding source record. The best means of eliminating these objects is to 
untether from the development environment, retether, and then issue an 
Update Project command.

Note
You can also eliminate an orphan definition by using an 
Inspector to inspect the function and using the Inspector’s 
remove command. However, this can lead to the reverse 
situation, also confusing, where you have an object defined 
in the source and compiler results databases that is not 
present in the runtime.

Status indicators and synchronization 2

The best information on whether your databases are synchronized comes from 
the status indicators. At the left edge of each pane you can see a vertical gray 
stripe, sometimes with tiny squares in it. This is the status indicator bar. You 
can choose which kinds of status the bar shows for each pane, or whether it 
shows anything at all. 



C H A P T E R  2  

Using Apple Dylan

112 Apple Dylan User Model

Choose which status indicators you want active for each pane by selecting the 
pane and then choosing Status Indicators from the Browse menu or by 
double-clicking on the status indicator bar. The Status Indicators dialog box 
opens. The more status indicators you choose from it, the wider the status 
indicator bar in the pane. The status indicators you can choose are:

 

n Unsaved—blue square: the object or its contents have changed since the 
last time it was saved or it has never been saved. You clear the indicator 
by saving.

 

n Uncompiled—green square: the object or its contents include source code 
that has changed since the last compilation or has never been compiled. 
You clear the indicator by compiling.

 

n Warnings—orange square: when the object or its contents were compiled, 
the compilation resulted in warnings. You clear the indicator by fixing the 
problem and recompiling, if it’s a compilation warning.

 

n Read Only—red square: the object or its contents cannot be changed. You 
cannot turn the read-only attribute off or on from within the development 
environment; it is set by other applications.

 

n Other—dark gray square: the composite category of unchosen indicators. 
If Other is the only status indicator chosen for the pane, then any object 
that is unsaved, uncompiled, has warnings, or is read-only will be flagged 
with the Other indicator. If Other is chosen along with one or more other 
status indicators, then Other stands for the unchosen indicators. If all 
other indicators are chosen, Other is not listed on the Status Indicators 
dialog box. 

The status indicators appear in the order named, with Unsaved farthest to the 
left and Other farthest to the right. The status indicators are color coded as 
noted. If you click on a status indicator in a pane, the Prompt Area at the 
bottom of the browser identifies it. If the indicator is Other, the Prompt area 
shows the current definition of Other.

You can also see the squares representing status indicators in the header of a 
pane, if you choose. These show the status of the basis of the pane.

Restoring synchronization 2

The status indicators show what is out of synchronization. It is easy to bring 
your project back into synchronization, but there is no single command that 
saves your changed sources, compiles everything that needs compiling and 



C H A P T E R  2

Using Apple Dylan

Apple Dylan User Model 113

downloads everything to the runtime. Saving sources is always a separate 
activity.

Save sources with Save or Save All from the File menu. Save is available only 
when you have explicitly changed the source in a selected object. Save All is 
always available. Revert from the File menu returns you to the sources as they 
existed when you last saved the project.

Update Project compiles all uncompiled or changed sources. If the project is 
loaded into the Application Nub while it is tethered to the development 
environment, the newly compiled sources are downloaded to the running 
application. 

The Run command combines several functions:

 

n tethers to the development environment, if needed

 

n performs an update, compiling all sources marked as uncompiled and 
downloading them to the Application Nub, if needed

 

n runs the project’s startup function.

The actions performed by Run may vary according to the state of your project 
and can’t necessarily be determined in advance. 

The Recompile command recompiles all sources, whether marked as 
uncompiled or not.

Apple Dylan Listener 2

The Apple Dylan Listener is a window into a running application. Type a 
function call in the Listener and its results are printed in the Listener. This is 
the fundamental Listener interaction. The Listener is not an interpreter or a 
command-line window. In the Listener you are tethered to the runtime, not the 
development environment. You are compiling code for the actual application, 
downloading to it, and inspecting the actual results. 

The Listener is similar to the MPW shell except: 

 

n The Listener executes Apple Dylan code, not shell scripts.

 

n The Listener distinguishes what you have typed by displaying it in bold. 

 

n The Listener is sequential and historical in that it supports interaction 
primarily at the last prompt position and always prints results at the last 
position, while the MPW shell allows interaction anywhere in the shell 
and prints at that spot. 



C H A P T E R  2  

Using Apple Dylan

114 Apple Dylan User Model

While browsers allow you to look at the compiler results database and the 
source database, the Listener allows you to interact directly with the runtime. 
Inspector windows allow you to look at objects in the runtime. See the section 
“Inspector windows” on page 116 for more information.

The Listener title bar includes “(Unconnected)” when the development 
environment is not tethered to the Application Nub. Once you have launched 
the Application Nub (or tethered to a running standalone application), the 
Apple Dylan Listener is connected to the Application Nub and is, therefore, 
available. The Listener allows you to interact with the application as it runs. In 
fact, you can run an application by executing its startup function in the Listener. 

Note
If the Listener prints no returned values, or prints only 
warnings for syntax errors, you are not tethered to the 
runtime. 

By having the Listener open as you program, its feedback from listening to 
your actions helps you monitor your progress. You can enter any Dylan 
expressions into the Listener for immediate execution. For example, you can 
call functions in the Listener (including your application’s startup function), 
and you can define functions, variables, and classes in the Listener. 

The Listener is useful for quickly testing expressions without creating 
containers to hold them. In addition, the Listener provides access to parts of 
your application that you cannot access any other way, such as data stored in a 
database or off a hash table. The Listener is inherently temporary, similar to a 
scratch pad. If you wish to make permanent changes in your project, you 
should do so in a browser, saving, compiling, and downloading the changes 
from there. 

The form typed into the Listener and then compiled, results in zero or more 
values when executed. These values are printed in the Listener, one per line. 
For example, executing values () results in no values, so none are printed. 
Executing 1 + 2 results in 3, which is printed on the next line. Executing 
values (“first” “second”) results in two values that are printed on the next 
two lines. 

All values returned or any other results are printed to the Listener window for 
any code executed by the application or anywhere in the development 
environment, even in the browsers. The results of macro expansion are also 
printed in the Listener.



C H A P T E R  2

Using Apple Dylan

Apple Dylan User Model 115

You should launch the Application Nub before compiling code from the 
Listener. You can do this by using the Launch Application Nub command on 
the Project menu. Although you can compile without being tethered to the 
runtime, all the compiler does in that case is check the code’s syntax. 

Code typed into the Listener is compiled and downloaded to the application 
under development. The objects created appear in browsers and behave in 
most ways as if they were a permanent part of the project, but they are not. 
When you compile and download to the Application Nub from the Listener, 
you are creating a definition entity for the object, but you are not creating an 
associated source record. Although every object has one or more associated 
definition entities, definition entities created in this way are temporary, lasting 
only as long as you remain tethered to the runtime. They disappear when you 
untether. The Listener listens, but does not remember. The Listener is not a 
browser. When you code in the Listener, you must use the editing tools to 
move useful source text into a source record in a browser to make it permanent. 
See the section “Orphan definitions in the runtime” on page 111 for more 
information.

▲ W A R N I N G

Nothing created in the Listener is saved. You should not 
create methods and classes in the Listener even though it is 
possible to do so. Use the browsers instead; they are 
designed for that purpose.

The Listener is a place to test and compile code without permanently 
modifying the project. It is useful for ephemeral code testing, for running of 
individual functions to see what they do, and for inspecting and changing the 
state of the runtime. 

Before you type an expression into the Listener, choose the module the 
expression is in from the popup list in the lower-left corner of the Listener 
window.

▲ W A R N I N G

Failing to choose the proper module in the Listener is 
perhaps the single most common and confusing mistake 
Apple Dylan users make. Remember, each module is a 
namespace and all code is executed in the context of a 
module. If you are not in the proper module, you are not 
in the proper namespace and the Listener will literally not 
know what your are talking about.



C H A P T E R  2  

Using Apple Dylan

116 Apple Dylan User Model

You can execute code from the Listener while you are in a break loop, allowing 
you to investigate various results. When in a break loop, the Listener’s prompt 
changes to the number of the break level on the stack, starting with the first 
break loop as number one. 

When the Application Nub is not executing code, it is in the Listener loop, 
waiting for code to be sent from the development environment. This can be 
from compiling something in the development environment by means of one 
of the compilation commands or by means of typing code into the Listener. The 
effect is the same; the code is executed and the result values are sent back to the 
Listener. A break loop is the same as the Listener loop, except that there is code 
waiting to be executed that was stopped by an error or Break and is waiting to 
be aborted, inspected or resumed. The Listener loop can be thought of as break 
level 0 or the null break level. For more information on break loops, see the 
section “Debugging a project” on page 146.

The Listener supports three forms of interacting with your project or 
application.

 

n If you observe behavior in your application that you wish to change, you 
can enter a Break command to suspend the application while you make 
your changes. All state is preserved, including the stack.

 

n If your application returns an error, it will be suspended and a backtrace 
supplied that allows you to determine the exact source of the error.

 

n If you press command-option-. (command-option-period), the application 
is suspended exactly as it is at that moment, without losing any state or 
stack information. You are still in the middle of the application and can 
see exactly what it is doing. 

Inspector windows 2

While browsers allow you to look at the source database and the compiler 
results database, and the Listener allows you to interact with the runtime, 
inspector windows allow you to look directly at objects in the runtime. To use 
inspector windows, you must be tethered to the application and the application 
must be suspended.

The inspector windows offer your only opportunity to look directly at objects 
in the runtime. In fact, objects only exist in the runtime, and furthermore many 
objects in the runtime are created by the running application. 



C H A P T E R  2

Using Apple Dylan

Apple Dylan User Model 117

Several commands that open inspector windows are included in Apple Dylan:

 

n The most common use of inspector windows is through the Listener, 
where you can compile, download and execute code, look at the results as 
printed in the Listener, and then use the Inspect Listener Result command 
to determine exactly what happened.

 

n After an error, the stack is presented in the form of a backtrace. Use the 
Inspect Stack command to inspect the state of the program at the point of 
the error. 

 

n You can list all the modules in the Application Nub and select one from 
the list to open an inspector window on it using the Inspect Module 
Variables command.

 

n You can also look at your memory allocations and contents using the 
Inspect Heaps command. 

 

n Finally, you can select any object and inspect it using the Inspect Selection 
command. 

You can use inspector windows on any object in the runtime. To do so, you 
must know where the object is located, such as a list or vector or other data 
structure.

Note
You can open another inspector window from any 
inspector window by double-clicking on an object in it. 
This can lead to having numerous inspector windows 
open at once. If you hold down the Option key while 
closing one inspector window, all of them close.

Bailing out of Apple Dylan 2

Sometimes you might have an error or other problem that locks up Apple 
Dylan to the point where you cannot proceed. You might need to quit the 
application or the development environment, but you cannot. In that case, you 
need a way to forcefully exit, or bail out.

The common method of stopping an application is by making it the frontmost 
and typing command-option-period. If this stops the application, you can often 
continue to issue other commands, such as Quit Application to officially quit 
the application and the Application Nub, or the Quit Application Nub 
command, as needed. 



C H A P T E R  2  

Using Apple Dylan

118 Apple Dylan User Model

Sometimes you need to forcefully stop the Application Nub itself. If you have 
tried the commands Quit Application and Quit Application Nub, yet the 
Application Nub’s status indicates it is still running, you might need to run the 
Quit Application Nub program from the Finder. You can do this by leaving the 
development environment and launching the executable file Quit Application 
Nub, which is in the Application Nub folder. The Quit Application Nub 
executable’s purpose is to seek out and destroy any Application Nubs that are 
running, but it doesn't affect Apple Dylan.

When you cannot quit Apple Dylan itself, using command-period or 
command-option-period should stop Apple Dylan so you can use the Quit 
command. Usually, using command-shift-escape also lets you exit safely. 
However, sometimes this might hang your machine. In case these don’t work, 
it might be useful to create an AppleScript program that tells Apple Dylan to 
quit. The script is:

  tell application “Apple Dylan” to quit

Building standalone applications 2

When you have completed coding and testing your project, you can turn it into 
a standalone application or library. This is the final stage of the Apple Dylan 
user model. Only applications created in Apple Dylan can be maintained, 
revised, or supported using Apple Dylan. The standalone application you 
create is identical to the project loaded into the Application Nub, except that it 
is no longer connected to the development environment. If you need to change 
the standalone application in any way, however, you can tether to it, return to 
the use of all the facilities of the development environment, and then recreate it 
as a new application. To do this, you must have retained the project’s compiler 
results database file. See “What’s really in a project?” on page 101 for more 
information. 

You create an application using the Create Application command. This 
command first untethers the Application Nub—prompting for confirmation—
and then takes the information in the compiler results database (and associated 
libraries) and packages your project as an application that is then written out to 
a specified location on the disk. At that point, the project is no longer in the 
Apple Dylan environment. The Application Nub has been included in the 
application. 



C H A P T E R  2

Using Apple Dylan

Starting a project 119

You create a library using the Create Library command. This command first 
untethers the Application Nub—prompting for confirmation—and then takes 
the information in the compiler results database (and associated libraries) and 
packages your project as a library that is then written out to a specified location 
on the disk.

This completes our walkthrough of the Apple Dylan user model. The rest of 
this chapter describes some detailed tasks and examples using the 
development environment. 

Starting a project 2

When you want to write your own application or library, you create a new 
project using the New Project command. The new project will consist of 
numerous other objects, most of which you will create. Your project can also 
contain subprojects, which are other projects or libraries you include in your 
project. 

Projects consist of modules which contain source folders. The source folders 
contain source records. A source record contains the source code, each source 
record being one method, class, variable, constant, macro, generic function, 
comment, or top level form. For more information about creating a user 
interface for your application, see the book Creating a User Interface in Apple 
Dylan.

You can create and open as many projects as you want, but only the active 
project can be compiled or browsed. You can designate any open project as the 
active project using the Activate Project command. Also, closing the active 
project with other projects open makes the next frontmost of the open projects 
the active project. It also closes all the active project’s subprojects, if they aren’t 
also subprojects in another project that’s still open. 

You also use the New Project command to create a new subproject. If the 
project you want to use as a subproject already exists, you simply add it to 
your project with the Add to Project command on the File menu. When the 
project it is included in is not open, the subproject is simply a project again, so 
it is best to think of a subproject as a type of project.



C H A P T E R  2  

Using Apple Dylan

120 Starting a project

Creating a new project 2

You create a new project using the New Project command on the File menu. 
When you create a new project, you must decide how you want its code 
organized in its modules, source folders, and source records. You must decide 
if it is going to be an application or a library, if you want to develop your 
project with the runtime on a separate machine, and what Macintosh 
architecture you want your final standalone application to run on. You must 
also decide what C libraries you want to include in it and which subprojects or 
libraries you want to add to it. Also consider if you want to use it as a 
subproject in another project.

Each new project automatically has certain objects in it. The Dylan subproject 
contains everything defined in the Dylan language and the Apple Dylan 
extensions. The Dylan-user module is created for each project, but its contents 
must be defined by you. The Dylan-user module will contain the module 
definition and library definition used to structure the rest of your project. You 
must write your own module definition and library definition in this module. 
These two language definitions are described in Programming in Apple Dylan, 
Apple Dylan Extensions and Framework Reference, and the Dylan Reference Manual, 
which are shipped with Apple Dylan. 

In the development environment you can create your modules using the New 
Module command from the File menu. You can have as many modules as you 
want, although one module is sufficient in a project. Modules hold source 
folders. New modules are placed at the end of the list of modules. You can 
reorder the modules by dragging them. Changing the module order changes 
the load order. In the Dylan language, forward declarations do not create load 
order restrictions. However, load order dependencies, such as calculations that 
are performed in one module based on a variable previously defined in another 
module, must be accounted for in the module order you establish. For more 
information on load order, see the Dylan Reference Manual.

Source folders are for organizing your code. Source folders hold the individual 
source records. You can have as many source folders as you want and most 
projects have several. 

A source record is an individual method, class, variable, constant, macro, 
generic function, comment, and top level form. You can have as many source 
records as you want. 



C H A P T E R  2

Using Apple Dylan

Starting a project 121

When you create modules, source folders, and source records, each will 
automatically get its own type of icon. A generic icon is assigned to each object 
as you are creating it. When you have completed enough of the object for the 
development environment to determine what it is, the appropriate icon for it 
appears automatically.

In addition to these objects that are in every project, you can add several others, 
if you want, using the Add to Project command on the File menu. The 
mac-toolbox subproject is a library containing the Macintosh toolbox calls that 
you can add to your project. It is up to you to include any or all of the 
individual Macintosh toolbox calls you want to use in your project.

The dylan-framework subproject is a library containing the Apple Dylan 
application framework. You must add the framework to your project if you 
want to use it. Since the source code for the framework is included in its 
subproject, you could modify it if you want. However, this is not a common 
practice, nor is it recommended.

Another type of file you can add to your project is a resource file. You must 
create whatever resource files you need outside of Apple Dylan using your 
favorite resource file editor. The resource file you add to your project will have 
the suffix ”.rsrc” and be in the root pane of your project.

If you want to investigate Macintosh toolbox calls, you select a call and choose 
the Look Up in Online Reference command. The Macintosh Programmer’s 
Toolbox Assistant is launched, if you have purchased it and it is present on 
your system. The reference entry for the call is displayed. You can also display 
reference entries for the Dylan language and the Apple Dylan extensions to it, 
including the framework, by selecting the function and choosing the Look Up 
in Online Reference command.

1. Choose New Project from the File menu.
When you enter a name for your new project, you see a new project open 
with a three-paned, project browser. The name of the project appears in the 
browser’s title bar. Untitled is the default name until you save it with a name. 
You do not have to close any open projects when you create a new project. 
However, if there are other projects open already, be sure you set the active 
project to the project you want to compile. Any open, inactive projects can be 
edited, but not compiled or fully browsed. Use the Activate Project 
command on the Project menu to make this the active project.
In the root (upper-left) pane are the two default objects, Dylan and 
Dylan-user. The Dylan-user module contains an empty source folder and 



C H A P T E R  2  

Using Apple Dylan

122 Starting a project

source record. In the following example, the Dylan-user module has been 
selected in the root pane so you can see its default contents.

Name the new project using the Save All command on the File menu.

2. Select the Dylan-user module in the root pane and choose New Module 
from the File menu.
Name the module by typing its name into the dialog box. The new module 
appears in the root pane below Dylan-user because you selected Dylan-user. 
You can create as many modules as you want, but often a single module is 
sufficient. 

3. Select the new module and then choose New Source Folder from the File 
menu.
An empty source folder appears, for which you can type in a name. You can 
create as many source folders as you want.
The new source folder has an empty source record in it. When it is newly 
created, you can type the name of the new source record next to its icon at 
the prompt. When you enter code, the name of the source record is derived 
from the text of the code. If you want to rename the source record later, you 
must expand it using its disclosure triangle and edit the code.



C H A P T E R  2

Using Apple Dylan

Starting a project 123

4. Select the new source folder and then choose New Source Record from the 
File menu.
The new source record appears at the end of any existing source records 
unless you select a source record prior to creating a new one, then it appears 
after the selected source record. You can create as many source records as 
you want. 
The following figure shows a new source record that has been created in the 
“new proj” source folder of the “newproj” module. The new source record is 
still unnamed in this example. Because no code has been entered yet, the 
new source record is represented by the generic icon.

5. Type or copy source code into a new source record.
There are several types of source records, including methods, generic 
functions, comments, and constants. Each has a different icon, which 
appears when enough code has been entered for the development 
environment to decide what it is. You edit the name of a source record, 
which is based upon the text of its code, by expanding it with its disclosure 
triangle and editing the code.
The following figure shows a new source record named random-state. It still 
has the generic icon because only its name has been entered. Notice that the 
source record random-state has been expanded to show that no source code 
has been written.



C H A P T E R  2  

Using Apple Dylan

124 Starting a project

The following figure shows the source record random-state with its code 
partially entered. It has the icon that represents a source record of an 
unknown type because not enough code has been entered for the 
development environment to decide what it is.

The following figure shows the source record random-state with its method 
icon. Notice that the entire contents of the method are not needed for the 
development environment to recognize it as a method.



C H A P T E R  2

Using Apple Dylan

Starting a project 125

6. Click Dylan-user in the root pane.
It is empty because you must define its contents. Usually you use one source 
record to define the library for your project, and another to define your 
module. Check the Programming in Apple Dylan, Apple Dylan Extensions and 
Framework Reference, and the Dylan Reference Manual, along with the sample 
projects, for specifics on how to write this code.
The following figure shows the definitions in the Dylan-user module for the 
sample project puzzle.



C H A P T E R  2  

Using Apple Dylan

126 Starting a project

7. Reorder your source folders and source records to reflect the load order 
you want.
You can drag the objects around in a pane, just as you would in the Finder. 
You can delete objects that you don’t want using the Delete key or the Clear 
command on the Edit menu.

8. Before you save your project for the first time, see one of the following 
tasks on setting your project type as an application or a library. 

Setting the project type for an application 2

If you want your project to be an application, you must specify it as an 
application using the Set Project Type command on the Project menu. This 
information is used when you build your final standalone application from 
your project. If you have not yet written all the code needed to complete this 
dialog box, complete what you can and come back to this task when you have 
written the code.

If you want to use a project as a subproject, you should select Library in the 
“Project Type” field.

1. Make your new project the active project, if it’s not already.
You can use the Activate Project command on the Project menu.



C H A P T E R  2

Using Apple Dylan

Starting a project 127

2. Choose Set Project Type from the Project menu.

3. Click Application in the “Project Type” field.

4. Enter a file creator in the “Creator Type” field.
The “Creator Type” field holds the creator ID you want your new 
application to have.

5. Name your project’s startup function in the “Startup Function” field.
This is a function you write to run your application. 

6. Select your startup function’s module in the “Module” field.

7. Enter the memory requirements your application will have.

8. Check the box for separately loaded libraries, if your project requires 
them.
If this box is checked, the libraries used by the application are not bundled 
with the application file. They are left separate on disk. When the 
application is launched, it looks for the libraries it needs, first in its own 
folder, then in the extensions folder.



C H A P T E R  2  

Using Apple Dylan

128 Starting a project

Separately loaded libraries save space because you only need one copy of 
the common libraries, dylan-framework and mac-toolbox.
Note that Dylan libraries are not shared in RAM, so selecting “Use 
separately loaded libraries” doesn’t save RAM. Libraries are loaded when 
the application runs, if you check this box. They are also loaded whenever 
you issue a Launch Application Nub command in the active project.
The library of the application being written is always bundled with the 
application. Only the libraries of subprojects are kept separate. 

9. Click Create Fat Binary, if you wish.
A Fat binary includes both native 68K and native PowerPC code. It runs 
efficiently on both architectures, but is larger than an application created for 
only one architecture. The Fat binary is created when you use the Create 
Application command to build your standalone application.

10. Edit the Application Names fields, if you wish.
Change these fields to the name you want your final application to have, 
according to the architecture you build it for.

11. Click OK.

Setting the project type for a library 2

If your project will be a library, you must specify it as a library using the Set 
Project Type command on the Project menu. This information is used when you 
build your library from your project. If you have not yet written all the code 
needed to complete this dialog box, complete what you can and come back to 
this task when you have written the code.

Different fields appear in this dialog box when you select Library in the 
“Project Type” field rather than Application. That is because there is no startup 
function in a library and a library does not have memory requirements. Also, 
libraries do not vary according to whether they are separately loaded or not. 

However, the versioning fields appear for Library. You should increment the 
version number of a library whenever you release a new version of a library. 
You also should increment the minimum version number whenever you make 
incompatible changes.

1. Make your new project the active project, if it’s not already.
You can use the Activate Project command on the Project menu.



C H A P T E R  2

Using Apple Dylan

Starting a project 129

2. Choose Set Project Type from the Project menu.

3. Click Library in the “Project Type” field.

4. Give your project a version number and minimum version number.
You should increment the version number in the “Library Version” field 
whenever you release a new version of the library. You should increment the 
minimum version number in the “Minimum Version” field whenever you 
make incompatible changes, such as removing an export, changing the 
number of arguments of a function, changing the value of an exported 
constant, changing export or sealing information, changing the body of an 
accessible inlined method, changing the position of a slot in a primary class, 
or changing the behavior of some functions in a semantically 
non-upward-compatible way. In general, you should increment the 
minimum version number unless you very explicitly made only 
upward-compatible changes, such as adding an export, or adding optional 
arguments to a function.



C H A P T E R  2  

Using Apple Dylan

130 Starting a project

5. Select a file creator in the Creator Type field.
The Creator Type field holds the creator ID you want your new library to 
have.

6. Edit the Library Names fields, if you wish.

7. Click OK.

Saving a project 2

You save an entire project with the Save All command on the File menu. All the 
content in all open projects are saved. If you want to save only parts of a 
project, use the Save command.

The Save All command cannot be undone. 

1. Bring the project browser to the front, if it’s not already there.

2. Choose Save All from the File menu.

3. If this is the first time you have saved it, give it a name and location.
The suffix “.π” is automatically appended to the name of your project when 
it is written to its folder in the Finder. Leave the development environment, 
if you wish, and check that its file was created in the proper folder.

Saving the objects in a pane 2

You can save the contents of a pane by clicking in the pane and then choosing 
the Save command from the File menu. The Save command cannot be undone. 

You cannot save the contents of a single source record without saving the 
contents of every other source record in the pane with it.

1. Click in the pane you want to save.

2. Choose Save from the File menu.

Adding a subproject or resource file 2

You can add a subproject to a project with the Add to Project command on the 
File menu. Libraries are represented as subprojects in the development 



C H A P T E R  2

Using Apple Dylan

Starting a project 131

environment. Use the Import command on the File menu to add a Dylan text 
file to a project. The framework is treated as a subproject by the development 
environment.

Not all projects can automatically be used as subprojects, only those whose 
project type has been set to “Library” using the Set Project Type command.

1. Make active the project you want to add a subproject to.
You can use the Activate Project command on the Project menu.

2. Make the root pane of the project browser active.

3. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the 
Quit Application Nub command will be issued before you can proceed any 
further.

4. Choose the file containing the subproject or resource file you want to add.
A dialog box allows you to find the file’s location and choose the file to add. 
To add a project as a subproject, choose the project’s file with the “.π” suffix. 
An alias to the subproject or resource file is also acceptable.

5. Choose Update Project from the Project menu.

Adding the framework 2

Although it is possible to write code without using the Apple Dylan 
framework, you probably will want to use it. The framework is a subproject 
that enables you to write less code. Source code for the framework is included 
in its project, so you can also use the framework to help you learn to write 
Apple Dylan code. See Programming in Apple Dylan, Apple Dylan Extensions and 
Framework Reference, and the Dylan Reference Manual in the Apple Dylan 
documentation set for more information on the framework.

1. Make active the project you want to add the framework to.
You can use the Activate Project command on the Project menu.

2. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the 
Quit Application Nub command will be issued before you can proceed any 
further.



C H A P T E R  2  

Using Apple Dylan

132 Starting a project

3. Choose the framework’s project file in the framework folder of Apple 
Dylan.
An alias to the framework is also acceptable.

4. Choose Update Project from the Project menu.

5. Choose Launch Application Nub from the Project menu.
In this example, the framework has been added to this project and has been 
selected. The project browser has also had a fourth pane added to it.

Including C code 2

A C library can be included in a project by adding it using the Add to Project 
command on the File menu. You must add an entire C library, you cannot add 
individual snippets of C code.

If you want to investigate toolbox calls, select a call and choose the Look Up in 
Online Reference command on the Browse menu. The Macintosh 



C H A P T E R  2

Using Apple Dylan

Compiling your project 133

Programmer’s Toolbox Assistant is launched, if you have purchased it and it is 
present on your system, and displays the reference entry for the call.

1. Make active the project you want to add a C library to.
You can use the Activate Project command on the Project menu.

2. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the 
Quit Application Nub command will be issued before you can proceed any 
further.

3. Choose the C library you want to add.
An alias to the C library is also acceptable.

4. Choose Update Project from the Project menu.

5. Choose Launch Application Nub from the Project menu.

6. Select a toolbox call in a pane and choose the command Look Up in 
Online Reference from the Browse menu.
The Macintosh Programmer’s Toolbox Assistant application is launched, if 
you have purchased it and it is loaded on your system. The entry for the 
command is displayed, but you can then navigate to other entries, including 
those for Apple Dylan.

Compiling your project 2

Now that you have created a new project, you can work on compiling code. 
The steps in creating an application in Apple Dylan are similar to what you are 
used to: you write code, compile it, debug it, build your application, and run it. 
However, the Apple Dylan development environment has a few features that 
might be new to you, such as incremental compilation. In the Apple Dylan 
development environment incremental compilation works on projects, 
modules, source folders, source records, and individual expressions in the 
code. You can even compile and execute code that has been commented out. 

As you go through the following tasks you will notice that some menu items 
change to reflect the different compilation choices you make. For instance, if 
you select a source record in a pane and look at the Project menu, you see the 
command Compile Selection. If instead you open the source record, select just a 
portion of it, and then look at the Project menu, you see the command has 



C H A P T E R  2  

Using Apple Dylan

134 Compiling your project

changed to Compile Region. If you have launched the Application Nub, the 
Compile Selection command becomes Compile and Download Selection on the 
menu. 

Besides choosing to compile individual objects, you can choose to compile all 
the code changed since your last compilation with the Update Project 
command. Using the Recompile command, you can compile your entire 
project, regardless of when it was last changed. If you have added subprojects 
to your project, you can choose to update and compile them as well.

All these compilation commands compile the selected code and download it to 
the Application Nub, if it is tethered to the development environment. The 
Application Nub is the small (hence “nub”) essence of an application that 
Apple Dylan provides. The Application Nub gives you a jump start on creating 
your own application in a project. As you write code in your project and 
compile it, it is being added into the Application Nub. When you build your 
final application, the Application Nub and your project, which have now 
merged, are bundled together and comprise your standalone application or 
library.

If you want to exclude some code from being compiled, you can use the 
Exclude Source Records command. All comment source records and 
commented out code are automatically excluded.

You can use the Apple Dylan Listener for investigating runtime objects. The 
Listener is a window with an interface that allows you to receive the results of 
your programming efforts or type in expressions to execute. The Listener 
reports all return values you get from executing code, even if the code is all in 
browsers, not in the Listener. 

You can execute an individual expression by typing it in at the Listener prompt. 
This allows you to try out ideas without the overhead of creating a source 
record in a browser to hold the code. The code executed in the Listener is 
downloaded to the Application Nub.

To help you track each object in its development cycle, you can check its status 
indicators using the Status Indicators command on the Browse menu. The 
status indicators show whether an object has been compiled, saved, has 
generated any warnings, or is read-only. Status indicators propagate upward in 
the hierarchy of a project, if you set them in each pane of the project browser.



C H A P T E R  2

Using Apple Dylan

Compiling your project 135

Launching the runtime 2

You do not need to launch the runtime (tether the development environment to 
the Application Nub or a standalone application) before compiling code from a 
browser. Your code will be compiled and stored in the compiler results 
database, then downloaded to the Application Nub the next time you launch it 
and tether to the development environment. However, when you want to use 
the Listener, you should launch the runtime because the results of any code 
you compile from there are lost the next time you tether the development 
environment to the Application Nub.

When you tether the Application Nub to the development environment, you 
can see that it is running by checking its status with the Application Nub Info 
command. You can also leave the development environment and check the list 
of running applications in the Finder. If you launched the Application Nub 
without also running an application or updating a project, and then switch to 
the Application Nub from the Finder list, you see that no windows or menus 
appear. That is because the Application Nub has no user interface. If you have 
opened a project and updated it or have an application running and switch to 
the Application Nub, you see the menu bar and user interface for the 
application replace the Apple Dylan menu bar. You can return to Apple Dylan 
by clicking in one of its windows. 

You can launch the Application Nub automatically every time you open a 
project by setting the project’s Listener preferences using the Preferences 
command.

1. Open a sample project, if one is not already open.
You can also open one of your own projects.

2. Choose Application Nub Info from the Project menu.
Notice the status is “Disconnected.”

3. Choose Launch Application Nub from the Project menu.
The notation “(Unconnected)” disappears from the Listener when the 
Application Nub is tethered to the development environment. You can now 
use the browsers or Listener to compile code, run the active project, or 
debug it. When you close the active project, the Application Nub 
automatically quits. When you reset the active projects to another open 
project, the Application Nub automatically quits and relaunches, 
downloading the compiled code from the new active project.



C H A P T E R  2  

Using Apple Dylan

136 Compiling your project

4. Choose Application Nub Info from the Project menu.
Notice the status is “Connected.”

5. Go to the Finder list and choose Application Nub.
The Apple Dylan menu bar disappears if you opened a complete project that 
includes a menu bar, such as the samples. The menu bar won’t disappear if 
you open a new, empty project.

6. Click on an Apple Dylan window.
The Apple Dylan menu bar reappears and Apple Dylan is active.

Untethering from the runtime 2

You can quit the Application Nub using the Quit Application Nub command 
on the Project menu. If an application is running, you can also choose the Quit 
Application command to quit the Application Nub, which simultaneously 
quits your application.

If some problem occurs while programming and the Quit Application Nub 
command does not quit the Application Nub, you can leave Apple Dylan and 
use the program “Quit Application Nub” in the Application Nub folder.

1. Bring the active project to the front.

2. Choose Quit Application Nub from the Project menu.

Checking code status 2

Status indicators show you the state of your unfinished code. For instance, you 
can tell which source records have not been saved by observing the Unsaved 
indicators in the status indicator bar in a pane. 

The status indicators can propagate upward in the source containers so you can 
see if a module or a source folder has an unsaved or uncompiled source record 
in it even if the source record is not visible. You set the status indicators for 
each pane by making the pane active and then opening the Status Indicators 
dialog box. 

You can also choose not to see any status indicators or to see them in the 
header of a pane. 



C H A P T E R  2

Using Apple Dylan

Compiling your project 137

1. Choose the Status Indicators command from the Browse menu.
You can also double-click in the vertical status indicator bar in a pane to 
open the Status Indicator dialog box. Drag it off the project browser so you 
can see both. Notice that unsaved source records and those with warnings 
are indicated by default in many panes.

2. Choose Body as the location for your status indicators to be reported, if it’s 
not chosen already.
You can choose to have the indicators appear in both the vertical status 
indicator bar in the pane (Body), in the pane’s header (Header), or in both 
places. Click OK if you changed the location.



C H A P T E R  2  

Using Apple Dylan

138 Compiling your project

3. Edit a source record in the project browser, but don’t save it or compile it.
The Unsaved indicator appears. Notice that the Uncompiled indicator is not 
in the pane, even though you haven’t compiled the source record yet. That is 
because that status indicator has not been chosen on the Status Indicators 
dialog box.
You choose the type of status you want reported from the Show list. To 
choose a status indicator, click to its left until a check mark appears. If you 
choose all the indicators except Other, an indicator for each appears in your 
pane when that status applies. 

4. Choose Uncompiled from the Status Indicators dialog box.
The Uncompiled status indicator now appears in the row of indicators in the 
pane.

5. Click on the second indicator in the pane and read its type in the prompt 
area at the bottom of the browser.
In the following figure, the cursor has been clicked on the Uncompiled 
indicator. The name of the indicator appears at the bottom of the browser in 
the prompt area. The first indicator in the row is the Unsaved indicator. 
The order of indicators is always the same, as is their placement in the 
vertical status indicator bar. 



C H A P T E R  2

Using Apple Dylan

Compiling your project 139

6. Select only the Other status indicator in the Status Indicators dialog box, 
deselecting all those with check marks.
Notice that the three status indicators have been replaced by Other in the 
pane. Click it in the pane and the prompt area at the bottom of the browser 
shows you what indicators Other currently represents.
The status indicator Other consolidates any of the unchecked indicators into 
a single indicator. By checking only the specific indicators you want to see, 
and also checking Other, you can see the specific indicators you want, but 
still be informed that other status changes have occurred. 

Compiling a selection 2

You can compile a source record by selecting its icon and then choosing 
Compile Selection from the Project menu. You can also select one or more 
expressions, even commented out code, within a source record and then choose 
Compile Region to compile just the selected code. If you have launched the 
Application Nub, the commands on the menu are Compile and Download 
Selection or Compile and Download Region.

As you edit code, the source database grows. You should use the Compact 
Project command to reduce its size when it gets too big. As you compile and 
recompile your code using Compile Selection, the compiler results database 



C H A P T E R  2  

Using Apple Dylan

140 Compiling your project

also grows; however, it cannot be compacted, so the only way to reduce its size 
is to use the Recompile command to build a new compiler results database 
from scratch.

You can choose to open the Warnings browser while you are compiling code. 
This can be helpful when you want to quickly examine objects that generate 
warnings. You can edit the code in the Warnings browser or in the original 
pane you were working in.

1. Write or edit a source record in a pane so that it has a syntax error and 
won’t compile.

2. Select the icon for the source record.

3. Choose Compile Selection from the Project menu.
You’ll get a warning about the problem.

4. Choose Undo from the Edit menu.

5. Select the revised code within the source record and choose Compile 
Region from the Project menu.
When you select code within a source record in a pane, either all of it or 
portions of it, the command on the menu is Compile Region. 
If you had opened the Warnings browser and edited the code in it, you 
could also compile it from there. The original source record in the original 
browser would also show the changes made in the Warnings browser.

Compiling all uncompiled code 2

You can compile any code changed in the active project and its subprojects 
since the last compilation using the Update Project command from the Project 
menu. The name of the project being updated follows “Update Project” on the 
menu. The Update Project command also downloads the compiled code to the 
runtime, if you are tethered to the development environment.

You can recompile all the code in a project and download it to the Application 
Nub by choosing the Recompile command from the Project menu. This is 
usually a lengthy process that you might not want to perform often, probably 
only when building your final standalone application or library, or in the event 
that the compiler results database grows too large.

When you mark a source record as included, it is included in all recompiles.



C H A P T E R  2

Using Apple Dylan

Compiling your project 141

1. Open the project you want to compile.

2. Choose Launch Application Nub, if you haven’t already.

3. Include or exclude any source records, if needed.

4. Choose Update Project from the Project menu.
Notice that all uncompiled status indicators disappear from the project.

Compiling code from the Listener 2

You can compile code from the Listener rather than from a browser. You type 
or copy the code into the Listener at its prompt and hit the Enter key. You 
might do this to see if something yields the results you want before you save 
the code as part of your project or if some code in your project is not behaving 
as you want. You should launch the Application Nub before you use the 
Listener.

In the Listener you can execute an individual expression without creating a 
module, source folder, or source record to hold it. Any return values from the 
expression are printed into the Listener window. The Listener also prints the 
return values of expressions you execute anywhere in the development 
environment. 

The expressions executed in the Listener are not saved when you quit the 
development environment as they are when they are in source records. 
However, you can print the contents of the Listener or copy code from it into a 
source record to save it. 

1. Make your project the active project, if it isn’t, and launch the Application 
Nub.

2. Choose Apple Dylan Listener from the Windows menu to bring the 
Listener to the front.
If you can see the Listener window, you can also click in it to bring it to the 
front.

3. Choose your project’s module from the Module popup, which is in the 
lower-left corner of the Listener. 
Be sure to choose the module that contains the code you want to compile, 
not the Dylan-user module. In the following example, the puzzle module 
has been selected.



C H A P T E R  2  

Using Apple Dylan

142 Compiling your project

4. At the Listener prompt, type in an expression that yields a return value, 
such as 3 + 4, leaving the cursor somewhere in the expression or at its end.
You can also copy in code from a browser or another project.

5. Press the Enter key.
The result is printed on the next line in the Listener. You can also choose 
Compile Expression from the Project menu to compile from the Listener. If 
you select text within an expression, the Compile Selection command 
appears on the menu and only the selected text is compiled.

You can now enter other expressions at the next prompt or you can run any 
of them again without recopying them to the prompt by simply clicking the 
cursor in the expression and hitting the Enter key. 

6. Place the cursor into the expression again and hit the Enter key again.
You can recompile an expression by simply placing the cursor in it and 
hitting Enter, you don’t have to copy the code to a new prompt.



C H A P T E R  2

Using Apple Dylan

Compiling your project 143

7. Place the cursor into the expression again and hit the Return key.
Any expression at a Listener prompt is printed at the next prompt by simply 
placing the cursor in the expression and hitting Return. You can then edit it 
before hitting the Enter key to compile the revised code.

8. Edit the copied expression and hit the Enter key.
The edited expression is compiled with the return value printed below its 
prompt.

Excluding code from compilation 2

When you mark a source record, or part of a source record, as excluded, it is 
only compiled if you specifically select it before compilation. Otherwise, the 
excluded code will not be downloaded when the Application Nub is tethered 
to the development environment. You mark code as excluded by selecting it in 
a pane and choosing the Exclude Source Records command from the Project 
menu.

Excluded code is not built into your final application or library when you build 
it. Test code, unfinished code, unused alternate code, and example code should 
all be stored as excluded code. 

1. Select the icon for the source record or select the code within the source 
record to be excluded.

2. Choose Exclude Source Records from the Project menu.

Including code in compilation 2

Source records are automatically marked as included when they are created. 
However, if you have previously excluded certain code, you might want to 
include it in future compilations. You mark code as included using the Include 
Source Records command from the Project menu.

When you mark a source record as included, it will be included in all 
recompiles and updates. All included code is built into your final application or 
library when you build it. 

1. Select the icon for the source record or select the code within the source 
record to be included.

2. Choose Include Source Records from the Project menu.



C H A P T E R  2  

Using Apple Dylan

144 Compiling your project

Running an application in Apple Dylan 2

You can run an application using the Run command on the Project menu. You 
can only run one application at a time from within Apple Dylan. Run launches 
the application after tethering it to the development environment and 
performing the Update Project command. The startup function for the 
application must be specified using the Set Project Type command before using 
the Run command.

1. Open and make active a sample application, such as puzzle, or create your 
own.
To run your own application, you must write whatever basic code is needed, 
such as defining its library and module, writing its startup function, adding 
other subprojects as needed, etc., and successfully compile it. See the books 
Programming in Apple Dylan, Apple Dylan Extensions and Framework Reference, 
and the Dylan Reference Manual, which are included with Apple Dylan, for 
more information.

2. Enter the startup function for the active project into the Set Project Type 
dialog box, if it’s not already there.

3. Choose Run from the Project menu.
Notice that the menu bar for puzzle replaces the Apple Dylan menu bar and 
that the puzzle appears. 

You can also run an application by typing its startup function into the 
Listener, if you choose the module it’s in from the Listener’s module popup. 



C H A P T E R  2

Using Apple Dylan

Compiling your project 145

To find the startup function for a sample application or other project not 
your own, use the Set Project Type command.

4. Click on an Apple Dylan window.
Notice that the cursor is now the watch cursor. This is because puzzle is still 
running, although you can’t currently see it. To quit the application from 
within Apple Dylan, choose the Quit Application command from the Project 
menu. This also quits the Application Nub. To quit just the application, you 
must get back to it by choosing Application Nub from the Finder list.

5. Choose Application Nub from the Finder list.
You can now quit the application by choosing its Quit command from its 
File menu.

Note
You cannot use Apple Dylan again until you interrupt 
your running application. Use Quit within your 
application to do this.

Tethering to a running application 2

You can run an application from the Finder if a standalone version of it has 
been built. Then, you can tether it to the development environment if its 
compiler results database file was saved and is present.

To debug the standalone application, you run it, encounter a break, and then 
tether it to the development environment using the Tether to Application 
command on the Project menu. Your standalone application must be halted 
before you can tether it. You can cause it to halt by setting the event-check 
variable to be your own method for detecting a break request. For more 
information on event-check, see the book Apple Dylan Extensions and Framework 
Reference.

To change the standalone version, you must tether it, alter the code and then 
rebuild it as a new standalone application.

Standalone versions for all the sample applications appear in each sample’s 
folder.

1. Run an application from the Finder by double-clicking its executable file.

2. Halt the application.



C H A P T E R  2  

Using Apple Dylan

146 Debugging a project

3. Return to the development environment and open the standalone’s project 
file using the Open command.

4. Make it the active project.

5. Choose Tether to Application from the Project menu.
You are now able to debug the application from within Apple Dylan.

You quit the application by choosing Quit Application in Apple Dylan or using 
its own Quit command.

Debugging a project 2

You can use the commands on the Debug menu to help you debug your 
application while it is running. Many of these commands work in concert with 
the Listener and inspector windows, allowing you to inspect runtime objects 
and work on performance problems.

You can run code from the Listener even when you have already made an 
error. This allows you to try out different ideas that might help you figure out 
how to fix the error. Any result printed to the Listener can be investigated 
further using the inspector window.

The commands that start with “Inspect” open inspector windows of some kind. 
There are several kinds of inspector windows, most of which are accessible 
from the Debug menu. Others you open by double-clicking on an object in 
another inspector window. For example, in the Listener when code results are 
returned, you can inspect those results in an inspector window using the 
Inspect Listener Results command. You could then double-click on an object in 
the inspector window and open another inspector window with that object as 
its basis. You can also select any expression in the Listener and choose Inspect 
Selection to inspect it in an inspector window.

The Reset Stack command discards the stack all the way to the top level 
without running any of the clean-up code. Because it does not run any clean-up 
code, this command is very risky; try the Abort command first. Severe side 
effects can result from not running the clean-up code. For example, a file can be 
left open with no way to close it or a data structure, such as the Dylan 
subproject itself, can be left in a corrupted state.



C H A P T E R  2

Using Apple Dylan

Debugging a project 147

If your code has errors in it or if you issue several Break commands, the stack 
consists of as a series of break loops growing downward from the top level of 
the stack. The top level loop is the first loop executed and consists of function 
calls growing downward with each new command until an error or break is 
encountered. At the break point, you can either resolve the error, execute the 
cleanup code, or continue executing new commands, but any new commands 
executed are in another break loop, not the top level loop. Within the second 
loop another error or break might be encountered, in which case a third break 
loop is created. The Reset Stack command discards this entire set of loops and 
does not run the cleanup code, while the Abort command discards only the 
break loop you are in, executes the cleanup code, and returns you to the next 
break loop upward. The following figure shows the relative actions of Abort 
and Reset, as well as the Listener prompts that correspond to the break levels.



C H A P T E R  2  

Using Apple Dylan

148 Debugging a project

Inspecting the stack 2

When an error or a break is signalled, you can inspect the stack using the 
Inspect Stack command on the Debug menu.

Listener numbers

at prompt

Apple Dylan stack layout

Nothing
Abort here unwinds

one break level

Top level loop

starts here


(top of stack) fn

foo

bar

etc.

1

2

First

break loop

starts here

Second

break loop

starts here

Third

break loop

starts here

Error or break

Reset here jumps

directly to top

fee

fi

fo

fum

do

re

mi

fa

Abort here unwinds

one break level

Error or break

Reset here jumps

directly to top

Abort here unwinds

one break level

Error or break

Reset here jumps

directly to top

Clean-up code being run by 

abort command 

Functions being called in the stack



C H A P T E R  2

Using Apple Dylan

Debugging a project 149

You can execute code from the Listener while you are in a break loop. When 
you want to stop debugging and abort the operation, you can use the Abort 
command on the Debug menu.

1. Open a project, make it active, and choose Launch Application Nub, if 
you haven’t already.

2. Choose the correct module from the Listener module popup.

3. Enter an incorrect expression, such as 3 divided by 0.
Notice that the Listener prompt has changed to the number 1 to indicate that 
you are in the first break level.

4. Choose Inspect Stack from the Debug menu.
The Dylan Stack window appears, where you can examine the stack. 

5. Select a stack frame in the top pane.
When you select a stack frame in the top pane, the objects in it appear in the 
bottom pane. You can double-click on a frame in the top pane to open an 
editor for it where you can edit its source code. 
The bottom pane displays the active parameters and local variables for the 
frame selected in the top pane, as well as other information. You can inspect 
an object further by double-clicking on it in the bottom pane. This opens an 
inspector window on the object.
In the following figure, the second stack frame in the top pane has been 
selected. In the bottom pane the function is named, its offset is given, and its 
arguments and local variables appear. You can change the type of 
information shown in the top pane by choosing one of the Dylan Stack 
commands on the Commands pulldown list in the center bar of the window. 
The commands include computing more frames, copying the stack as text, 
showing home (which displays the source code in a browser) and hiding 
internal frames.



C H A P T E R  2  

Using Apple Dylan

150 Debugging a project

6. Choose a command from the Commands pulldown list, if you want.
These commands affect the top pane.

7. Double-click on an object in the lower pane to open an inspector window 
on it.
The following figure shows the first stack frame of the Dylan Stack window 
has been selected, which displays its contents in its bottom pane. An object 
in the lower pane has also been double-clicked, which displays an inspector 
window for that object.
You can double-click any of the objects in the bottom pane to open an 
inspector window for it. If you have several inspector windows open at 
once, you can hold down the Option key while closing one and all of them 
close.



C H A P T E R  2

Using Apple Dylan

Debugging a project 151

8. Choose the Abort command from the Debug menu.

Inspecting Listener results 2

You can inspect any results printed to the Listener using the Inspect Listener 
Result command. The following example uses the paint-app sample project, 
but you could use your new project if you want.

You can open another inspector window from any inspector window by 
double-clicking on an object in it. This can lead to having numerous inspector 
windows open at once. If you hold down the Option key while closing one 
inspector window, all of them close.

1. Open the paint-app project, make it the active project, and issue Launch 
Application Nub to tether to the development environment.

2. Choose Update Project from the Project menu.
It is best that the project be synchronized to eliminate possible sources of 
confusion.



C H A P T E R  2  

Using Apple Dylan

152 Debugging a project

3. Run the application.
You can either use the Run command from the Project menu or execute the 
startup function in the Listener. For a sample application, you can find the 
startup function using the Set Project Type command, which displays its 
name and location.

4. Select the Application Nub icon from the Finder list to make it the front 
application and click on New on paint-app’s File menu.
This opens a window in which you can create simple drawings. This step is 
necessary so the project will have some state that can be examined.

5. Suspend the application.
You can do this by pressing Command-Option-Period while the application 
is running.

6. Set the module you want to work with using the Listener’s Module popup.

7. Return to the Listener and type in the name of a function you’d like to 
inspect.
In this case, 23 was entered. The Listener printed its value and then entered 
front-window (), the name of one of the functions in paint-app.

8. Choose Inspect Listener Result in the Debug menu.
An inspector window opens, showing all information about the current state 
of the variable front-window, including its name and class, plus all its slots 
and their contents. 



C H A P T E R  2

Using Apple Dylan

Debugging a project 153

Inspecting heaps 2

You can inspect heaps with the Inspect Heaps command when you want to 
monitor how your application is using memory. The heaps shown in the Heaps 
window are a snapshot of all the heaps in the runtime, which are downloaded 
with a project or created by it. Macintosh heaps are not reflected in this 
window. Those heaps, such as for windows and menus, are created by the 
toolbox and are not monitored by the development environment.

There are several types of heaps in Apple Dylan, each for a different type of 
object. The heaps are calculated for you. When you select a heap in the top 
pane, its contents are displayed in the bottom pane. The top pane is a snapshot 
of the heaps taken when the Inspect Heaps command was issued. The bottom 
pane is a snapshot of the heap at the time you select the heap from the top 
pane. You can issue several Inspect Heaps commands to take snapshots at 
different times.

1. Open a project, make it active, and choose Launch Application Nub, if 
you haven’t already.

2. Choose Inspect Heaps from the Debug menu.
The Heaps inspector window opens.



C H A P T E R  2  

Using Apple Dylan

154 Debugging a project

3. Select a heap you want more details on from the top pane.
Details about the heap appear at the bottom, including the classes in it, the 
number of instances of each class, and their total sizes. You can order the 
listing in the bottom pane by clicking the heading you want the list ordered 
by. In the following example, the list of classes is ordered by the number of 
instances, as is evident by Instances being underlined.

4. Double-click on a heap in the top pane.
A window opens listing of all the classes in that heap. 

5. Double-click on a class from the list.
An inspector window on that class opens. 

6. In the Heaps window, double-click on a class in the bottom pane.
An inspector window on that class opens.

Inspecting modules 2

You inspect modules when you want to see all the module’s variables in the 
Application Nub. You use the Inspect Module Variables command on the 



C H A P T E R  2

Using Apple Dylan

Debugging a project 155

Debug menu and choose a module from the list, which opens an inspector 
window for it.

1. Open a project, make it active, and choose Launch Application Nub, if 
you haven’t already.

2. Choose Inspect Module Variables from the Debug menu.
From the list, choose the module whose variables you want to inspect.
The following figure shows an example of the modules in a project’s 
Application Nub.

The module inspector window displays the names, values, and kinds of 
variables that are defined in a module, as well as their read/write status. A 
menu item in the Commands popup menu toggles between “Show All 
Variables” and “Show Exported Variables.”



C H A P T E R  2  

Using Apple Dylan

156 Debugging a project

The module inspector window shows only variables that are actually 
created in that module. It does not show variables imported from other 
modules, even if they are re-exported from the module being inspected. This 
is why, for instance, the inspector doesn’t show any variables in the 
Dylan-user module.

Metering expressions 2

You can use the Meter Expression command on the Debug menu when you 
want to meter an expression in the runtime. When you type an expression into 
the top pane and run it, the generic functions called and classes allocated 
during the execution of the expression appear in the panes below. You can open 
an inspector window for an object in either of the lower panes by 
double-clicking on the object.

You must select the module the expression is in before metering it. You must be 
tethered to the development environment for Meter Expression to work. 

The total time used and bytes allocated are also calculated in the Meter 
Expression window. The first time you call a function it sometimes runs more 
slowly than it will normally. If the generic function Dylan.Dylan.finalize 
appears on the list, this is the first time an instance of this class has been 
created. You should run the expression again for accurate timing. 



C H A P T E R  2

Using Apple Dylan

Debugging a project 157

If the generic function Dylan.Dylan.set-generic-function-dispatch appears on 
the list, it indicates that this is the first time one of the generic functions has 
been called. Sometimes if you add a method to a generic function, it needs to 
be treated as if it is being called for the first time. You should run the 
expression again to get more accurate timing results.

Use the Call Recording command to trace or meter an individual function.

1. Make your project active and launch the Application Nub, if you haven’t 
already.

2. Choose Meter Expression from the Debug menu.

3. Choose the module the expression is in from the Module field.

4. Choose the type of information you want to see for the expression in the 
Data field.
Generic function calls that have been inlined are not displayed in the 
Generic Function pane. Some built-in classes, such as <list> and 
<byte-string>, are not displayed in the Class pane but are counted in the 
Allocated bytes field.



C H A P T E R  2  

Using Apple Dylan

158 Debugging a project

5. Type in the expression and choose Run.
You can also copy and paste an expression into the top pane. The metering 
information is printed into the Time and Allocated fields and in the panes at 
the bottom of the window. You can order the listing in the bottom panes by 
clicking the heading you want the list ordered by.



C H A P T E R  2

Using Apple Dylan

Debugging a project 159

Monitoring an individual function 2

You can trace the behavior of an individual function, such as a method or 
generic function, in the runtime using the Call Recording command on the 
Debug menu. The function is printed to the Listener on entry. You must be 
tethered to the development environment for Call Recording to work.

1. Make your project active and launch the Application Nub, if you haven’t 
already.

2. Choose Call Recording from the Debug menu.
The Call Recording window opens.



C H A P T E R  2  

Using Apple Dylan

160 Debugging a project

3. Choose Add to select the function to record.
The Start Recording Calls for Function window opens. 

4. Choose the module the function is in from the Module field.

5. Choose the function to record from the Function field.

6. Choose the specializer to trace from the Specializer field.

7. Choose whether you want to print the function on entry and then exit, or 
to meter the function. 
In the following example, the greater than symbol in the Dylan subproject 
has been selected.



C H A P T E R  2

Using Apple Dylan

Creating a user interface 161

8. Click Record when you have made your choices.
The recorded function appears in the Call Recording window. You can 
remove functions from the list with the Remove and Remove All buttons. 
Select the functions you want removed and click the appropriate button.

9. The results are printed to the Listener.

Creating a user interface 2

You can create a user interface for your application through the Apple Dylan 
user-interface builder. Although it is possible to create a user interface without 
using the user-interface builder, this is not the suggested practice. The 
user-interface builder is a graphical utility that helps you visualize your user 
interface before writing any code for it, thus saving time as you refine your 
design. See the book Creating a User Interface in Apple Dylan for more 
information. 



C H A P T E R  2  

Using Apple Dylan

162 Creating a user interface

To activate the user-interface builder, use the Load UI Builder command on the 
Project menu. This loads the builder’s library into the Application Nub and 
makes the command Show Interface Builder appear on the Apple menu. Make 
sure you have have launched the Application Nub before using the Load UI 
Builder command.

You then choose Show Interface Builder from the Apple menu to launch the 
builder. This does not quit the development environment, but simply hides it 
while you run the builder.

As you create your user interface using the builder, the high-level elements of 
your interface, such as windows and menus, are saved by the builder to a 
project file. This project file contains the user interface elements as resources, 
although it is not a typical resource file. You then add the builder project file to 
the development environment project it belongs to.

If you want to use a custom icon for your application, you must create the icon 
using an icon editor outside of Apple Dylan. You then simply add the resource 
file it is in to your project. If you don’t use a custom icon, the default Macintosh 
icon for applications is used.

Adding the Apple Dylan interface builder 2

You run the builder from the development environment project you want to 
create a user interface for. Note that you can run the builder as a standalone 
application from the Finder by double-clicking its standalone version. 
However, some of the capabilities of the builder are not available if you run the 
standalone version. 

1. Make active the project you want to add a user interface to.

2. Launch the Application Nub, if it isn’t running already.
You should also add the framework to your project, if you haven’t already.

3. Choose Load UI Builder from the Project menu.

4. Choose Show Interface Builder from the Apple menu.
You can return to the development environment, without quitting the 
builder, by choosing the Hide Interface Builder command from the Apple 
menu. In this way you can quickly move back and forth between the 
development environment and the builder without quitting either. It’s a 
good idea to save your builder project before hiding it. When you do quit 



C H A P T E R  2

Using Apple Dylan

Creating a user interface 163

the builder, the Application Nub in the development environment and your 
running application are also quit.

5. Choose Launch Application Nub from the Project menu.

6. Launch the user-interface builder using the Show Interface Builder 
command from the Apple menu.
See the book Creating a User Interface in Apple Dylan for information on using 
the interface builder.

Adding the new user interface 2

When you have run the user-interface builder and created the user interface for 
your application, your user interface’s data is saved in a project file. You can 
then add this project file to the development environment project it belongs 
with. The project file with your user interface in it appears in your 
development environment project as a resource file. 

You must also write code to attach the user interface elements to your project as 
described in the book Creating a User Interface in Apple Dylan. 

You can then run your application to see its user interface.

1. Create the user interface and write the code needed to attach the user 
interface elements to your project.

2. Choose Add to Project from the Project menu in the development 
environment.
If you are connected to the Application Nub, Apple Dylan alerts you that the 
Quit Application Nub command will be issued before you can proceed any 
further.

3. Locate and choose the project file containing the user interface.
The file will have the name you gave it, plus the suffix “rsrc”.

4. Choose Launch Application Nub from the Project menu.

5. Choose Update Project from the Project menu.

6. Run your application using the Run command on the Project menu.



C H A P T E R  2  

Using Apple Dylan

164 Building your application or library

Sharing your user interface 2

You can share your user interface with others by sending them your builder 
project file. Then, they can add it to their projects and can also alter it by 
running the user-interface builder.

1. In the user-interface builder, save your user interface.

2. In the Finder, send the project file to someone.
They can open your project file with their version of Apple Dylan, add it to a 
project, and alter it in the builder.

Building your application or library 2

When you have written your code, compiled, and debugged it, you can build 
your final standalone application or library. To build an application or library 
from your project, you choose the Create Application command or Create 
Library command on the Project menu. 

Be sure to recheck the accuracy of the project settings with the Set Project Type 
command before building your final application or library.

You should probably recompile all the code in your project before building 
your final standalone application or library by choosing the Recompile 
command from the Project menu. This can be a lengthy process.

Building your standalone application 2

You build your final standalone application from your project using the Create 
Application command on the Project menu. The Create Application command 
appears on the Project menu when you set the project type as an application 
using the Set Project Type command.

Before you build a standalone application, you should quit the Application 
Nub; you will be prompted to do so in the Set Project Type dialog box. You 
must also check that the information about your project is all correct in the Set 
Project Type dialog box.



C H A P T E R  2

Using Apple Dylan

Building your application or library 165

If you need to debug the standalone application in the future, you can tether to 
it and return to the use of all the facilities of the development environment. To 
do this, you must have retained the project’s compiler results database file. 

1. Make your project the active project, if it’s not. 
The Activate Project command from the Project menu allows you to 
designate the active project.

2. Choose the Set Project Type command from the Project menu.
You should have set these values already, but you should make sure the 
fields are all correct.

3. Click OK.

4. Choose the Create Application command from the Project menu.

5. Click the destination platform for your application.



C H A P T E R  2  

Using Apple Dylan

166 Building your application or library

6. Keep the database files for your project.
To alter your standalone application in the future, you can tether to it, edit 
the code in the development environment, and rebuild it as a new 
application only if you have at least kept the compiler results database file.

7. Leave Apple Dylan to make sure the file was created and runs.

Building a library 2

You build your final library from your project using the Create Library 
command on the Project menu. The Create Library command appears on the 
Project menu when you set the project type as a library using the Set Project 
Type command.

Before you build a standalone library, you should quit the Application Nub; 
you will be prompted to do so in the Set Project Type dialog box. You must also 
check that the information about your project is all correct in the Set Project 
Type dialog box.

If you need to debug the library in the future, you can tether to it and return to 
the use of all the facilities of the development environment. To do this, you 
must have retained the project’s compiler results database file. 

1. Make your project the active project, if it’s not. 
The Activate Project command from the Project menu allows you to 
designate the active project.

2. Choose the Set Project Type command from the Project menu.
You should have set these values already, but you should make sure the 
fields are all correct.



C H A P T E R  2

Using Apple Dylan

Sharing code 167

3. Click OK.

4. Choose the Create Library command from the Project menu.

5. Keep the database files for your project.
To alter your library in the future, you can tether to it, edit the code in the 
development environment, and rebuild it as a new application only if you 
have at least kept the compiler results database file.

6. Leave Apple Dylan to make sure the file was created.

Sharing code 2

You can share code containers, either source folders or modules, with other 
programmers by exporting them as text files, but you cannot share source 
records individually. You can save your personal browsers and send other 



C H A P T E R  2  

Using Apple Dylan

168 Sharing code

programmers the browser file. You can also share a user interface by sending 
others its resource file, which was generated by the user interface builder. 

Remember, you should copy the files you want to share; moving or deleting 
Apple Dylan files while not in Apple Dylan can have bad consequences, as 
does renaming any folders. The development environment will not be able to 
find the object and report it as missing. Missing files need to be found and 
identified when the development environment is running or they will just be 
ignored during compilations. When they have been identified, the project must 
be recompiled and saved. While the development environment is not running, 
you can move the entire Apple Dylan folder or a project’s entire folder and it 
will be OK.

Sharing projects 2

You can share an entire project with someone by sending them a project’s 
folder. You can send them a subproject by sending its project folder. You don’t 
have to send them the sources when sending them the project. To use the 
project or subproject, they add it to the project they want it in. 

1. Save a project if you haven’t.
You send the file it’s saved into.

2. Leave the development environment.

3. Send the project’s file.
Send the entire folder, including the project’s databases, if you want the 
other person to be able to alter your project.

Sharing code by exporting 2

You can share source code by exporting it. You export a container object from 
the development environment with the Export command on the File menu. 
Everything within the container is exported automatically. You cannot export 
individual source records. The exported code is written to a file, called a 
“Dylan text file”, with the suffix “.dylan”.

The Dylan text file has a header on it to identify its contents. These files can be 
mailed electronically or edited outside of the development environment. An 
exported object can be brought back into the development environment by 
importing the file it is in. 



C H A P T E R  2

Using Apple Dylan

Sharing code 169

However, not every object can be exported and imported without changes. 

 

n A single source record with more than one top-level form or comment is 
broken into an individual source record for each top level form or 
comment when exported. 

 

n In addition, if any code within a source folder has the incorrect number of 
begins or ends, or is any other way seriously malformed, the source 
folder can be exported, but the resulting Dylan text file cannot be 
imported.

Importing or exporting has no effect on objects marked for exclusion or 
inclusion.

1. Select the object you want to export.

2. Choose Export from the File menu.
Dylan text files have the suffix “.dylan”.

3. Choose the location for the Dylan text file.
The following figure shows a portion of a Dylan text file.



C H A P T E R  2  

Using Apple Dylan

170 Sharing code



C H A P T E R  2

Using Apple Dylan

Sharing code 171

Retrieving code by importing 2

You retrieve the contents of a Dylan text file to the development environment 
by importing it. You import Dylan text files with the Import command on the 
File menu. 

You create Dylan text files by exporting objects from Dylan. Exported files can 
be edited in other word processors and mailed electronically. 

However, not every object can be exported and imported without changes. 

 

n A single source record with more than one top-level form or comment is 
broken into an individual source record for each top level form or 
comment when exported. 

 

n In addition, if any code within a source folder has the incorrect number of 
begins or ends, or is any other way seriously malformed, the source 
folder can be exported, but the resulting Dylan text file cannot be 
imported.

Importing or exporting has no effect on objects marked for exclusion or 
inclusion.

1. Choose Import from the File menu.

2. Find the Dylan text file you want to import.
Dylan text files have the suffix “.dylan”.

3. Choose Import from the dialog box.



C H A P T E R  2  

Using Apple Dylan

172 Sharing code



 

Key Command Shortcuts

 

173

 

C H A P T E R  3

 

Apple Dylan Reference 3

 

This is the reference chapter for the Apple Dylan development environment. 

It includes: 

 

n

 

List of command shortcuts

 

n

 

Alphabetical list of all commands

 

Key Command Shortcuts 3

 

Not all commands have keyboard equivalent shortcuts. Those that do are listed 
below and also appear in the full descriptions of the commands under the 
subheading “Key shortcut”.

 

File Menu 3

 

■

 

New Source Record—

 

Command-N

 

■

 

Open—

 

Command-O

 

■

 

Close—

 

Command-W

 

■

 

Save—

 

 Command-S

 

■

 

Print— 

 

Command-P

 

■

 

Quit—

 

Command-Q

 

Edit Menu 3

 

■

 

Undo (Clear, Typing)—

 

Command-Z

 

 

 

■

 

Redo—

 

Command-Z

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  3  

 

Apple Dylan Reference

 

174

 

Key Command Shortcuts

 

■

 

Cut—

 

Command-X

 

■

 

Copy—

 

Command-C

 

■

 

Paste—

 

Command-V

 

■

 

Select all—

 

Command-A

 

■

 

Copy Special

 

n

 

Argument List—

 

Command-’

 

n

 

Define Method Template—

 

Command-T

 

n

 

Class Template—

 

Command-T

 

 

 

■

 

Insert Special

 

n

 

Method Template—

 

Command-Option-T

 

n

 

Class Template—

 

Command-Option-T

 

n

 

Argument List—

 

Command-Option-’

 

Text Menu 3

 

■

 

Style 

 

n

 

Plain—

 

Command-Shift-T

 

n

 

Bold—

 

Command-Shift-B

 

n

 

Italic—

 

Command-Shift-I

 

n

 

Underline— 

 

Command-Shift-U

 

n

 

Outline—

 

Command-Shift-O

 

n

 

Shadow—

 

Command-Shift-S

 

n

 

Condense—

 

Command-Shift-Option-C

 

n

 

Extend—

 

Command-Shift-E

 

■

 

Find and Replace—

 

Command-F

 

■

 

Find Again—

 

Command-G

 

■

 

Find Selection—

 

Command-H

 

■

 

Replace and Find—

 

Command-J

 

Project Menu 3

 

■

 

Run—

 

Command-R



 

C H A P T E R  3

 

Apple Dylan Reference

Command Reference

 

175

 

■

 

Launch Application Nub—

 

Command-K

 

■

 

Compile Region, Expression, Selection—

 

Command-E

 

■

 

Update Project—

 

Command-U

 

Browse Menu 3

 

■

 

Aspect—

 

Command-Option-click

 

 on object

 

■

 

Show Home—

 

Command-Y

 

■

 

Look Up in Online Reference—

 

Command-=

 

Debug Menu 3

 

■

 

Inspect Stack—

 

Command-B

 

■

 

Inspect Listener Result—

 

Command-I

 

■

 

Expand Macro—

 

Command-M

 

■

 

Expand Macro one level—

 

Command-Option-M

 

■

 

Break—

 

Command-,

 

■

 

Continue—

 

Command-/

 

■

 

Abort—

 

Command-;

 

Command Reference 3

 

The following list is alphabetized with the commands on the left margin. The 
right margin shows the menu the command is on. Menus are altered 
dynamically. Not all commands are available in all contexts. For instance, 
Launch Application Nub and Quit Application Nub replace each other on the 
Project menu.



 

C H A P T E R  3  

 

Apple Dylan Reference

 

176

 

Abort

 

Abort 3

 

Debug

 

Discards the stack in a break level loop to the next break level upward in the 
stack after executing the clean-up code. Because it runs clean-up code, Abort is 
usually preferable to Reset Stack, which does not. 

See “Debugging a project” on page 146 for a comparison of using Abort and 
Reset Stack.

Related command: Reset Stack.

Key shortcut: 

 

Command-;

 

About Apple Dylan

 

 …

 

3

 

Apple

 

Displays information about Apple Dylan, including copyrights, credits, 
memory usage, and version information.

 

Activate Project 3

 

Project

 

Makes the selected open project into the active project. 

Activate Project does the following:

 

n

 

Makes the currently active project inactive, leaving its browsers, 
databases, and project files open.

 

n

 

Untethers the Application Nub containing the currently active project 
from the development environment, closing the compiler results database 
and removing it from memory.

 

n

 

Makes the selected project active, connecting to its compiler results 
database, making it available for browsing.

 

n

 

If Update on Open is set (in Preferences) the project is updated.

 

n

 

If Connect on Open is set (in Preferences) the project is loaded into the 
Application Nub.

See “Apple Dylan User Model” on page 95.



 

C H A P T E R  3

 

Apple Dylan Reference

Add to Project

 

177

 

Add to Project 3

 

File

 

Adds a subproject, C header file, text file, library, or resource file to a project. 
Aliases are supported. Before you can use the added subproject or file, you 
must use the Update Project command. This command disconnects you from 
the Application Nub if you are connected to it.

You can drag and drop objects between projects to achieve the same end.

Use Add to Project to include the framework, mac-toolbox, or the user-interface 
builder in a project.

 

All Methods of (Aspect) 3

 

Browse

 

Operates on a selected class, displaying the inherited and direct methods of the 
class in a pane.

Related command: Direct Methods of (Aspect).

All Methods of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display all its methods inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more 
information.

 

All Slots of (Aspect) 3

 

Browse

 

Operates on a selected class, displaying the inherited and direct slots for the 
class in a pane.

Related command: Direct Slots of (Aspect).

All Slots of (Aspect) is commonly used to customize a browser pane displaying 
that aspect of a class. You can also select a single class in a pane and display all 
its slots inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more 
information.



 

C H A P T E R  3  

 

Apple Dylan Reference

 

178

 

All Subclasses of (Aspect)

 

All Subclasses of (Aspect) 3

 

Browse

 

Operates on a selected class. Displays inline the inherited and direct subclasses 
for the class in a pane.

Related command: Direct Subclass of (Aspect).

All Subclasses of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display all its subclasses inline. See “Aspect” on page 183 and “Customizing 
browsers” on page 58 for more information.

 

All Superclasses of (Aspect) 3

 

Browse

 

Operates on a selected class. Displays inline the inherited and direct 
superclasses for the class.

Related command: Direct Superclasses of (Aspect).

All Superclasses of (Aspect) is commonly used to add a custom browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display all its superclasses inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more 
information.

 

Apple Dylan Listener 3

 

Windows

 

Selects the Apple Dylan Listener. Once the development environment has been 
tethered to the Application Nub, the Apple Dylan Listener window opens and 
stays open unless you untether from the Application Nub, when the name 
changes to “Apple Dylan Listener (Unconnected) :68K”. The type of target 
machine chosen using the Target Architecture command is also shown in the 
Listener’s title.

The Apple Dylan Listener allows you to execute code in a running application. 
The Listener prints all returned values executed in the development 
environment, even when the expression was not executed in the Listener. 

Use the Listener by typing in Dylan language constructs at the prompt, and 
then pressing the Enter or Return key. When the module the code resides in 



 

C H A P T E R  3

 

Apple Dylan Reference

Apple Dylan Listener

 

179

 

and the module the Listener is set to are different, the module appears at the 
prompt. This is also true if the libraries differ.

Note

 

Before you type an expression into the Listener, choose the 
proper module from the popup list in the lower left corner 
of the Listener window.

The current library is shown at the bottom of the Listener window to the right 
of the Module popup. When you hold down the mouse on the Module popup, 
as shown in the following figure, the modules in the current library appear in 
the list above the separator line. When you choose one of these modules, it 
becomes the module the Listener uses. The current module and library are 
check marked in the popup. Below the separator line are other libraries you can 
choose from. If you choose one of the libraries below the separator line, it 
becomes the current library and, when you release the mouse, is shown at the 
bottom of the Listener window. That library’s modules appear above the 
separator line the next time you access the Module popup.



 

C H A P T E R  3  

 

Apple Dylan Reference

 

180

 

Apple Dylan Listener

 

You can also select expressions in the Listener and choose commands from the 
Apple Dylan menus. The expression is compiled, linked to the Application 
Nub, and executed immediately. The Listener responds by printing its result or 
return values on the line following the prompt. The Listener does not save any 
code; you must copy the code into a source record to save it. 

You can only use the Listener when it is connected to the Application Nub and 
your application is running. You can, however, execute code from the Listener 
while you are in a break loop, allowing you to investigate various results. 
When in a break loop, the Listener’s prompt changes to the number of the 
break level on the stack, starting with the first break loop as number one. 

The Listener is also useful for quickly testing expressions without creating all 
the scaffolding to hold them. In addition, the Listener provides access to parts 
of your application that you cannot access any other way, such as data stored in 
a database or off a hash table.



 

C H A P T E R  3

 

Apple Dylan Reference

Application Nub Info 181

Related command: Inspect Listener Result.

Note
To suspend a running application, make it the front 
application and type command-option-period. When the 
application has stopped you can issue Quit Application 
Nub.

Application Nub Info 3Project

Displays information on whether the active project is loaded into the 
Application Nub.

The following figure shows the status of an untethered Application Nub.

The following figure shows the status of an Application Nub that is tethered 
and running locally. If the Application Nub were on a second machine, its 
status would be Running remotely.



C H A P T E R  3  

Apple Dylan Reference

182 Argument List (Copy Special)

Argument List (Copy Special) 3Edit

Copies the prototype argument list for the selected method into the Clipboard. 
To paste the argument list into text, use Paste. Argument List retrieves the 
prototype argument list from the compiler results database.

Key shortcut: Command-’.

If you want to call a method and you don’t know its arguments, this is a way to 
get them. Search through the active project until you find the method you are 
looking for, select text naming the method’s or the source record icon, and then 
issue Argument List. You can then paste the prototype argument list for that 
method into text, where you can modify it to your needs. 

For example, if you want to call the remove function, you can highlight remove 
in text and then choose Argument List to copy its argument list into the 
Clipboard. The following prototype argument list is copied to the Clipboard for 
remove: 

(sequence, value, test: test, count: count) 

You can then paste these arguments into place in a source record, in a text file, 
or in the Listener.

Related commands: Copy Special, Argument List (Insert Special).

See “Editing in Apple Dylan” on page 66.

Argument List (Insert Special) 3Edit

Inserts the prototype argument list for the function named by the selected text 
right after that function. Argument List retrieves the prototype argument list 
from the compiler results database. Argument List (Insert Special) is only 
available in the active project when you select text that names a compiled 
function or its source record icon.

Argument List (Insert Special) is accessible by pressing the Option key when 
clicking on Copy Special from the Edit menu.

Key shortcut: Command-Option-’

For example, if you select the function draw, Argument List (Insert Special) 
inserts the following prototype argument list directly after it:



C H A P T E R  3

Apple Dylan Reference

Aspect 183

(view, r)

Argument List (Insert Special) is handy when you are creating a new source 
record and you already know the name of the method you want to call. Simply 
type its name, select it, and then initiate Argument List (Insert Special).

This command does not replace the selection as the other Insert Special 
commands do. 

Related commands: Insert Special, Argument List (Copy Special).

See “Editing in Apple Dylan” on page 66.

Aspect 3Browse

Displays a list of aspects for an object (or objects). You can change the aspect for 
the basis of a pane, thus changing what is displayed in the pane, or simply 
display the aspect inline for a selected object. 

▲ W A R N I N G

Aspect only works on the active project.

Every object in Apple Dylan has applicable aspects. Aspects express the 
relationships between objects in Apple Dylan, such as what calls what, class 
relationships, methods, or families of functions. A source record’s aspects, for 
example, include its source code and also any warnings that it has generated. 
An inheritance tree is an aspect of a class. Many objects, including all the 
variables in the active project, have the aspects References To and References 
From, and so on. 

Key shortcut: Command-option-click on an object or in a pane without 
selecting anything.

You can configure the panes in browsers to display various aspects of objects, 
either by changing existing browsers or creating new ones. However, Apple 
Dylan includes a number of built-in browsers that display many different 
aspects. They are on the Browse menu. If you don’t see a built-in browser for 
the aspect you are interested in, use this command to change the aspect to what 
you want.

When no object in a pane is selected and this command is used, the aspects for 
the basis of the pane are displayed. Each browser pane displays the aspect that 
is the default aspect of the pane’s basis. If you change the basis of the pane, you 
might see another aspect displayed since the new basis might have a different 



C H A P T E R  3  

Apple Dylan Reference

184 Aspect

default aspect, but you can also change the aspect by overriding the default 
aspect. You do that by choosing another aspect from the list that is displayed 
when you use this command.

The name of the default aspect assigned to the object appears on the first line 
on the list in parentheses. You cannot change the list of aspects available for an 
object or its default aspect. The default aspect also dictates the aspect that is 
displayed in a new browser opened after an object is selected. 

In the following example, a source record, output-buffer-offset, has been 
double-clicked to open a new browser with it as the basis. The source record’s 
default aspect, Source Code of +Warnings of, is the aspect on view in the pane, 
as is noted in the pane’s header (there are no warnings at the moment, so none 
appear, only source code).

The following figure shows the list of aspects available for source records. This 
list can be generated by selecting a source record, such as output-buffer-offset, 
and then using the Aspect command.



C H A P T E R  3

Apple Dylan Reference

Aspect 185

From the list of aspects, you can choose another aspect, such as Function 
Family. The pane now displays this aspect, as is shown in the following figure. 
The basis of the pane remains the same, but the name of the aspect in the 
header is changed to Function Family and the function family is shown within 
the pane.

If you select an object in a pane and use this command, the aspects for that 
object are listed rather than those for the basis of the pane. The list of aspects 
displayed is all those aspects that apply to the selected object and only those 
aspects. If you select multiple objects, you see the union of aspects for all the 
objects. In this case, if an aspect does not apply to one of the multiple objects 
selected, you receive a message saying that the aspect is unavailable for that 
object. 



C H A P T E R  3  

Apple Dylan Reference

186 Aspect

When you expand an object by clicking its disclosure triangle, one aspect of the 
object is displayed inline below the name of the object. For instance, source 
records expand to reveal their source code right below the name of the source 
record. No new pane or browser opens. The aspect revealed is the default 
aspect, unless you select another using this command.

For example, in the following figure the source record output-buffer-offset is 
expanded inline to show its default aspect, Source Code+Warnings.

In the following figure, the Aspect command has been used to show the 
References From aspect for output-buffer-offset inline. Notice that the aspect 
listed on the pane’s header is still Contents Of because the basis of the pane, the 
source folder stream basics, has not changed.



C H A P T E R  3

Apple Dylan Reference

Aspect 187

You can also see the list of aspects for a pane’s basis by holding down 
command-option while pressing on the name of the pane’s basis in the pane’s 
header. The following figure shows the pop-up list for the source folder stream 
basics. It was generated by clicking within the right-hand pane without 
selecting anything, pressing command-option, and then holding down the 
mouse button with the cursor on the name “stream basics” in the pane’s 
header. This pop-up list is the same as would be generated by using the Aspect 
command on the Browse menu.

If you change the aspect of an object and wish to reset it to the default, choose 
Default from the list. You can reset to the default aspects of several objects at 
once by selecting all of them and then choosing Default from the list. If you use 
Select All and then choose Default, the original default aspects of all browser 
panes are restored. 



C H A P T E R  3  

Apple Dylan Reference

188 Aspect

The following table shows all possible aspects and the objects to which they 
apply. You can create a custom browser pane displaying any aspect of any 
object or objects that have that aspect.

continued

Aspect Objects

All Methods of class

All Slots of class

All Subclasses of class

All Superclasses of class

Classes of module, project, source folder

Contents module, project, source folder

Direct Methods of class

Direct Subclass of class

Direct Superclasses of class

Direct Slots of class

Duplicate Definitions of module, project, subproject, source folder

Function Family generic function, method

Functions of container

Modules of project, subproject

References From class, constant, function, interface, 
macro, method, slot, top level form, 
variable

References To class, constant, function, interface, 
macro, method, slot, top level form, 
variable, warning

Resource Files of project, subproject

Source Code of class, constant, function, interface, 
library, macro, method, module, slot, top 
level form, variable

Source Folders module, project, subproject

Source Records module, project, subproject, source folder

Source Records with Warnings project, subproject, module, source folder



C H A P T E R  3

Apple Dylan Reference

Break 189

Related commands: all the aspects listed in the table of aspects.

See “Showing different aspects of objects” on page 42 and“Changing aspects” 
on page 46.

Break 3Debug

Stops an application from running without untethering from the development 
environment. No state is lost; everything is frozen. The action is the same as if 
the code had executed break (). 

Key shortcut: Command-,

Aspect Objects

Subprojects project

Text of error

Uncompiled Modules of project, subproject

Uncompiled Source Folders module, project, subproject

Uncompiled Source Records project, subproject, module, source folder

Undefined Variables module, project, subproject, source folder

Unsaved Modules of project, subproject

Unsaved Source Folders module, project, subproject

Unsaved Source Records module, project, subproject, source folder

Variable Definitions of module, project, subproject, source folder

Warnings for Downloaded code of class, constant, function, interface, 
macro, method, module, project, 
subproject, slot, source folder, top level 
form, variable

Warnings of class, constant, function, interface, 
macro, method, module, project, 
subproject, slot, source folder, top level 
form, variable

Warning Source Record of warning



C H A P T E R  3  

Apple Dylan Reference

190 Call Grapher

Break starts a break loop one level greater than the one in which the current 
code was executing. You can resume running the application with Continue or 
Abort.

Note
Break levels are recursive. This is because inspecting and 
altering values is executing code in the Listener. It is 
possible for that code to have error or break statements, so 
if the new code stops, you enter another break level, which 
you can use to debug the code that inspected or altered 
values that you ran in the previous break level. 

Call Grapher 3Browse

Works on methods, opening a browser presenting a graphical representation of 
a function’s calling relationships. Click on the arrows on the graph to expand 
and collapse it. 

Related commands: Class Grapher, Grapher Pane.

The following figure shows the Call Grapher browser for the <random-state> 
method of the sample project puzzle. 

In the figure, the method <random-state> is the basis of the Call Grapher 
browser. Therefore, while you can go up and down the graph from 
<random-state>, full information is shown only for <random-state>. 
Control-click on another object to make it the basis of the browser so you can 
see full information on it.



C H A P T E R  3

Apple Dylan Reference

Call Recording 191

See the task “Using the browser Info for Selected Class” on page 53 for more 
information on using grapher panes.

Call Recording 3Debug

Records the behavior of specific functions in the runtime. The results of Call 
Recording are printed to the Listener. You must be tethered to the development 
environment for Call Recording to work. 

For more basic information about all the generic functions and classes in a 
project, use Meter Expression. 

Related command: Meter Expression.

The following figure shows the Call Recording dialog box. This is where the 
recorded functions are listed after they are chosen. To select a function to add to 
the list, choose Add.

The Start Recording Calls for Function dialog box opens.



C H A P T E R  3  

Apple Dylan Reference

192 Call Recording

You then select the module the function is in, the name of the function, and the 
specializer you want to record. The following figure shows some of the 
specializers you could choose for the function “initialize” in the puzzle module.

If you want to record a function and print the results to the Listener, choose 
Print Entry and Exit from the Options field. If you want to meter a function, 
choose Meter from the Options field.

When you have made your choices, click Record. The results are printed to the 
Listener and the recorded function is listed in the Call Recording window.



C H A P T E R  3

Apple Dylan Reference

Class Grapher 193

The Remove button deletes a selected function from the list. The Remove All 
button deletes all the functions from this list.

Class Grapher 3Browse

Operates on classes, opening a browser that graphically depicts the 
superclasses and subclasses for a class. Click on the arrows on the graph to 
expand and collapse it. 

In the following figure, the class <hello-message-property> is the basis of the 
class grapher browser. Therefore, while you can go up and down the graph 
from <hello-message-property>, full information, specifically multiple 
inheritance and subclass relations, are shown only for the 
<hello-message-property>. Control-click on another object to make it the basis 
so you can see its multiple inheritance and subclass relations. 

In this example, two classes are displayed, <hello-message-property> and its 
superclass <property>. You can view any superclasses of <property> by 
clicking on the arrow to its left. 



C H A P T E R  3  

Apple Dylan Reference

194 Class Grapher

Continue clicking on the left-most arrow until you reach the base class. If you 
click on the arrows on the right end of the bars that separate each class, you can 
collapse the graph, hiding the superclasses. 



C H A P T E R  3

Apple Dylan Reference

Class Template (Copy Special) 195

Related commands: Call Grapher, Grapher Pane, Info for Selected Class.

See the task “Using the browser Info for Selected Class” on page 53 for more 
information on using grapher panes.

Class Template (Copy Special) 3Edit

Creates a prototype class template named <foo>, which is a subclass of the 
selected class, and copies the template into the Clipboard. To paste the class 
template into text, use Paste. You can select either text that names a class or the 
source record icon for the class from the active project.

For example, if you select the class <number>, Class Template (Copy Special) 
copies the following template into the Clipboard:

define class <foo> (<number>)
end class;

You can then paste it into text.



C H A P T E R  3  

Apple Dylan Reference

196 Class Template (Insert Special)

You can select several classes at once and then use Class Template (Copy 
Special) to create a class that is a subclass of all the selected classes. For 
example, if you select the classes <cell> and <cell-view> and then choose Class 
Template (Copy Special), you copy the following template to the Clipboard:

define class <foo> (<cell>, <cell-view)
end class;

Note that this command appears in the menu only if you select a class. If you 
select a generic function or method, Method Template (Copy Special) appears 
instead. 

Key shortcut: Command-T

Related Commands: Copy Special, Class Template (Insert Special), Method 
Template (Copy Special).

See “Editing in Apple Dylan” on page 66.

Class Template (Insert Special) 3Edit

Replaces the selected class with the prototype template of a subclass for the 
selected class. Class Template (Insert Special) appears in the menu only if you 
select editable text in the active project that names a class. 

For example, if you select the class <bar>, Class Template (Insert Special) 
replaces it with the following text:

define class <foo> (<bar>)

end class;

If you want to create a subclass based on a class, simply type its name, select it, 
and then initiate Class Template (Insert Special).

This command is made available by pressing Option when clicking on Copy 
Special on the Edit menu.

Key shortcut: Command-Option-T

Note
Class Template (Insert Special) creates a subclass based on 
a single class. Class Template (Copy Special) creates a 
subclass based on one or more classes.



C H A P T E R  3

Apple Dylan Reference

Classes of (Aspect) 197

If you select a generic function or method, Method Template (Insert Special) 
appears in the menu instead of Class Template. 

Class Template retrieves the prototype template for the selected object from the 
compiler results database and inserts it into a source record.

Related Commands: Insert Special, Class Template (Copy Special), Method 
Template (Copy Special).

See “Editing in Apple Dylan” on page 66.

Classes of (Aspect) 3Browse

Operates on a container in the active project, that is, any object that contains 
other Apple Dylan objects, such as projects, subprojects, modules, and source 
folders, displaying its classes. 

Classes of (Aspect) is commonly used to customize a browser pane displaying 
that aspect of a container. You can also select a single container in a pane and 
display all its classes inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Clear 3Edit

Deletes the selected text or object. The deleted text is not copied to the 
Clipboard. You can use Undo Clear to reinstate the cleared text. Undo, Clear, 
Redo Clear, and Undo Clear replace one another on the File menu, depending 
on which is appropriate.

See “Editing in Apple Dylan” on page 66.

Pressing Delete or inserting text when there is a highlighted region present is 
the same as doing a Clear. 

▲ W A R N I N G

Clear supports Undo and Redo only for text. If you have 
cleared an object, folder, or subproject, it cannot be undone 
or redone. If you are about to clear a subproject, you are 
warned. You cannot clear required subprojects. 



C H A P T E R  3  

Apple Dylan Reference

198 Close

Close 3File

Closes a browser, window or project. Closing the project window closes the 
project and all of its subprojects, unless the subprojects are used in another 
project that is still open. You are prompted to save changes, if any. Closing the 
active project while unrelated projects are still open makes the next project the 
active project. You can close all open windows and browsers except the project 
browser by holding down the Option key when you choose Close.

If you have a window active and hold down the Option key when you choose 
the Close command, all open windows of the same type, such as browsers or 
inspector windows, are closed. However, the project browser is not closed with 
the Option-Close command.

Key shortcut: Command-W

Collapse 3Edit

Collapses the selected object so you cannot see its contents. You can also 
collapse an object by clicking on its disclosure triangle, which is the triangle to 
the left of the object’s icon. You can collapse several objects at once by selecting 
them and choosing Collapse.

Related command: Expand.

The following figure shows the object “behavior-event” selected and Collapse 
about to be chosen.



C H A P T E R  3

Apple Dylan Reference

Color 199

The following figure shows the object “behavior-event” collapsed.

Color 3Text

Changes the color of the selected source text. This choice changes only the text 
in a source record and has no semantic impact but it does flag the record for 
recompilation. You can use color to help organize your sources.



C H A P T E R  3  

Apple Dylan Reference

200 Compact Project

Compact Project 3Project

Reduces the disk space used by a project by eliminating unused information 
from the source database by compacting the files in the selected open project. 

The actions initiated include quitting the Application Nub (for the active 
project), closing all project windows, and then compacting the files. You are 
prompted to save your project if you have not. When compaction is complete, 
the project is automatically reopened.

Compaction is a form of garbage collection for Apple Dylan source databases. 
These databases retain everything that has been written to them until 
compacted. This old information is of no value because it is not accessible, but 
it is still occupying disk space. 

See “Apple Dylan User Model” on page 95.

Compile and Download Region 3Project

Compiles an extended area within a single source record of the active project 
and downloads it to the Application Nub. This command replaces Compile 
Region on the menu when the Application Nub has been launched.

Key shortcut: Command-E

Compile and Download Region appears on the menu only if you select the text 
by highlighting it and if the text exceeds more than a single expression. In a 
pane, if you place the cursor in the text, the Compile and Download Selection 
command appears on the menu instead. In the Listener, if you place the cursor 
in the text, Compile Expression appears instead. 

Related commands: Compile and Download Selection, Compile Expression, 
Compile Selection, Recompile, Update Project.

Compile and Download Selection 3Project

Compiles the selected source record in a pane in the active project or 
highlighted code in the Listener and downloads the result to the Application 
Nub. This command replaces Compile Selection on the menu when the 
Application Nub has been launched.

Key shortcut: Command-E



C H A P T E R  3

Apple Dylan Reference

Compile Expression 201

To select a source record, select its icon rather than its name or text. You can 
select more than one source record. Source record objects are methods, classes, 
variables, constants, macros, generic functions, comments, and top level forms. 

To compile code within a source record, you can highlight the code you want to 
compile, in which case Compile and Download Region replaces Compile and 
Download Selection on the menu. 

Compile and Download Selection can also compile commented out code if you 
select the code within the range of the comment.

In general, Command-E compiles whatever is there to be compiled.

Related commands: Compile and Download Region, Compile Expression, 
Compile Region, Recompile, Update Project.

Compile Expression 3Project

Compiles the selected expression and downloads (only when tethered) the 
result to the Application Nub from the Listener. Compile Expression appears 
only if you select the expression by placing your cursor in it; if you highlight 
one or more expressions, Compile Selection appears instead. An expression is 
any code that returns a value.

This command works only in the Listener with the insertion point within the 
expression and with nothing selected.

Key shortcut: Command-E

Related commands: Compile Region, Compile Selection, Recompile, Update 
Project.

See “Apple Dylan User Model” on page 95.

Compile Region 3Project

Compiles an extended area within a single source record. This command 
replaces Compile and Download Region on the menu if the Application Nub 
has not been launched.

Key shortcut: Command-E

Compile Region appears on the menu only if you select the text by highlighting 
it and if the text exceeds more than a single expression. In a pane, if you place 



C H A P T E R  3  

Apple Dylan Reference

202 Compile Selection

the cursor in the text, the Compile Selection command appears on the menu 
instead. In the Listener, if you place the cursor in the text, Compile Expression 
appears instead. 

Related commands: Compile and Download Region, Compile Expression, 
Compile Selection, Recompile, Update Project.

Compile Selection 3Project

Compiles the selected source record in a pane or highlighted code in the 
Listener. This command replaces Compile and Download Selection on the 
menu if the Application Nub has not been launched.

Key shortcut: Command-E

To select a source record, select its icon rather than its name or text. You can 
select more than one source record. Source record objects are methods, classes, 
variables, constants, macros, generic functions, comments, and top level forms. 

To compile code within a source record, you can highlight the code you want to 
compile, in which case Compile Region replaces Compile Selection on the 
menu. 

Compile Selection can also compile commented out code if you select the code 
within the range of the comment.

You can use Compile Selection from the Apple Dylan Listener window by 
highlighting the code you want to compile.

In general, Command-E compiles whatever is there to be compiled.

Related commands: Compile and Download Selection, Compile Expression, 
Compile Region, Recompile, Update Project.

Contents of (Aspect) 3Browse

Operates on a container in the active project, that is, any object that contains 
other Apple Dylan objects, such as projects, subprojects, modules, and source 
folders, displaying its contents. 

Contents of is the default aspect of most panes in the browsers supplied as part 
of the Apple Dylan development environment. 



C H A P T E R  3

Apple Dylan Reference

Continue 203

Continue 3Debug

Resumes running an application that has been stopped with a Break.

Key shortcut: Command-/

Related command: Break.

Copy 3Edit

Copies the selected text (or text of the selected object) to the Clipboard. You can 
then use Paste to insert the contents of the Clipboard into a source record or the 
Listener.

Key shortcut: Command-C

Related commands: Cut, Paste, Copy Special.

See “Editing in Apple Dylan” on page 66.

Copy Special 3Edit

Displays a menu containing two of three possible commands: Argument List 
and either Class Template or Method Template. 

The Copy Special commands are enabled only if a project is active and you 
select a valid object. The object can be text that names an object (for example, a 
method name) or a source record icon. The commands copy the prototype 
argument list or template to the Clipboard. You then use Paste (from the Edit 
menu) to paste the contents of the Clipboard into a source record or the 
Listener.

The Copy Special commands retrieve the prototype argument list or template 
for the selected object from the compiler results database and write it to the 
Clipboard.

Key shortcuts: Command-’ for just the argument list or Command-T for the 
templates.

The closely related Insert Special commands are available by pressing Option 
while clicking on the Copy Special menu. Where the Copy Special commands 
write to the Clipboard, the Insert Special commands write into the current 
buffer, including the Listener. 



C H A P T E R  3  

Apple Dylan Reference

204

See: Argument List (Copy Special), Class Template (Copy Special), and Method 
Template (Copy Special).

Related commands: Insert Special.

See “Editing in Apple Dylan” on page 66.

Note
The Copy Special and Insert Special commands are useful 
for getting information as well as for writing code.

33Copy Title Text 3Edit

Copies the title text of selected objects other than source records, such as 
modules and subprojects. When you select valid title text, Copy Title Text 
appears; otherwise, Copy appears. 

Related commands: Copy, Paste.

See “Editing in Apple Dylan” on page 66.

Create Application 3Project

Builds a stand-alone application from your active project. Give your 
application the name you want to appear in the Finder and choose its location. 

You must have issued Set Project Type and quit the Application Nub (See Quit 
Application Nub) before issuing Create Application. It is also suggested that 
you issue Recompile before issuing Create Application.

When you choose Save on the Create Application dialog box, the application is 
updated first and then built. If “Use separately loaded libraries” was checked 
in the Set Project Type dialog, a copy of the link library is placed in the system 
folder. 

If you save an application to the desktop or an open folder, it appears as a 
document rather than an application. To make it appear as an application, you 
can either move it to a closed folder or close the folder it’s in and then reopen it.

If you are building a library instead on an application, Create Library appears 
on the Project menu instead of Create Application. You designate which you 
are building using Set Project Type on the Project menu.



C H A P T E R  3

Apple Dylan Reference

Create Library 205

Related commands: Update Project, Create Library, Set Project Type.

Create Library 3Project

Builds a library from your active project. You must Set Project Type and 
untether from the development environment (See Quit Application Nub) 
before issuing Create Library. You should give your library the same name you 
entered in its Library ID field when you used Set Project Type.

If you are building an application instead of a library, Create Application 
appears on the Project menu instead of Create Library. You designate which 
you are building using Set Project Type on the Project menu.

Create Library creates both a _Library Model document, used by the 
development environment, and a .dl document, used by the application itself.

When you choose Save, the library is updated first and then built.

Related commands: Update Project, Create Application.

Cut 3Edit

Deletes the selected text and saves it to the Clipboard.

Key shortcut: Command-X

Related commands: Copy, Paste.

See “Editing in Apple Dylan” on page 66.



C H A P T E R  3  

Apple Dylan Reference

206 Direct Methods of

Direct Methods of 3Browse

Operates on a selected class. Displays a browser with the direct methods for 
the class. 

Related commands: Direct Methods of (Aspect), All Methods of (Aspect).

Direct Methods of (Aspect) 3Browse

Operates on a selected class in the active project, displaying its direct methods 
only.

Direct Methods of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its direct methods inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The Direct Methods of command opens a single-pane browser displaying 
direct methods.

Related commands: All Methods of (Aspect).

Direct Slots of 3Browse

Operates on a selected class. Displays a browser with the direct slots for the 
class. 

Related commands: Direct Slots of (Aspect), All Slots of (Aspect).

Direct Slots of (Aspect) 3Browse

Operates on a selected class in the active project, displaying its direct slots only.

Direct Slots of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its direct slots inline. See Aspect and “Customizing browsers” on 
page 58 for more information.

The Direct Slots of command opens a single-pane browser displaying direct 
methods.

Related command: All Slots of (Aspect).



C H A P T E R  3

Apple Dylan Reference

Direct Subclass of (Aspect) 207

Direct Subclass of (Aspect) 3Browse

Operates on a class in the active project, displaying its direct subclasses only.

Direct Subclasses of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its direct subclasses inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Class Grapher, All Subclasses of (Aspect), All Superclasses 
of (Aspect), Direct Superclasses of (Aspect).

Direct Superclasses of (Aspect) 3Browse

Operates on a class in the active project, displaying its direct superclasses only.

Direct Superclasses of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its direct superclasses inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Class Grapher, All Superclasses of (Aspect), All Subclasses 
of (Aspect), Direct Subclass of (Aspect).

Duplicate Definitions 3Browse

Operates on a container in the active project, that is, any object that contains 
other Apple Dylan objects, such as projects, subprojects, modules, and source 
folders. 

This command opens a browser that lists the duplicate definitions in the 
container.

For most objects, having the same name is sufficient to define duplicates, but in 
the case of methods, duplicate definitions have not only the same methods, but 
the same type signatures.

Related command: Duplicate Definitions of (Aspect).



C H A P T E R  3  

Apple Dylan Reference

208 Duplicate Definitions of (Aspect)

Duplicate Definitions of (Aspect) 3Browse

Operates on a container in the active project, that is, any object that contains 
other Apple Dylan objects, such as projects, subprojects, modules, and source 
folders, displaying its duplicate definitions.

For most objects, having the same name is sufficient to define duplicates, but in 
the case of methods, duplicate definitions have not only the same methods, but 
the same type signatures.

The Duplicate Definitions command opens a single-pane browser displaying 
duplicate definitions.

Duplicate Definitions of (Aspect) is commonly used to customize a browser 
pane displaying that aspect of a class. You can also select a single class in a 
pane and display its duplicate definitions inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Exclude Source Records 3Project

Marks a selected source record as excluded so it won’t be compiled or included 
in an update. Excluded source records are not downloaded when the project is 
loaded into the Application Nub. Excluded code is not included in your 
application or library when you build it. 

Related command: Include Source Records.

Examples of source records that might be marked as excluded: test code, 
unfinished code, unused alternate code, or example code, that is, anything not 
ready or suitable for compilation and use.

Excluding a source record is equivalent to commenting it out, except that:

 

n Its icon and name show the kind of source record it is

 

n It can be browsed

 

n It can be switched from Excluded to Included without editing.

Excluded source records can be compiled by selecting them and pressing 
Command-E.



C H A P T E R  3

Apple Dylan Reference

Expand 209

Expand 3Edit

Expands the selected object so you can see its contents. To expand an object you 
click on its icon and then choose Expand. The object’s contents then appear 
below its name. You can also expand an object by clicking on its disclosure 
triangle, which is the triangle to the left of the object’s icon. You can expand 
several objects by selecting their icons and then choosing the Expand command.

Related command: Collapse.

The following figure shows the object “behavior-event” about to be expanded.

The following figure shows it expanded.



C H A P T E R  3  

Apple Dylan Reference

210 Expand Macro

Expand Macro 3Debug

Prints the full macro expansion, displaying exactly the text sent to the compiler 
by the parser. This command is used in debugging macros. 

Operates on statement macros and definition macros. Does not work on 
function macros. This command does not work on the icon; you must select the 
full text of the macro in a browser or in the Listener. Expands the selected 
macro to the Listener. You can also select the macro text in the Listener. 

Key shortcut: Command-M

You can limit the expansion to one level of macro expansion by pressing the 
option key before clicking on Expand Macro.

Key shortcut: Command-option-M

Related command: Pattern Match Macro.



C H A P T E R  3

Apple Dylan Reference

Export 211

Export 3File

Exports the selected source folder from the development environment, along 
with everything in the source folder. You cannot export an individual source 
record. Export creates a Dylan text file with the suffix “.dylan”.

Not every object can be exported and imported without changes. 

 

n A single source record with more than one top-level form or comment is 
broken into an individual source record for each top level form or 
comment when exported. 

 

n In addition, if any code within a source folder has the incorrect number of 
begins or ends, or is any other way seriously malformed, the source 
folder can be exported, but the resulting Dylan text file cannot be 
imported.

The exported object is stored in a Dylan text file, which has the suffix “.dylan”. 
The Dylan text file has a header. Dylan text files can be edited outside of Apple 
Dylan in other word processors or editors and mailed electronically. 

Related command: Import.

Importing or exporting has no effect on objects marked for exclusion or 
inclusion. Markings remain as they were.

Find/Replace 3Text

Finds and optionally replaces the text you specify in the Find&Replace dialog 
box. This command searches through source code only, not the names of 
containers, modules, etc. Find/Replace opens the object containing the 
specified text. You can choose whether to search the current pane or the entire 
project. If you choose to search the entire project, opens a new browser. You 
may choose simply to find the text, find and replace one instance of the text, or 
find and replace all instances.

Key shortcut: Command-F

See “Editing in Apple Dylan” on page 66.



C H A P T E R  3  

Apple Dylan Reference

212 Find Again

Find Again 3Text

Searches for whatever you last searched for using Find/Replace. Use Replace & 
Find to change the target text and search for the next instance.

Key shortcut: Command-G

See “Editing in Apple Dylan” on page 66.

Find Selection 3Text

Searches for a selected string. Find Selection finds only and has no effect on the 
settings of Find/Replace, Find Again, or Replace & Find, nor does Find 
Selection support replacement.

Key shortcut: Command-H

See “Editing in Apple Dylan” on page 66.

Font 3Text

Changes the font of the selected source text. This choice changes only the text 
in a source record and has no semantic impact, but it does flag the source 
record for recompilation. You can use fonts to help organize your sources.

See “Formatting commands” on page 70.

You can change the default font for the Listener and browsers, as well as the 
font for editing code, using Preferences.

Function Family 3Browse

Operates on a selected method or generic function.

Opens a browser that lists the family of methods and the generic function the 
selected method belongs to. You can have more than one Functions browser 
open at once. If no object is selected, the functions for the entire project are 
listed.

Related command: Function Family (Aspect).



C H A P T E R  3

Apple Dylan Reference

Function Family (Aspect) 213

Function Family (Aspect) 3Browse

Operates on a selected method or generic function in the active project, 
displaying all method definitions as well as the general function definition (if 
one exists) for the method or function. 

Here is how it works in each case:

 

n If a method has been selected, finds generic function it is associated with 
along with all other methods of that generic function 

 

n If a generic function has been selected, finds all methods associated with 
that generic function.

Function Family (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its function family inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The Function Family command opens a single-pane browser displaying direct 
methods.

Functions of (Aspect) 3Browse

Operates on a module in the active project, displaying all its functions. If no 
object is selected, the functions for the entire project are listed. 

Functions of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display its functions inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Function Family, Function Family (Aspect).

Grapher Pane 3Browse

Changes the active pane to a graph showing the relationship of the objects in 
pane. If the basis of the pane is a class, the class’s superclasses and subclasses 
are graphed. If the basis of the pane is a function, the function’s callers and 
callees are graphed. Click on this command on the Browse menu to deselect it 
and return the pane to its original type.



C H A P T E R  3  

Apple Dylan Reference

214 Hide Interface Builder

Full information, such as multiple inheritance, is shown only for the object that 
is the basis of the pane. Click on the arrows on the graph to expand and 
collapse it. 

Only a single relationship is shown for other objects in the pane. Control-click 
on another object to make it the basis so you can see full information on it. 

Related commands: References To, References From, Call Grapher, Class 
Grapher, Info for Selected Class.

See the task “Using the browser Info for Selected Class” on page 53 for more 
information on using grapher panes.

Hide Interface Builder 3Apple

Hides the Apple Dylan interface builder to return you to the development 
environment. It's a good idea to save your builder project before hiding it. Note 
that this command does not quit the interface builder, it just hides it.

For more information on the interface builder, see the book Creating a User 
Interface in Apple Dylan.

Related commands:  Show Interface Builder, Load UI Builder. 
Import 3File

Imports Dylan text files. Dylan text files are created using a word processor or 
editor or by exporting a source folder from Apple Dylan and have the suffix 
“.dylan”. 

If any exported code within a source folder has the incorrect number of begins 
or ends, or has partial source records, the source folder cannot be imported.

Related commands: Export, New Text Window.

See “Importing and exporting Dylan text files” on page 70.

Importing or exporting has no effect on objects marked for exclusion or 
inclusion. Markings remain as they were.

Include Source Records 3Project

Changes excluded source records into included source records. Includes a 
specified source record with each compilation and update. Included code is 



C H A P T E R  3

Apple Dylan Reference

Info for Selected Class 215

automatically recompiled and updated when those commands are issued. 
Source records are automatically marked as included when they are created.

Related command: Exclude Source Records.

Info for Selected Class 3Browse

Operates on a class, opening a three-pane browser that shows the selected 
class’s hierarchy in the grapher pane, its directs slots in the lower left pane, and 
its direct methods in the lower right pane. Click on the arrows on the graph to 
expand and collapse it.

Full information, such as multiple inheritance, is available only for the basis of 
the browser. Only a single relationship is shown for other classes in the pane. 
Control-click on another class to make it the basis so you can see full 
information on it.

The following figure shows the Info for Selected Class browser with 
<puzzle-view> as it basis. The class <puzzle-view> has been selected, so its 
direct slots and direct methods are listed in the two lower panes.

Related commands: Grapher Pane, Call Grapher, Class Grapher.

See the task “Using the browser Info for Selected Class” on page 53 for more 
information.



C H A P T E R  3  

Apple Dylan Reference

216 Insert Special

Insert Special 3Edit

Displays a menu containing two of three possible Insert Special commands: 
Insert Argument List and either Class Template or Method Template. The Insert 
Special commands work only on selected text, not on selected objects.

The Insert Special commands are available by pressing Option when clicking 
on Copy Special on the Edit menu.

Key shortcuts: Command-Option-’ for just the argument list or 
Command-Option-T for the templates.

The Insert Special commands are enabled only if a project is active and you 
have selected text that names a method, generic function, or class. The type of 
selected text controls which Insert Special commands are available.

The Insert Special commands retrieve the prototype argument list or template 
for the selected object from the compiler results database and insert it into a 
source record or other buffer. 

The closely related Copy Special commands write to the Clipboard, where the 
Insert Special commands write into the current buffer, including the Listener. 

See Argument List (Insert Special), Class Template (Insert Special) and Method 
Template (Insert Special).

Related commands: Copy Special.

Note
The Insert Special and Copy Special commands are useful 
for getting information as well as for writing code.

Inspect Heaps 3Debug

Opens an inspector window for inspecting the heaps when you want to 
monitor how your application is using memory. The heaps shown in this 
window are a snapshot of all the heaps in the runtime. These heaps are either 
downloaded with a project or created by it. 

There are several types of heaps in Apple Dylan, each for a different type of 
object. The heaps are calculated for you. When you select a heap in the top 
pane, the contents are displayed in the bottom pane. The top pane is a snapshot 
of the heaps taken when Inspect Heaps was issued. The bottom pane is a 



C H A P T E R  3

Apple Dylan Reference

Inspect Heaps 217

snapshot of the heap at the time you select the heap from the top pane. You can 
issue Inspect Heaps repeatedly to take snapshots at different times.

Note
Macintosh heaps are not shown in this window. Macintosh 
heaps, such as for windows and menus, are created by the 
toolbox and are not monitored by the development 
environment.

The following figure shows the heap inspection window with “method” 
selected in the top pane. 

The gray bars indicate that memory has been allocated but is unused, while the 
black bars indicate the memory used. The Mac free and free heaps are always 
completely empty and the Mac used heap is always completely full. Memory 
moves from the Mac free heap into the Mac used heap, neither of which 
contains any Apple Dylan objects nor is under Apple Dylan control. The free 
heap is for use by Apple Dylan objects, but has not been allocated yet. 

In the example above, two different libraries in the project show up separately. 
Library heaps cannot be grown or garbage collected. Libraries are displayed as 



C H A P T E R  3  

Apple Dylan Reference

218 Inspect Listener Result

subprojects in the project window. Every project has at least one library heap 
for the Dylan subproject.

The other heaps contain Apple Dylan objects that have been dynamically 
allocated by the application and can be garbage collected. Most instances of 
user-defined classes go into the vector heap.

Use this window to find an object you couldn’t find programmatically. If you 
double-click on a heap, a window opens listing of all the classes in that heap. If 
you then double-click on a class, an inspector window on that class opens. You 
can also double-click on a class in the bottom part of the Heaps window to 
open an inspector window on a class. See the description of Inspect Stack for 
more information on inspector windows.

You can sort each part of the Heaps window by clicking on a column’s name. 
For instance, in the figure above, the bottom part is sorted by Instances, which 
is indicated by the underlining. The number of instances is always one greater 
than the actual number because the prototype instance for the class is included 
in this count. The Total Size column is in bytes.

Inspect Listener Result 3Debug

Opens an inspector window on the first return value from the last form 
compiled and downloaded to the Application Nub, whether from the Listener 
or from Compile Selection. The command is available only when tethered.

Key shortcut: Command-I

See the description of Inspect Stack for more information on inspector 
windows.

See “Inspecting Listener results” on page 151 for an example using this 
command.

Inspect Module Variables 3Debug

Lists all the modules in the Application Nub. Before looking for a module on 
this list, you should use the Update Project command. This ensures that all the 
modules have been downloaded to the Application Nub. You choose a module 
from the list to open an inspector window for it. 



C H A P T E R  3

Apple Dylan Reference

Inspect Module Variables 219

The following figure shows an example of the modules in a project’s 
Application Nub.

The module inspector window displays the names and values of the variables 
that are defined in a module, as well as their read/write status. A menu item in 
the Commands popup menu toggles between “Show All Variables” and “Show 
Exported Variables.”

Note
The module inspector window shows only variables that 
are actually created in that module. It does not show 
variables imported from other modules even if they are 
re-exported from the module being inspected. This is why, 
for instance, the inspector doesn’t show any variables in 
the “Dylan” module.



C H A P T E R  3  

Apple Dylan Reference

220 Inspect Module Variables

In addition, the inspector window displays the kind of variable it is. Typically, 
variables created by “define-class” and some variables with type declarations 
are “obj” kind variables, which are slightly smaller than the other kinds.

Kinds of variables:

 

n blank—a variable that can hold an object or code.

 

n “obj”—a variable that can hold only objects.

 

n “jump”—a variable that can hold only code.

 

n “byte”—a variable that can hold only unboxed bytes.

 

n “shor”—a variable that can hold only unboxed shorts.

 

n “long”—a variable that can hold only unboxed longs.

 

n “doub”—a variable that can hold only unboxed doubles.

 

n “code”—a variable that can hold only unboxed code.

Double-clicking on a variable in the inspector window opens another inspector 
window on the value of the variable.

See the description of Inspect Stack for more information on inspector 
windows.



C H A P T E R  3

Apple Dylan Reference

Inspect Selection 221

Inspect Selection 3Debug

Opens an inspector window for the selected runtime object.

See the description of Inspect Stack for more information on inspector 
windows.

Inspect Stack 3Project

Opens the Stack window, which allows you to inspect the current state of the 
stack after an error or break is signalled. There is roughly one stack frame per 
unreturned function call listed in the Stack window.

Key shortcut: Command-B

The Stack window is divided into three sections. The top pane lists the frames 
on the stack. The central section contains information about the error and the 
pull-down commands for the Stack window. As you select each frame in turn 
in the top pane, the object’s active parameters and local variables appear in the 
bottom pane. 

The following figure shows a typical Stack window with the first line in the top 
pane selected. Its contents appear in the bottom pane.

The following figure shows the commands for the top pane of the Stack 
window. The commands for the Stack window are Show Home, Inspect 
Method, Copy Stack as Text, Compute More Frames, Compute All Frames, and 
Hide/Show Internal Frames. These commands apply only to the top pane. The 



C H A P T E R  3  

Apple Dylan Reference

222 Inspect Stack

bottom pane displays the active parameters and local variables for the frame 
selected in the top pane, as well as other information. 

You can double-click on a frame in the top pane to open a window for editing 
the object’s source code. You can press the option key and then double-click to 
open an inspector window on a frame’s function. You can double-click on a line 
in the bottom pane to open an inspector window for the selected parameter.

Stack window commands 3

The Stack window has seven commands: Show Home, Inspect Method, Copy 
Stack as Text, Compute More Frames, Compute All Frames, and Hide/Show 
Internal Frames.

Show Home 3

Expands and highlights the home of the selected object. This is the same as the 
Show Home on the Browse menu. See Show Home for more information.

Key shortcut: Command-Y, or double-click the stack frame. 

Inspect Method 3

Inspects a method in the top frame.



C H A P T E R  3

Apple Dylan Reference

Inspect Stack 223

Copy Stack as Text 3

Copies the stack as text into the Clipboard so you can print out a copy of the 
top frame. Shows only the names of stack frames, not local variables.

Compute More Frames 3

Recomputes the selected frames.

Compute all Frames 3

Recomputes all the frames.

Hide/Show Internal Frames 3

The internal frames are listed in the top pane. The internal frames are generally 
uninteresting to most programmers and should be set to Hide Internal Frames.

Inspector window commands 3

All inspector windows display the selected object and its class. The commands 
on inspector windows are Resample, Edit, and a list of commands specific to 
the object being inspected. The complete list of these commands include Show/
Hide Slots, Who Uses Object, Show/Hide Disassembly, Edit Definition, Graph 
Class, Inspect General Instances, Inspect Direct Instances, and Show/Hide 
Elements.



C H A P T E R  3  

Apple Dylan Reference

224 Inspect Stack

You can open an inspector window by double-clicking on an object in an 
inspector window. If you have several inspector windows open at once, you 
can hold down the Option key while closing one inspector window and all of 
them will close.

Resample 3

Resamples the object in case it has changed. The development environment 
caches data when it opens an inspector. If the object changes, the development 
environment still shows the cached data rather than the data on the runtime. 
Resample forces the development environment to retrieve the new data from 
the runtime.

Edit 3

Opens a window where you can edit the text of the object selected in an 
inspector window.

Show/Hide Slots 3

Hides and displays the slots of the object shown in the top line of the inspector. 
In the following figure the slots are on display and the command to hide them 
is about to be chosen.



C H A P T E R  3

Apple Dylan Reference

Inspect Stack 225

Who Uses Object 3

Opens a windows that lists all the objects that contain a direct reference to the 
object. The reference can be a slot that refers to the object or a collection that 
contains the object.

The following window is a typical result of Who Uses Object. In this example, 
the method error (<condition>…) was selected in the inspector window and 
the Who Uses Object was issued.

Show/Hide Disassembly 3

Hides or displays the machine instructions compiled for the inspected function.

The following figure shows disassembly code.



C H A P T E R  3  

Apple Dylan Reference

226 Inspect Stack

The following figure shows the disassembly code hidden.

 



C H A P T E R  3

Apple Dylan Reference

Launch Application Nub 227

Edit Definition 3

Opens a browser displaying the source code of the function or the class, 
whichever is selected.

Graph Class 3

Opens a browser displaying a graphical representation of the selected class.

Inspect General Instances 3

Opens the inspector window Inspect Object of Class, which lists all the objects 
whose type is that of the selected class or a subclass of it.

Inspect Direct Instances 3

Opens the inspector window Inspect Object of Class, which lists all the objects 
whose type is that of the selected class.

Show/Hide Elements 3

Hides or displays the elements of a collection.

Launch Application Nub 3Project

Launches the Application Nub, loads the active project into it, and tethers the 
Application Nub to the development environment. When you are tethered to 
the development environment, the Apple Dylan Listener is usable and your 
project can be run and debugged. The type of target chosen using the Target 
Architecture command is the type of Application Nub launched with this 
command.

Key shortcut: Command-K

Related commands: Tether to Application, Quit Application Nub, Run.

When you tether to the development environment, you can see that the 
Application Nub is running by leaving Apple Dylan and checking the list of 
running applications in the Finder. If you switch to the Application Nub from 



C H A P T E R  3  

Apple Dylan Reference

228 Listener

that list, you see that no windows or menus appear. You can return to the 
development environment by clicking in one of its windows. 

The notation “(Unconnected)” disappears from the Listener when the 
Application Nub is tethered to the development environment.

See the Environment sheet under Preferences for whether to launch to the 
Application Nub automatically when a project is opened. Using Preferences, 
you can also choose to automatically issue Update Project before launching the 
Application Nub.

You can replace an Application Nub with another by removing the file 
Application Nub from your project’s folders and replacing it with another 
Application Nub. The development environment searches first in the project 
folder and then in the folder Application Nub. You can also use an alias to 
another Application Nub as the replacement.

Listener 3

See Apple Dylan Listener. 

List of Browsers 3Browse

Provides a drag and drop interface to the browsers available in the 
development environment. From this list, you can:

■ Drag and drop a browser onto a pane splitter and have that browser 
embedded into any other browser.

■ Drag and drop a browser into the inbox of a pane to replace the pane with 
that browser.

■ Open a browser by double-clicking on it. This is the same as selecting the 
browser on the Browse menu.

■ Drop an object onto a browser name to open that browser with that object as 
the basis. This is the same as selecting an object and then selecting a browser. 



C H A P T E R  3

Apple Dylan Reference

List of Browsers 229

Most of the objects on this list are browsers listed on the Browse menu; they are 
the same browsers. This list also contains the command New Browser from the 
Browse menu. Find in Project and Project are not on the Browse menu. Find in 
Project opens a browser with the object you are looking for as its basis. The 
Project object is the Project browser for the active project, which is brought to 
the front when this object is selected. Browsers appear on this list because their 
files are in the subfolder _System Browsers of the Browsers folder in Apple 
Dylan.

You cannot delete a browser from this list. To delete a browser, quit the 
development environment, find the browser file in the Browser folder _System 
Browsers and move it out of the Browsers folder entirely. When you restart the 
development environment, the moved browser will no longer be listed.



C H A P T E R  3  

Apple Dylan Reference

230 Load UI Builder

Load UI Builder 3Project

Loads the user interface builder into the Application Nub. This causes the 
Show Interface Builder command to appear on the Apple menu, which runs 
the Apple Dylan interface builder from within the development environment. 
You should launch the Application Nub before using this command. Note that 
you can run the interface builder from the Finder by double-clicking the 
standalone version of the interface builder.

For more information on the interface builder, see the book Creating a User 
Interface in Apple Dylan.

Related commands:  Show Interface Builder, Hide Interface Builder.

Look Up in Online Reference 3Browse

Looks for the online documentation reference entry that pertains to the selected 
text and displays it with the QuickView application. Searches the Macintosh 
Programmer’s Toolbox Assistant, or in the Apple Dylan language constructs.

Key shortcut: Command-=

The selected text can be text inside a source record or the Listener, such as 
Inside Macintosh routines, header files, framework functions, or classes, Creole 
extensions, or Dylan language constructs. You can use Look Up in Online 
Reference even if you have not purchased the Macintosh Programmer’s 
Toolbox Assistant and installed it on your computer, but in that case you won’t 
be able to search for Macintosh toolbox calls. If the entry exists, QuickView 
displays the selected reference page. If the entry does not exist, no page 
appears on your screen.

QuickView runs as a separate application from Apple Dylan. You can quit 
QuickView and continue running Apple Dylan.

The Macintosh Programmer’s Toolbox Assistant is available on a number of 
different CD-ROMs from Apple:

 

n  Macintosh Programmer’s Toolbox Assistant CD-ROM $89.95 from APDA 
(part number T1616LL/A) or a bookstore near you.

 

n The Developer CD Series (March ’95 and later Reference Library Editions) 
12 CD-ROMs a year for $250.

 

n  E.T.O. #17 and later—about $1,100



C H A P T E R  3

Apple Dylan Reference

Meter Expression 231

 

n   Some versions of MPW Pro—about $500

Meter Expression 3Debug

Meters an expression in the runtime. The Meter Expression window allows you 
to type or copy in the expression you want to meter. When you run the 
expression, the total time used and bytes alloted are calculated. In addition, the 
generic functions called and classes allocated during the execution of the 
expression appear. You must select the module the expression is in before 
running it. 

You can sort either of the lower panes in the Meter Expression window by 
clicking on the column’s name you want the pane sorted by. The name of the 
column that controls the sort is then underlined. 

Meter Expression shows basic information about almost all the generic 
functions and classes in a project. For detailed information about specific 
methods or generic functions, use Call Recording.

Related command: Call Recording.

The total time used and bytes allocated are calculated in the Meter Expression 
window. The first time you call a function it sometimes runs more slowly than 
it will normally. If the generic function Dylan.Dylan.finalize appears on the 
list, this is the first time an instance of this class has been created. You should 
run the expression again for accurate timing. 

If the generic function set-generic-function-dispatch<<Dylan<<Dylan appears 
on the list, it indicates that this is the first time one of the generic functions has 
been called. Sometimes if you add a method to a generic function, it needs to 
be treated as if it is being called for the first time. You should run the 
expression again to get more accurate timing results.

The following figure shows the total time used and bytes allocated for 
draw-puzzle-tile, which is in the puzzle module.



C H A P T E R  3  

Apple Dylan Reference

232 Method Template (Copy Special)

Generic function calls that have been inlined are not displayed in the Generic 
Function pane. You can double-click on a generic function to open an inspector 
window on the generic function.

Some built-in classes, such as <list> and <byte-string>, are not displayed in 
the Class pane but are counted in the Allocated bytes field. You can 
double-click on a class in the Class pane to open an inspector window on the 
class. The number of instances of the class are listed in the inspector window. 

See Inspect Stack for more information on inspector windows.

Method Template (Copy Special) 3Edit

Copies a prototype method template for the selected generic function or 
method from the active project into the Clipboard. To paste the method 
template into a source record or the Listener, use Paste. You can select either its 
source record icon or text naming the function or method.

Key shortcut: Command-T



C H A P T E R  3

Apple Dylan Reference

Method Template (Insert Special) 233

Method Template (Copy Special) helps you create new methods, especially if 
you are specializing the arguments of a method. For example, if you select the 
method floor, Method Template (Special Copy) copies the following template 
into the Clipboard:

define method floor(numerator :: <object>, denominator:: <object>)
=> quotient :: <integer>, remainder :: <real>

end method floor;

Method Template (Copy Special) retrieves the prototype argument list or 
template for the selected object from the compiler results database and inserts 
it into a source record. You can then specialize the types of the arguments and 
fill in the body of the method.

Note that Method Template (Copy Special) appears in the menu only if you 
select a generic function or method. If you select a class, Class Template (Copy 
Special) appears instead. 

Related Commands: Copy Special, Method Template (Insert Special), Class 
Template (Copy Special).

Method Template (Insert Special) 3Edit

Replaces the selected generic function or method with the prototype template 
of the methods for the selected method. Method Template appears in the menu 
only if you select from the active project editable text that names a function or 
method. This command is made available by pressing Option when clicking on 
Copy Special on the Edit menu.

For example, if you select the function draw and hold down the Option key, 
Method Template (Insert Special) replaces draw with the following text:

define method draw(view, r)

end method;

Key shortcut: Command-Option-T

If you select a class Class Template (Insert Special) appears in the menu instead 
of Method Template (Insert Special).



C H A P T E R  3  

Apple Dylan Reference

234 Modules of (Aspect)

Method Template (Insert Special) retrieves the prototype argument list or 
template for the selected object from the compiler results database and inserts 
it into a source record.

Related Commands: Insert Special, Method Template (Copy Special), Class 
Template (Insert Special).

Modules of (Aspect) 3Browse

Operates on the active project, listing its modules.

Modules of (Aspect) is commonly used to customize a browser pane displaying 
that aspect of a class. See Aspect and “Customizing browsers” on page 58 for 
more information.

New Browser 3Browse

Opens a new browser with a single pane. The new browser’s pane contains the 
default aspect of the object selected prior to choosing New Browser. The 
selected object is called the basis of the browser’s pane and, therefore, the basis 
of the browser. If no object is selected prior to choosing New Browser, the new 
browser is empty.

For more information on using browsers, see the section “Using browsers” on 
page 15.

You can also create a new browser by double-clicking on an object.

The following figure is a new browser that was created with the source folder 
“puzzle” selected.



C H A P T E R  3

Apple Dylan Reference

New Browser 235

If you want to have more than one pane in a browser, you split the pane in two. 
Each of the two new panes can also be split, both horizontally and vertically. 
You split a pane with its splitter controls; the horizontal splitter control is a 
short, horizontal bar just above the scroll bar on the right of a pane. The vertical 
splitter control is a short, vertical bar just to the left of the scroll bar at the 
bottom on a pane. To split a pane, hold down the mouse on the bar and then 
drag the dashed line that appears to wherever you want the pane split. 
Another method is to drag the outbox of a pane onto any splitter on any pane. 
This splits the pane you drop it in and creates a link to the new pane.

You can close a pane by clicking its close box in the upper-left corner of its 
header. The browser remains open as long as you don’t close the only pane in 
it. You can resize a pane by dragging its resizing control in its lower-right 
corner.

You can change the relative size of panes by dragging the line that separates 
two panes. You move the cursor to the separating line until it changes into a 
slider cursor, then you hold down the mouse and slide it to where you want 
the new separating line to be. For more information on splitting panes and 
resizing them, see the task “Customizing browsers” on page 58.

The panes in a browser work together through links. The contents of an object 
you select in one pane shows up in another through a link you can create or 
change. To see a link’s origin or destination, hold the cursor over the link’s 



C H A P T E R  3  

Apple Dylan Reference

236 New Browser

inbox or outbox (the small arrows at the edges of the header of each pane). 
When a link has been established, the arrow turns red.

In the following figure the origin of the incoming link of the lower-left pane is 
revealed by holding down the mouse on its inbox. The origin of this incoming 
link is root pane for the puzzle project, which is the upper-left pane.

When you split a pane, the original and the new panes are automatically 
linked. In the following figure the split is complete, so the outbox of the 
original pane on the left and the inbox of the new pane on the right are red. You 
can now click on objects in the left pane and they are displayed in the right 
pane. Because <puzzle-view> was selected in the original pane, it is displayed 
in the new pane.



C H A P T E R  3

Apple Dylan Reference

New Module 237

For more information on using links, see the task “Linking panes and 
browsers” on page 34.

Related Command: Save Browser.

New Module 3File

Creates a new module named Untitled with a source folder named Untitled in 
it. A second new module is named Untitled 2 with a folder named Untitled 2 
and so forth. These source folders each contain an empty source record.

You can rename modules either by clicking on their names, or by selecting 
them and pressing the Return key. 

Note
The New Module command identifies a module to Apple 
Dylan, but you must also identify the module to the 
compile. To do this, you must create a source record with a 
define module statement or add a use statement to the 
current library defined with define library. See “What 
goes into a project?” on page 97.

New modules are placed at the end of the list of modules. You can reorder the 
modules by dragging them. Changing the module order changes the load 
order. In the Dylan language, forward declarations do not create load order 



C H A P T E R  3  

Apple Dylan Reference

238 New Project

restrictions. However, load order dependencies, such as calculations that are 
performed in one module based on a variable previously defined in another 
module, must be accounted for in the module order you establish. For more 
information on load order, see the Dylan Reference Manual.

The following figure shows the new module at the end of the list of modules. 

New Project 3File

Creates a new project and opens a project browser for it. If no other project is 
already open, the new project becomes the active project. Otherwise, the new 
project is simply opened. The following figure shows the default project 
browser for a new project.



C H A P T E R  3

Apple Dylan Reference

New Source Folder 239

New Source Folder 3File

Creates a new source folder named Untitled with an empty source record in it. 

You can rename source folders either by clicking on their names or by selecting 
them and pressing the Return key. 

New source folders are placed at the end of the existing list of objects by 
default. If a source folder is selected, the new source folder is placed directly 
after it. Because the order of the source records within a source folder and the 
source folders within a module determines the load order, you might need to 
move an object into its proper place after it’s created. You can reorder the 
objects by dragging them.

New Source Record 3File

Creates a new, empty source record. The empty source record has a generic 
icon until its contents are completed. Source record objects include methods, 
classes, variables, constants, macros, generic functions, comments, and top 
level forms.

Key shortcut: Command-N



C H A P T E R  3  

Apple Dylan Reference

240 New Text Window

The following figure shows a new source record that has been created for the 
puzzle module. The new record appears at the end of the list of other records 
by default. If you place the cursor into the name of an existing source record, 
the new source record is placed directly after it instead of at the end. Because 
the order of the source records within a source folder and the source folders 
within a module indicates the load order, you might need to move an object 
into its proper place after it’s created. You can reorder the objects by dragging 
them.

New Text Window 3File

Opens a new text window. Use this window to make READ ME files, release 
notes, scratch pads, and so forth. All the usual Apple Dylan editing commands 
are supported. You are prompted for a file name and destination when you 
close the window. The default output file name is “new.dylan”.

Use Export and Import for moving text files in and out of Apple Dylan. 



C H A P T E R  3

Apple Dylan Reference

Open 241

Open 3File

Opens a project. You can also open a project by double-clicking on the project’s 
icon from outside Apple Dylan. This launches Apple Dylan if it is not already 
running.

Key shortcut: Command-O

You can have several projects open at once, but the first one you open is the 
active project. The active project is the only project that can be browsed, 
compiled, and downloaded.

You can also open text files with this command.

Page Setup 3File

Displays the standard Macintosh Page Setup dialog box to allow you to 
determine the behavior of the Print command.

Related command: Print.

Paste 3Edit

Pastes text from the Clipboard into the current text selection or at the current 
cursor location. Text is placed into the Clipboard using Cut and Copy, as well 
as by all three of the Copy Special commands. 

Key shortcut: Command-V

Related commands: Copy, Copy Title Text, Cut, Copy Special.

See “Editing in Apple Dylan” on page 66.

▲ W A R N I N G

Emacs-style editing commands create a kill ring that may 
interact unpredictably with the Clipboard. See “Editing in 
Apple Dylan” on page 66.



C H A P T E R  3  

Apple Dylan Reference

242 Pattern Match Macro

Pattern Match Macro 3Debug

Prints the macro expansion first, displaying exactly the text sent to the compiler 
by the parser. Then prints the pattern rule, showing which elements of the 
macro match which elements of the pattern. From this information you can 
determine if there is a match or not. If there is a match, you can determine its 
scope. You can also determine whether the order of pattern matching is correct, 
catching such errors as matching a general pattern before matching a specific 
pattern (which would never be seen). This process is repeated for all further 
macro expansion.

Operates on statement macros and definition macros. Does not work on 
function macros. This command does not work on the icon; you must select the 
full text of the macro in a browser or the Listener. Expands the selected macro 
to the Listener. You can also select the macro text in the Listener. 

This command is used in debugging macros. 

If you select Pattern Match Macro from the menu while pressing the Option 
key, the Pattern Match Macro Including Builtin command appears in the menu 
instead. The behavior is the same, except that all macros are expanded, 
including builtin macros from the Dylan language, such as case or begin. 

Related command: Expand Macro, Pattern Match Macro Including Builtin.

Pattern Match Macro Including Builtin 3Debug

Prints the macro expansion first, displaying exactly the text sent to the compiler 
by the parser. Then prints the pattern rule, showing which elements of the 
macro match which elements of the pattern. 

You must select Pattern Match Macro while pressing the Option key to make 
the Pattern Match Macro Including Builtin command appear on the menu. The 
behavior is the same as for the Pattern Match Macro command, except that all 
macros are expanded, including builtin macros from the Dylan language, such 
as case or begin. 

This command is used in debugging macros. 

Related commands: Expand Macro, Pattern Match Macro.



C H A P T E R  3

Apple Dylan Reference

Preferences 243

Preferences 3Edit

Opens the Preferences dialog box, which consists of four sheets:

 

n Application Nub

 

n Environment

 

n Editing

 

n Listener

By setting preferences on these sheets, you can make the development 
environment interact with each of your projects in a specified way. 

The following figure shows the four sheets on the Category pull-down list. 
Clicking any Defaults button resets all the values on all three sheets to their 
defaults.

The following figure shows the default Application Nub Environment sheet.



C H A P T E R  3  

Apple Dylan Reference

244 Preferences

 

n Development Mode—One-machine development is the default. Choose 
two-machine development if you don’t want your runtime on the same 
machine with the development environment. 

 

n Runtime Machine—For two-machine development, name the machine 
the runtime is on.

 

n Launch Application Nub when Active Project is Opened—Off by default. 
See “The Application Nub” on page 107, and Launch Application Nub.

 

n Update when Application Nub is Launched—Off by default. See 
“Keeping your project synchronized” on page 109, and Update Project.

The following figure shows the default Environment sheet. Not all choices are 
reflected in the development environment until you open a new project. 



C H A P T E R  3

Apple Dylan Reference

Preferences 245

Preferences on Environment sheet:

 

n Browser font and size—Not the source text font, but the title font you see 
when an object is collapsed.

 

n Browser icon size—The smaller the icons, the more your browser can 
display.

 

n Inspect Stack on Error—If you prefer, you can go directly to the stack 
inspector on any error.

The following figure shows the default Editing sheet. 



C H A P T E R  3  

Apple Dylan Reference

246 Preferences

Choices are reflected in the text you write or edit, such as source code. Any 
code entered before this preference is set remains unaffected. Changing this 
font setting only affects new source text.

Preferences on the Editing sheet:

 

n Default editor font— the font for editing source code. The fonts used for 
code entered before setting this are not affected.

 

n Assign Meta To—assignment of meta key. See “Emacs-style key 
commands” on page 72.

 

n Indent Current Line on—part of auto-indent system. Choose how often 
you want the current line checked for “pretty” indentation. 

 

n Indent New Line on Return—extends auto-indent to the next line. 

 

n Auto Display Argument List—Automatically display the argument list.

 

n Display Warnings with Source—Automatically display warnings with 
source code.

The following figure shows the default Preferences sheet for the Listener.

Preferences on the Listener sheet:

 

n Default Listener font—the font for editing code in the Listener.

 

n Set truncation of lines—Unlimited by default; controls the number of 
lines printed in the Listener.

 

n Set number of elements—Unlimited by default; controls the number of 
elements of a list printed in the Listener.



C H A P T E R  3

Apple Dylan Reference

247

 

n Set number of levels—Unlimited by default; controls the number of break 
levels displayed in the Listener. 

 

n Detect circularities—Off by default. If set, stops printing after the first 
time around.

33Print 3File

Displays the standard Macintosh Print dialog box for printing. You can print 
the contents of the Apple Dylan Listener or source text from a browser. If 
nothing is selected, the entire project is printed. 

Key shortcut: Command-P

Related command: Page Setup.

Quit 3File

Quits the development environment. You are prompted to save unsaved 
changes and prompted to confirm that you wish to quit. Issuing this command 
also quits the Application Nub if you are tethered and performs an orderly 
shutdown of Apple Dylan. 

Key shortcut: Command-Q

Quit Application 3Project

Quits a running application and the Application Nub. Quit Application is 
identical in effect to Quit Application Nub.

Quit Application quits a running application and also untethers the 
Application Nub from the development environment (if connected). Quit 
Application is the opposite of Tether to Application. 

Related command: Tether to Application.

Quit Application Nub 3Project

Quits a running application and the Application Nub. Quit Application Nub is 
identical in effect to Quit Application.



C H A P T E R  3  

Apple Dylan Reference

248 Recompile

Quit Application Nub quits a running application and also untethers the 
Application Nub from the development environment (if tethered). Quit 
Application Nub is the opposite of Launch Application Nub. 

If you encounter difficulty quitting the nub, run the Quit Application Nub 
application from the Finder.

Related command: Launch Application Nub.

Recompile 3Project

Initiates a complete compilation of the entire project, including, optionally, its 
subprojects. All code within the chosen scope is recompiled whether it needs it 
or not, regardless of status marking. Recompile throws away all caches and 
cleans up all databases. 

▲ W A R N I N G

Recompile is of limited value when tethered because it 
adds all results of its recompilation to the existing compiler 
results database and removes nothing.

Related commands: Compile Expression, Compile Region, Compile Selection.

See also: Create Application, Create Library.

Redo Clear 3Edit

Deletes text that you had previously reinstated with an Undo Clear. The 
deleted text does not get copied to the Clipboard. Undo, Clear, Redo Clear, and 
Undo Clear replace one another on the File menu, depending on which is 
appropriate.

See “Editing in Apple Dylan” on page 66.

▲ W A R N I N G

Clear supports Undo and Redo only for text. If you have 
cleared an object, folder, or subproject, it cannot be undone 
or redone. If you are about to clear a subproject, you are 
warned. You cannot clear required subprojects. 



C H A P T E R  3

Apple Dylan Reference

References From 249

References From 3Browse

Operates on the selected class, method, or variable, opening a browser that lists 
all objects from which it is referenced.

Related commands: References From (Aspect), References To.

References From (Aspect) 3Browse

Operates on the selected class in the active project, method, or variable, listing 
all references from it. 

References From (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a class. You can also select a single class in a pane and 
display references from the selected object inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The References From command opens a single-pane browser displaying 
references from the selected object.

References To 3Browse

Operates on the selected class in the active project, method, or variable, 
opening a browser that lists all objects making reference to it. 

See “Using the browser References To” on page 49.

Related commands: References To (Aspect), References From. 



C H A P T E R  3  

Apple Dylan Reference

250 References To (Aspect)

References To (Aspect) 3Browse

Operates on the selected method, class, or variable in the active project, listing 
all references to it.

References To (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a method, class or variable. You can also select a 
single object in a pane and display references to it inline.

See Aspect, “Using the browser References To” on page 49, and “Customizing 
browsers” on page 58 for more information.

The References From command opens a single-pane browser displaying direct 
methods.

3333Replace and Find 3Text

Duplicates Replace & Find in the Find/Replace dialog box. Replaces the target 
text with the replacement text and searches for the next instance of the target 
text.

Key shortcut: Command-J

Related command: Find/Replace.

See “Editing in Apple Dylan” on page 66.

Reset Stack 3Debug

Discards the stack all the way to the top of the stack without running any of the 
clean-up code. Because it does not run any clean-up code, Reset Stack is very 
risky; try Abort first. Severe side effects can result from not running the 
clean-up code. For example, a file can be left open with no way to close it, or a 
data structure, such as the Dylan subproject itself, can be left in a corrupted 
state.

Reset Stack does not discard the runtime heap. To reset the heap, untether the 
Application Nub from the development environment and then retether to it.

See “Debugging a project” on page 146 for a discussion of the choice between 
Abort and Reset Stack.



C H A P T E R  3

Apple Dylan Reference

Resource Files of (Aspect) 251

Related command: Abort.

Resource Files of (Aspect) 3Browse

Operates on the active project and its subprojects, listing their resource files.

Resource Files of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Revert 3File

Reverts to the saved version. This command works on either the whole project 
or on selected objects. If you select more than one object, the next higher 
container and all its contents are reverted. All changes you made since issuing 
the last Save or Save All are lost. Revert cannot be undone.

Run 3Project

Runs the active project’s startup function after tethering the Application Nub to 
the development environment and performing an update. Run performs 
different functions depending on the state of your project, but it does compile 
all sources marked as uncompiled and downloads the results, just as Update 
Project does. It also tethers to the development environment, if needed, and 
runs the startup function. 

You can designate the active project using Set Project Type. The name and 
location of the project’s startup function must have been specified using Set 
Project Type or Run will not work.

Key shortcut: Command-R

When you run a project from within Apple Dylan, the user interface for the 
application and its menu bar overlay the development environment. The 
application’s menu bar can be used to manipulate the application and to quit it. 
You can return to Apple Dylan by clicking in one of its windows or choosing 
Application Nub from the Finder’s list. If you leave the application running 
and return to Apple Dylan, the cursor becomes the watch cursor to remind you 
that the application is still running, even though you can no longer see it.



C H A P T E R  3  

Apple Dylan Reference

252 Save

Note
You cannot use Apple Dylan again until you interrupt 
your running application. Use Quit within your 
application to do this.

Related commands: Launch Application Nub, Quit Application, Update Project.

Save 3File

Saves the sources of the active pane and all the objects it contains. Save cannot 
be undone.

Key shortcut: Command-S

Related commands: Save All, Revert.

For saving a new or revised browser configuration, see Save Browser. 

Save All 3File

Saves the sources for all open projects. Save All cannot be undone.

Related commands: Save, Revert.

For saving new or revised browser configurations, see Save Browser. 



C H A P T E R  3

Apple Dylan Reference

Save Browser 253

Save Browser 3Browse

Saves the configuration of a browser you have created or changed. You cannot 
save the contents in the browser with Save Browser unless the basis of the 
browser is a module. Any incoming links or outgoing links to the browser are 
lost when it is saved.

You can name the saved browser what you want. Its name is added to the 
fourth section of the Browse menu and to the List of Browsers browser, if you 
save the file to the Browsers folder of Apple Dylan. If you save the file to the 
Browsers subfolder _Ignore Selection Browsers, the new browser appears in the 
third section of the Browse menu and the entire project is the only valid basis 
for the browser. If you save the file to the Browsers subfolder _System 
Browsers, the new browser appears only on the List of Browsers browser. 

You can move browsers between subfolders, if you want. You can share a saved 
browser with others by giving them a copy of the browser file or an alias to it.

You can delete a saved browser from the development environment by 
removing its file from the Browsers folder. You must restart the development 
environment for the browser to be removed from the List of Browsers browser 
and the Browse menu.

Related command: List of Browsers.

See “Saving a browser configuration” on page 61.

Select All 3Edit

Selects all the objects in the active pane or all the text in an object. To select all 
the objects in a pane, click on one of the objects and then choose Select All. To 
select all the text in an object, expand the object, click anywhere in the text and 
then choose Select All. You can also select all the text in an object by clicking in 
it four times.

Key shortcut: Command-A

Set Project Type 3Project

Sets the basic characteristics of a project, most importantly identifying its name 
and whether it is to be built as an application or a library.



C H A P T E R  3  

Apple Dylan Reference

254 Set Project Type

You must set certain characteristics of a project before building your final 
application or library. After setting a project’s features, you complete the 
building process by untethering from the development environment and using 
Create Application or Create Library. It is also recommended that you issue a 
Recompile command before building your final application or library. 

The most important setting is whether the project is an application or library, as 
shown in the following figure.

Specify the startup function by entering it in the Startup Function field. Specify 
the module your startup function is in with the Module field; this module must 
be exported from its library. The Creator Type field holds the creator ID you 
want your new application to have. Designate your memory requirements for 
suggested and maximum sizes in the spaces provided.

Check “Create Fat Binary” if you want to build a Fat application. 

Check “Use separately loaded libraries” if you want the Dylan subproject and 
framework subproject not to be bundled with your application. They will not 
be included in your project’s link library in the binary, but instead the link 



C H A P T E R  3

Apple Dylan Reference

Set Project Type 255

library is loaded in from the extensions folder when the application is run. This 
option saves disk space, but not memory. This setting also allows you to revise 
and load new libraries for an application without changing the rest of the 
application.

Setting the version of a library controls which version is recorded in the 
compiler results database. When a library file is created from a project, the 
library versions of all of its subprojects are recorded in the library file header. 
Then at runtime, when the library is loaded, it will only accept those versions 
of its the sublibraries which are compatible with the version of the sublibrary 
used at library creation time. You should increment the version number 
whenever you release a new version of a library.

The minimum compatible version is the lowest version that a library is 
backward compatible with. The minimum version is checked during runtime 
library search. You should increment the minimum version number whenever 
you make incompatible changes. See “Library version numbers” on page 106 
for a detailed explanation.

The suffix “.dl” is appended to the library’s name when you build it. 



C H A P T E R  3  

Apple Dylan Reference

256 Show Home

See “Apple Dylan User Model” on page 95, in particular “Application or 
library?” on page 104.

Show Home 3Browse

Displays and highlights the source code for the selected object. Checks first in 
the current module and goes immediately to the definition. If there’s no such 
name defined in the current module, searches all modules and goes 
immediately to the definition. If there are multiple definitions with the same 
name in different modules, presents a choice. If the source code is not found, 
displays the name of the object it was looking for. 

Note
If there are multiple objects with the same name, and one 
is defined in the current module, you are not presented 
with a choice, but rather go immediately to the definition.

Key shortcut: Command-Y

For example, if you are in the Listener and have not been working with a 
certain function, you might not have its source record on display. In that case, it 
is easy to find the source code using Show Home. To use Show Home, place the 
cursor in the name of the function you are interested in, or select it, and then 
issue Show Home.

In the following figure you can see the result of clicking on “initialize” in the 
Listener and then choosing Show Home; “initialize” is expanded and 
highlighted.



C H A P T E R  3

Apple Dylan Reference

Show Interface Builder 257

The following figure shows the result of clicking on the “text-app” module in 
the root pane and then choosing Show Home; a new browser is opened with 
text-app as its basis.

Show Interface Builder 3Apple

Runs the Apple Dylan interface builder from within the development 
environment. Note that you can run the interface builder from the Finder by 
double-clicking the standalone version of the interface builder.

For more information on the interface builder, see the book Creating a User 
Interface in Apple Dylan.

Related commands:  Hide Interface Builder, Load UI Builder.

Show Interface Mapping 3Debug

Prints information about the mapping between C and Dylan names to the 
Listener. Choose this command to set this feature, which prints the information 
whenever a define interface statement is compiled. This command allows you 
to check name mapping, plus import and export options. To disable this 
feature, choose the command again to remove the check mark from the menu.

When this command is checked, the following is printed at the Listener 
prompt: the C name, which is followed by an arrow, and the Dylan name.

As an example, when the following definition is compiled:

define interface

  #include "Dialogs.h",



C H A P T E R  3  

Apple Dylan Reference

258 Size

     name-mapper: identity-name-mapping,

     define: {"SystemSevenOrLater"},          // for Gestalt

     CFM-library: "InterfaceLib",

     import: {"ErrorSound", "Alert", "ParamText"},

     // These next two will be null pointers anyway

     type: {"SoundUPP" =3D> <machine-pointer>},

     type: {"ModalFilterUPP" =3D> <machine-pointer>};

  #include "Resources.h",

     name-mapper: identity-name-mapping,

     define: {"SystemSevenOrLater"},          // for Gestalt

     CFM-library: "InterfaceLib",

     import: {"OpenResFile"};

end interface; 

The following output is printed in the Listener:

function ErrorSound => ErrorSound<<Online-Insultant

function ParamText => ParamText<<Online-Insultant

function Alert => Alert<<Online-Insultant

function OpenResFile => OpenResFile<<Online-Insultant

Size 3Text

Displays a list of font sizes. The size you choose is applied to the selected text.

This choice changes only the text in a source record and has no semantic 
impact. but it does flag the record for recompilation. You can use font size to 
help organize your sources.

See “Formatting commands” on page 70.

You can change the font sizes for the Listener and Browsers (as well as the 
source font size) using Preferences.

Source Code of (Aspect) 3Browse

Operates on source records and definition entities in the active project, 
displaying the definition associated with the selected source record or 



C H A P T E R  3

Apple Dylan Reference

Source Folders (Aspect) 259

definition entity. Source record objects are methods, classes, variables, 
constants, macros, generic functions, comments, and top-level forms.

Source Code of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a module. You can also select a single module in a 
pane and display its source code inline. See Aspect and “Customizing 
browsers” on page 58 for more information.

Source Folders (Aspect) 3Browse

Operates on modules in the active project, listing the source folders for the 
selected object.

Source Folders (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a module. You can also select a single module in a 
pane and display all its source folders inline. See Aspect and “Customizing 
browsers” on page 58 for more information.

Source Records (Aspect) 3Browse

Operates on any object in the active project that has source records: project, 
subproject, module, source folder, listing the source records for the selected 
object. Source record objects are methods, classes, variables, constants, macros, 
generic functions, comments, and top-level forms.

Source Records (Aspect) is commonly used to customize a browser pane 
displaying that aspect of an object. You can also select a single object in a pane 
and display its source records inline. See Aspect and “Customizing browsers” 
on page 58 for more information.

Source Records with Warnings (Aspect) 3Browse

Operates on any object in the active project that has source records: project, 
subproject, module, source folder, listing the source records for the selected 
object that have warnings in the active project. Source record objects are 
methods, classes, variables, constants, macros, generic functions, comments, 
and top level forms.

Source Records with Warnings (Aspect) is commonly used to customize a 
browser pane displaying that aspect of an object. You can also select a single 



C H A P T E R  3  

Apple Dylan Reference

260 Status Indicators

class in a pane and display its source records inline. See Aspect and 
“Customizing browsers” on page 58 for more information.

Status Indicators 3Browse

Opens the Status Indicators dialog box. You can also open this by 
double-clicking in the gray, vertical status indicator column in a pane. The 
status indicators you check in this dialog box are displayed in the status 
indicator column in the active pane or in the pane’s header. You select the 
status indicators separately for each pane.

To choose a status indicator, make the target pane active, open the Status 
Indicators window, and click to the left of the status indicator you want until a 
check mark appears. If you choose all the indicators, except Other, an indicator 
for each will appear in your pane when that status applies. The status indicator 
Other consolidates any of the unchecked indicators into a single indicator. By 
checking only the specific indicators you want to see, and also checking Other, 
you can see the specific indicators you need to see but still be informed that 
other status changes have occurred. 

The following figure shows the default Status Indicators dialog box. Unsaved 
and Warnings indicators are displayed in the panes automatically. You can 
choose not to see them by unchecking them in the Status Indicators dialog box.



C H A P T E R  3

Apple Dylan Reference

Status Indicators 261

The Location field allows you to select where the status indicators will appear, 
in the status indicator column (choose Body) or in a pane’s header (choose 
Header). You can choose to have them appear in both places if you wish.

The following figure shows a typical project with the Uncompiled indicator 
chosen and pointed to in the status indicator column. Note that the cursor is 
pointing at the green (second) indicator, which is the Uncompiled indicator. 
This causes the name of the indicator to appear in the prompt area at the 
bottom of the browser.



C H A P T E R  3  

Apple Dylan Reference

262 Status Indicators

The following figure shows a typical project with the Unsaved indicator chosen 
and pointed to in the status indicator column. Note that the cursor is pointing 
at the blue (first) indicator, which is the Unsaved indicator. It is identified as the 
Unsaved indicator in the prompt area at the bottom of the browser. 



C H A P T E R  3

Apple Dylan Reference

Style 263

Style 3Text

Changes the font style of the selected source text. This choice changes only the 
text in a source record and has no semantic impact, but it does flag the record 
for recompilation. You can use font style to help organize your sources. For 
example, it is common to use bold for the name of objects being defined.

The font styles available are Plain, Bold, Italic, Underline, Outline, Shadow, 
Condense, and Extend.

Key shortcuts:

■ Plain—Command-Shift-T

■ Bold— Command-Shift-B

■ Italic—Command-Shift-I

■ Underline—Command-Shift-U

■ Outline—Command-Shift-O

■ Shadow—Command-Shift-S

■ Condense—Command-Shift-Option-C

■ Extend—Command-Shift-E

See “Formatting commands” on page 70.

You can change the font styles for the Listener and Browsers (as well as the 
source font style) using Preferences.

Subprojects (Aspect) 3Browse

Operates on the active project and its subprojects, listing their subprojects. 

Note
Remember that a subproject is simply a project that has 
been included in another project.

Subprojects (Aspect) is commonly used to customize a browser pane 
displaying that aspect of project.

See Aspect and “Customizing browsers” on page 58 for more information.



C H A P T E R  3  

Apple Dylan Reference

264 Target Architecture

Target Architecture 3Project

Identifies the target platform, either 68K or PowerPC, for any projects built into 
applications or libraries. The default target is 68K. The target machine chosen 
remains set across all projects, whether they are currently open or not. If, for 
instance, a closed project had a 68K target when last opened and then is 
reopened after the target has been changed to PowerPC, the project will be 
retargeted to PowerPC. If a project is active when the target machine is 
changed, the application nub is quit and the name shown in the Listener 
changes to reflect the new target.

After you switch architectures, you must use the Update Project command to 
refresh the compiler results database and library model files. Otherwise, they 
will reflect the state they were in the last time the architecture was switched.

There is no provision in Apple Dylan for automatically using different source 
code for the two target machines. 

Related commands: Set Project Type, Launch Application Nub, Quit 
Application Nub.

Tether to Application 3Project

Tethers the development environment to a running, standalone application 
(which was originally created using the Create Application command from 
within Apple Dylan). The standalone application can then be debugged. The 
compiler results database for the original project must be available to tether to 
a standalone application. The application can either be on the same machine as 



C H A P T E R  3

Apple Dylan Reference

Text of (Aspect) 265

Apple Dylan or it may be running on some other system to which you have 
access. 

The standalone application must be halted before you can use this command. 
You can cause it to halt by setting the event-check variable to be your own 
method for detecting a break request. For more information on event-check, see 
the book Apple Dylan Extensions and Framework Reference.

Here is an example of typical usage: if you get an error while running a 
standalone Dylan application, launch Apple Dylan and issue the Tether to 
Application command. You can then debug the application.

The notation “(Unconnected)” disappears from the Listener when the project’s 
compiler results database file is tethered to the Application Nub.

See “Apple Dylan User Model” on page 95.

Related commands: Create Application, Launch Application Nub, Quit 
Application Nub.

Text of (Aspect) 3Browse

Operates on warnings in the active project, listing inline the expanded long text 
of the selected warning.

Text of (Aspect) is commonly used to customize a browser pane displaying that 
aspect of a warning. You can also select a single warning in a pane and display 
its expanded long text inline. See Aspect and “Customizing browsers” on 
page 58 for more information.

Uncompiled Source Folders (Aspect) 3Browse

Operates on modules, projects and subprojects in the active project, listing the 
source folders in the active project that contain uncompiled sources.

Uncompiled Source Folders (Aspect) is commonly used to customize a browser 
pane displaying that aspect of a module or project. See Aspect and 
“Customizing browsers” on page 58 for more information.



C H A P T E R  3  

Apple Dylan Reference

266 Uncompiled Source Records (Aspect)

Uncompiled Source Records (Aspect) 3Browse

Operates on containers in the active project containing source records, listing 
the uncompiled source records they contain. Source record objects are methods, 
classes, variables, constants, macros, generic functions, comments, and 
top-level forms.

Uncompiled Source Records (Aspect) is commonly used to customize a 
browser pane displaying that aspect of a container. See Aspect and 
“Customizing browsers” on page 58 for more information.

Uncompiled Modules of (Aspect) 3Browse

Operates on a project or subproject in the active project, listing the modules 
containing uncompiled sources. 

Note
Remember a subproject is simply a project that has been 
included in another project.

Uncompiled Modules of (Aspect) is commonly used to customize a browser 
pane displaying that aspect of a project. See Aspect and “Customizing 
browsers” on page 58 for more information.

Undefined Variables 3Browse

Opens a browser that lists the undefined variables in the active project.

Undefined Variables (Aspect) 3Browse

Operates on a container in the active project, listing the undefined variables in 
that container.

Undefined Variables (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a container. See Aspect and “Customizing browsers” 
on page 58 for more information.



C H A P T E R  3

Apple Dylan Reference

Undo 267

Undo 3Edit

Undoes your last edit.

Key shortcut: Command-Z

Undo, Clear, Redo Clear, and Undo Clear replace one another on the File menu, 
depending on which is appropriate.

See “Editing in Apple Dylan” on page 66.

▲ W A R N I N G

Clear supports Undo and Redo only for text. If you have 
cleared an object, folder, or subproject, it cannot be undone 
or redone. If you are about to clear a subproject, you are 
warned. You cannot clear required subprojects. 

Undo Clear 3Edit

Undoes a Clear by reinstating the text or object you had deleted. You can use 
Redo Clear to delete the text again, after using Undo Clear. Undo, Clear, Redo 
Clear, and Undo Clear replace one another on the File menu, depending on 
which is appropriate. 

See “Editing in Apple Dylan” on page 66.

▲ W A R N I N G

Clear supports Undo and Redo only for text. If you have 
cleared an object, folder, or subproject, it cannot be undone 
or redone. If you are about to clear a subproject, you are 
warned. You cannot clear required subprojects. 

Undo More 3Edit

Undoes your last edit up to 20 edits. The undos are in reverse order.

See “Editing in Apple Dylan” on page 66.



C H A P T E R  3  

Apple Dylan Reference

268 Unsaved Modules of (Aspect)

Unsaved Modules of (Aspect) 3Browse

Operates on an uncompiled active project, listing the unsaved modules in it.

Unsaved Modules of (Aspect) is commonly used to customize a browser pane 
displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Unsaved Source Records 3Browse

Opens a browser that lists all source folders that hold unsaved source records 
in the active project. The following figure shows the only unsaved source 
record in the puzzle project, tile-size-v.

Unsaved Source Records (Aspect) 3Browse

Operates on containers, listing source folders that hold unsaved source records 
in the active project. 

Unsaved Source Records (Aspect) is commonly used to customize a browser 
pane displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Update Project 3Project

Compiles any source records in the active project that have changed since the 
last update or recompilation and downloads them to the Application Nub, if it 
is tethered to the development environment. Any orphan definitions are 



C H A P T E R  3

Apple Dylan Reference

Variable Definitions of (Aspect) 269

eliminated with this command. Orphan definitions are caused when source 
records are created, compiled, and then deleted.

Key shortcut: Command-U

Only the active project can be updated. Use the command Activate Project to 
make any open project the active project.

See the Project Interaction sheet under Preferences to choose whether to update 
a project automatically when it is opened.

Related commands: Recompile, Revert.

Variable Definitions of (Aspect) 3Browse

Operates on source records or definition entities in the active project, listing all 
variable definitions they include.

Variable Definitions of (Aspect) is commonly used to customize a browser pane 
displaying those aspects of an object.

See Aspect and “Customizing browsers” on page 58 for more information.

Variable Search 3Browse

Finds all variables in the active project that contain the entered string. 

▲ W A R N I N G

This is not a text search, but a search of the compiler 
results database. Uncompiled variables and text in 
comments will not be found.



C H A P T E R  3  

Apple Dylan Reference

270 Warning Source Record of (Aspect)

Warning Source Record of (Aspect) 3Browse

Operates on warnings in the active project, listing the sources for the selected 
warning.

Warning Source Record of (Aspect) is commonly used to customize a browser 
pane displaying those aspects of an object.

See Aspect and “Customizing browsers” on page 58 for more information.

The Warnings command opens a single-pane browser displaying all warnings 
for the active project. Warning Source Record of shows source records for 
selected warnings in this browser.

Warnings 3Browse

Opens the Warnings browser listing any objects in the active project that have 
generated warnings. The warnings are included. You can have more than one 
Warnings browser open at a time.

The following figure shows a typical Warnings browser.

Warnings for Downloaded Code of (Aspect) 3Browse

Operates on any object in the active project, listing warnings for any 
downloaded code. The types of warnings listed are compiler, linker, runtime 
errors, and runtime notices.

The Warnings command opens a single-pane browser displaying all warnings 
for the active project. Warnings for Downloaded Code of (Aspect) shows 
source records for selected warnings in this browser.



C H A P T E R  3

Apple Dylan Reference

Warnings (for Selection) 271

Warnings (for Selection) 3Browse

Displays a browser that lists all warnings for the selected object. 

The Warnings command opens a single-pane browser displaying all warnings 
for the active project.

Warnings of (Aspect) 3Browse

Operates on source records and containers in the active project, listing all 
associated warnings. The types of warnings listed are compiler, linker, runtime 
errors, and runtime notices.

The Warnings command opens a single-pane browser displaying all warnings 
for the active project. Warnings of (Aspect) shows source records for selected 
warnings in this browser.



C H A P T E R  3  

Apple Dylan Reference

272 Warnings of (Aspect)



 

273

 

Glossary

 

.

 

π − 

 

the

 

 

 

suffix of an Apple Dylan project 
document.

 

.dl

 

 − 

 

the suffix of a Dylan library file.

 

.dylan

 

 

 

−

 

 the suffix of a Dylan text file.

 

.fasl

 

 − 

 

compiled Lisp file used by the Apple 
Dylan development environment.

 

.lisp

 

 − 

 

Lisp file used by the Apple Dylan 
development environment.

 

.rsrc

 

 −

 

 the suffix of a Macintosh

 

 resource 
file

 

. 

 

active project

 

 − 

 

the open project that can be 
compiled and downloaded to the 
application nub. There can be only one 
active project at a time. Only the active 
project has its 

 

compiler results database

 

 
loaded in the development environment. 
All relationships and aspects of the active 
project are available through the browsers. 
Inactive projects offer limited browsing. The 
active project is sometimes called the 

 

root 
project

 

 because all its

 

 subprojects

 

 are also 
active. 

 

Apple Dylan

 

 − 

 

the Dylan development 
environment created by Apple, including 
the 

 

framework

 

 and 

 

Creole

 

.

 

Apple Dylan Listener

 

 − 

 

the window that 
allows you to interact with the your 
application as it runs. See

 

 connected

 

, 

 

tethered

 

, 

 

application nub

 

, 

 

runtime

 

. 

 

application

 

 − 

 

Internally, applications and 
libraries built by Apple Dylan are identical, 
except that an application includes a startup 
function. An application can be started and 
achieves some end result. 

 

application nub

 

 − 

 

a tiny application that 
serves as the core of your Dylan program. 
The nub is essentially an empty Dylan 
application. See 

 

runtime

 

.

 

aspect

 

 − 

 

a view of a particular relationship 
between objects. Aspects provide links 
between objects that describe relationships 
in a system. Source code is an obvious 
aspect of an object. Another aspect of an 
object is all the compiler linker, and runtime 
errors or warnings associated with it. All 
objects referenced by the source code of an 
object are aspects of that object, as are all 
objects containing a reference to that object. 
You can view all defined aspects of an 
object using a browser. The Aspects menu 
appears on the Browser menu.

 

auto-indentation

 

 − 

 

services that 
automatically indent source code for 
readability. Controlled from the Editing 
Sheet of the Preferences command.

 

automatic memory management

 

 − 

 

a 
system that reclaims objects from memory 
when they can no longer be referenced. This 
also known as garbage collection. When 
automatic memory management is running 
a “GC” icon replaces the cursor.

 

 

This document was created with FrameMaker 4.0.4



 

G L O S S A R Y

 

274

basis

 

 − 

 

the object that forms the input for a 
browser pane. The basis of a pane is 
displayed in the pane header. 

 

browser

 

 − 

 

a paned window where you 
create and examine Apple Dylan objects. 
Typically, browsers comprise a set of linked 
panes displaying successively finer detail 
about a project or object. For example, the 
default project browser has three panes, the 
first showing the libraries and modules in a 
project, linked to a pane showing the 

 

source 
folders

 

 in one of those modules, linked to a 
pane showing the objects in that folder. If 
you change the selection in any of the first 
two panes, the succeeding panes change 
accordingly. See

 

 hot link

 

.

 

call tree

 

 

 

−

 

 the references to an object and 
references from an object are

 

 aspects

 

 that 
can be

 

 

 

combined to create a graphic display 
of that object’s calling relationships called a 
call tree.

 

cold link

 

 − 

 

See 

 

hot link

 

. 

 

compiler results database 

 

−

 

the database 
that holds object code, debugging 
information, and other information 
generated by the compilation. 

 

connected

 

 − 

 

in the Listener, short for 
connected to the 

 

runtime, 

 

which means the 
Application Nub is connected to the 
development environment. See 

 

tethered

 

.

 

container

 

 

 

−

 

 any object that contains other 
Apple Dylan objects, such as 

 

projects

 

, 

 

subprojects

 

, 

 

modules

 

, and 

 

source folders

 

.

 

Creole

 

 − 

 

feature of Apple Dylan providing 
cross-language support, used primarily for 
accessing the Macintosh Toolbox and other 
existing C libraries.

 

definition entity

 

 

 

−

 

 the compiled 
representation of an object. In most uses of 
Apple Dylan you are looking at the object 
as compiled. However, each object has at 
least one definition entity and may have 
more, as in the case of a class, which has a 
definition entity for each slot. It is rare that 
you will need to work directly with a 
definition entity, but certain browsers may 
display them, using the bare icon for that 
kind of object. (See “Orphan definitions in 
the runtime” on page 111, “Apple Dylan 
Listener” on page 113, and “Using icons in 
Apple Dylan” on page 88. 

 

development environment

 

 − 

 

the set of 
browsers, commands, and tools that 
support programming activities, also called 

 

Apple Dylan

 

. The development 
environment can link to any application or 
library built with Apple Dylan. 

 

download

 

 −

 

 to move compiled code from 
the development environment to the 
application nub. Performed automatically 
by the development environment as part of 
updating, compiling, or recompiling.

 

Dylan text file

 

 − 

 

a file that contains a text 
version of Dylan source code with the 
.dylan suffix. Used for representing Dylan 
source code outside the Apple Dylan 
development environment.

 

Dylan-user module

 

 − 

 

A source module 
included in all projects. In the simplest 
projects, it contains all the code for the 
project. In more complex projects, it 
contains the module and library definitions 
used to structure the rest of the project.



 

G L O S S A R Y

 

275

Emacs

 

 - an editor available on 
non-Macintosh platforms. Emacs-style 
editing has been partially implemented in 
Apple Dylan using Fred. See also 

 

Fred

 

.

 

export

 

 − 

 

1. The Export command on the File 
menu creates a

 

 Dylan text file

 

.

2. In Dylan programming, you must write 
code to export modules from libraries and 
export variables from modules to make 
them importable for use by your project or 
by other modules, respectively.

 

expression -

 

 Anything that returns a value 
is considered an expression in Apple Dylan.

 

framework

 

 − 

 

an object-oriented class 
library that implements a common set of 
features found in Macintosh applications, 
such as the Clipboard, text editing, an event 
loop and event handling, scrolling and 
tracking, error reporting and event 
handling, resource management and 
streams. Just as the application nub is an 
empty Dylan application, the framework 
can be thought of as a generic, content-free 
Macintosh application.

 

Fred

 

 - an editor used to emulate 
Emacs-style editing. Fred stands for “Fred 
Resembles Emacs Deliberately”. See also 

 

kill ring

 

.

 

garbage collection

 

 − 

 

see 

 

automatic memory 
management

 

.

 

hot link

 

 − 

 

Panes

 

 

 

so linked that when you 
select an object in the first, the contents of 
the object are displayed in the second pane 
are said to be hot-linked. When you split a 
pane by using a splitter control, the two 
panes are automatically hot-linked.

 

inactive project

 

 − 

 

a project that is open, but 
cannot be compiled or downloaded because 
its database is not loaded in the 
development environment. You can open 
an inactive project to browse its text or copy 
code from it, but you cannot use most other 
browser features. See 

 

active project

 

.

 

inbox

 

 − 

 

the arrow at the left of a pane’s 
header that represents the input to the pane, 
that is, what is displayed there. See

 

 outbox

 

. 

 

incremental compilation

 

 − 

 

Apple Dylan 
supports changing and compiling any 
complete expression. You need not compile 
all possible code to make a change. You can 
compile

 

 projects

 

, 

 

source modules

 

, 

 

source 
folders

 

, 

 

source records

 

, and individual 

 

expressions

 

. (You can even compile and 
execute code that has been commented out.) 

 

information line

 

 − 

 

the region at the bottom 
of a browser window that provides 
ephemeral information depending on what 
you have selected. Also called the prompt 
area. If you have selected a function, its 
arguments are displayed. If you are 
dragging an object, you are told whether it 
can be dropped or not. In general, the 
information line gives feedback on current 
activities in the browser. 

 

inline

 

 − 

 

In the development environment, 
certain commands or mouse gestures 
display their results in the same pane, or 
inline, as opposed to a separate pane. 

 

inspector window

 

 − 

 

a window that 
displays information about objects in the 

 

runtime

 

. 



 

G L O S S A R Y

 

276

kill ring

 

 - the means of copying text as you 
edit in Fred. This is analogous to the 
Clipboard, but sometimes conflicts with it. 
See also 

 

Fred

 

.

 

launch application nub

 

 − 

 

start the nub 
running and tether the development 
environment to the application nub. See 

 

connected

 

, 

 

tethered

 

, 

 

runtime

 

. 

 

library

 

 − 

 

a set of linked modules built in 
Apple Dylan with the Create Library 
command. 

 

Listener

 

 −

 

 See

 

 Apple Dylan Listener

 

. 

 

load order

 

 − 

 

the order of the source records 
within a 

 

source folder

 

 and the order of 
source folders within a module and the 
order of modules within a project indicates 
the load order. 

Two-pass compilation eliminates load-order 
restrictions of the type solved by forward 
declarations in other languages, but true 
load-order dependencies must still be 
addressed.

 

meter expression

 

 − 

 

to track the use of an 
expression.

 

module − a namespace for variable names. 
Items can be exported and imported 
between modules. Only specifically 
exported variables are visible outside of 
their module. Modules are contained in 
projects. Modules contain source folders.

nub − see application nub.

object-oriented dynamic language − 
Programming language supporting 
self-identifying objects, with automatic 
memory management, dynamic linking, 
and incremental development.

OODL − object oriented dynamic language

open project − a project with a project 
browser available. See active project. 

orphan definition − a definition that exists 
in the runtime but has no apparent source. 
This can be caused when a source record 
that defines an entity is compiled and then 
subsequently renamed or deleted. Another 
cause is when the definition is defined, 
compiled and downloaded in the Apple 
Dylan Listener.

outbox − the arrow at the right of a pane’s 
header that represents the output from the 
pane. Whatever is selected in the pane 
drives the context of the next links.

pane − Each browser consists of one or 
more panes. Each pane has a basis (the 
object displayed in the header region) and a 
default aspect (the kind of information 
displayed about the object). 

project − an application or library under 
development. The project document has a 
suffix of π. 

project file − the file in the Finder that 
contains pointers into all the documents 
that make up a project.

project browser − browser whose root pane 
has a project as its basis. The default project 
browser has three panes.

prompt area - See information line.

resource file − a standard Macintosh 
resource file with the suffix .rsrc. Use 
ResEdit or another resource editor to 
change the contents of a resource file. 



G L O S S A R Y

277

root project − The active project is 
sometimes called the root project because it 
makes all its subprojects active as well.

runtime − everything that has been 
downloaded to the application nub or that 
has been built into an application. When the 
development environment is tethered to the 
application nub, or to a running 
application, it is said to be tethered to the 
runtime. 

select, selection− Using the mouse, you can 
select modules, source folders, source 
records, or text within source records. Most 
actions in the Apple Dylan development 
environment depend on what you have 
selected. You can create a browser by 
selecting an object and double-clicking it. 
You can examine the union of aspects of 
several objects by selecting them all. You 
can compile individual source records or 
portions of source text through selection. 
Whatever is selected is highlighted.

source database − all sources for a project 
are included in this database. This database 
stores all the source code seen through the 
browsers. See compiler results database.

source folder − a container within a 
module that contains individual source 
records. Source folders are used primarily 
for organizing your project, but the order in 
which they are listed determines load order. 
There is no Dylan language construct 
corresponding to the source folder. 

source module − See module.

source record − the container that holds a 
single piece of source code, usually 
representing a single object. Source records 
are contained in source folders.

splitter control− splits a pane. The 
horizontal splitter control is a short, 
horizontal bar just above the scroll bar on 
the right of a pane. The vertical splitter 
control is a short, vertical bar just to the left 
of the scroll bar at the bottom on a pane. 

status indicator − a small colored square 
that appears in a browser pane or its header 
to indicate the status of an item or object. 

status indicator column − the gray bar at 
the left of a browser pane where the status 
indicators appear.

subproject − a project that has been 
included in another project. 

tethered − short for tethered to the runtime, 
or application nub. To be tethered means 
that the application nub is running, and 
Apple Dylan is connected to it.

unconnected − in the Listener, short for 
unconnected from the runtime. See runtime.

update − to automatically compile all 
uncompiled code and download it to the 
application nub. The action of the Update 
Project command.

user-interface builder − the portion of the 
development environment that helps you 
create a user interface for an application.



G L O S S A R Y

278



 

279

 

Index

 

A

 

Abort command 176
About Apple Dylan command 176
Activate Project command 176
Active project 273
Adding

framework 131
new user interface 163
resource files 131
subprojects 131
user-interface builder 162

Add to Project command 177
All Methods of (Aspect) command 177
All Slots of (Aspect) command 177
All Subclasses of (Aspect) command 178
All Superclasses of (Aspect) command 178
Apple Dylan 273

bailing out 117
running 8
running applications in 144
user model 95

Apple Dylan Listener 113, 116, 273, 276
Apple Dylan Listener command 178
Apple menu

About Apple Dylan command 176
Hide Interface Builder command 214
Show Interface Builder command 257

Application Nub 107, 273, 276
launching 276
tethering Apple Dylan to 6

Application Nub Info command 181
Applications 1, 2, 273

building 164
building standalone 118, 164
running 15, 144
setting characteristics 104, 126
tethering to 145

Argument List (Copy Special) command 182
Argument List (Insert Special) command 182
Aspect 273
Aspect command 183
Aspects

changing 46
creating browsers for 5
showing 42

Auto-indentation 273
Automatic memory management 273

 

B

 

Bailing out 117
Basis 2, 34, 274
Break command 189
Browse menu

All Methods of (Aspect) command 177
All Slots of (Aspect) command 177
All Subclasses of (Aspect) command 178
All Superclasses of (Aspect) command 178
Aspect command 183
Call Grapher command 190
Classes of (Aspect) command 197
Class Grapher command 193
Contents of (Aspect) command 202
Direct Methods of (Aspect) command 206
Direct Methods of command 206
Direct Slots of (Aspect) command 206
Direct Slots of command 206
Direct Subclass of (Aspect) command 207
Direct Superclasses of (Aspect) command 207
Duplicate Definitions command 207
Duplicate Definitions of (Aspect) 

command 208
Function Family (Aspect) command 213

 

 

This document was created with FrameMaker 4.0.4



 

I N D E X

 

280

 

Function Family command 212
Functions of (Aspect) command 213
Grapher Pane command 213
Info for Selected Class command 215
List of Browsers command 228
Look Up in Online Reference command 230
Modules of (Aspect) command 234
New Browser command 234
References From (Aspect) command 249
References From command 249
References To (Aspect) command 250
References To command 249
Resource Files of (Aspect) command 251
Save Browser command 253
Show Home command 256
Source Code of (Aspect) command 258
Source Folders (Aspect) command 259
Source Records (Aspect) command 259
Source Records with Warnings (Aspect) 

command 259
Status Indicators command 260
Subprojects (Aspect) command 263
Text of (Aspect) command 265
Uncompiled Modules of (Aspect) 

command 266
Uncompiled Source Folders (Aspect) 

command 265
Uncompiled Source Records (Aspect) 

command 266
Undefined Variables (Aspect) command 266
Undefined Variables command 266
Unsaved Modules of (Aspect) command 268
Unsaved Source Records (Aspect) 

command 268
Unsaved Source Records command 268
Variable Definitions of (Aspect) command 269
Variable Search command 269
Warnings (for Selection) command 271
Warnings command 270
Warnings for Downloaded Code of (Aspect) 

command 270
Warnings of (Aspect) command 271
Warning Source Record of (Aspect) 

command 270

Browsers 2, 274
built-in 24
creating for a specific aspect of an object 5
customizing 58
default project 2
inbox 275
information line 275
linking 34
project 2, 276
saving configurations 61
using 15

Info for Selected Class 53
References To 49

Building
applications 164
libraries 164, 166
standalone applications 164

 

C

 

Call Grapher command 190
Call Recording command 191
Call tree 274
C code

including 132
Checking

code status 136
Classes of (Aspect) command 197
Class Grapher command 193
Class Template (Copy Special) command 195
Class Template (Insert Special) command 196
Clear command 69, 197
Close command 198
Code

C
including 132

checking status 136
compiling

excluding from 143
from Listener 141
including in 143

editing 76



 

I N D E X

 

281

 

importing 171
retrieving by importing 171
sharing 168

by exporting 168
uncompiled

compiling 140
Cold link 274
Collapse command 198
Color command 199
Compact Project command 200
Compilation

incremental 275
Compile and Download Region command 200
Compile and Download Selection command 200
Compile Expression command 201
Compile Region command 201
Compiler results database 1, 2, 274
Compile Selection command 202
Compiling

code
excluding 143
including 143
from Listener 141

projects 133
selections 139
uncompiled code 140

Container 274
Containers 5
Contents of (Aspect) command 202
Continue command 203
Copy command 67, 203
Copy Special command 68, 203
Copy Title Text command 204
Create Application command 204
Create Library command 205
Creole 274
Customizing

browsers 58
development environment 83

Cut command 67, 205

 

D

 

Debugging
projects 146

Debug menu
Abort command 176
Break command 189
Call Recording command 191
Continue command 203
Expand Macro command 210
Inspect Heaps command 216
Inspect Listener Result command 218
Inspect Module Variables command 218
Inspect Selection command 221
Meter Expression command 231
Pattern Match Macro command 242
Pattern Match Macro Including Builtin 

command 242
Reset Stack command 250

Defaults
setting

editing 86
Listener interaction 87

Definition entity 274
Development environment 274

customizing 83
introduction 1, 2
running 8
setting preferences 84

Direct Methods of (Aspect) command 206
Direct Methods of command 206
Direct Slots of (Aspect) command 206
Direct Slots of command 206
Direct Subclass of (Aspect) command 207
Direct Superclasses of (Aspect) command 207
Disclosure triangles 3
Duplicate Definitions command 207
Duplicate Definitions of (Aspect) command 208
Dylan text files 274

exporting 70
importing 70

Dylan-user module 274



 

I N D E X

 

282

 

E

 

Editing 66
code 76
commands

Emacs-style 66, 72, 76
Macintosh-style 71, 72

setting defaults 86
tools 66

Edit menu
Argument List (Copy Special) command 182
Argument List (Insert Special) command 182
Class Template (Copy Special) command 195
Class Template (Insert Special) command 196
Clear command 69, 197
Collapse command 198
Copy command 67, 203
Copy Special command 68, 203
Copy Title Text command 204
Cut command 67, 205
Expand command 209
Insert Special command 68, 216
Method Template (Copy Special) 

command 232
Method Template (Insert Special) 

command 233
Paste command 67, 241
Preferences command 243
Redo Clear command 248
Redo command 69
Select All command 253
Undo Clear command 267
Undo command 69, 267
Undo More command 69, 267

Emacs 66, 275
editing commands 72

Exclude Source Records command 208
Expand command 209
Expand Macro command 210
Export command 211
Exporting 275

code
sharing by 168

Dylan text files 70

Expression 275
Expressions

executing in Listener 5
metering 156

 

F

 

Fat applications 103
File menu

Add to Project command 177
Close command 198
Export command 211
Import command 214
New Module command 120, 237
New Project command 238
New Source Folder command 239
New Source Record command 239
New Text Window command 240
Open command 241
Page Setup command 241
Print command 247
Quit command 247
Revert command 251
Save All command 252
Save command 252

Find Again command 212
Find command 69
Find/Replace command 211
Find Selection command 212
Font command 212
Formatting commands

Color 70
Font 70
Size 70
Style 70

Framework 275
adding 131

Fred 72, 275
kill ring 276

Function Family (Aspect) command 213
Function Family command 212
Functions



 

I N D E X

 

283

 

monitoring 159
Functions of (Aspect) command 213

 

G

 

Garbage collection 275
Grapher Pane command 213

 

H

 

Heaps
inspecting 153

Hide Interface Builder command 214
Hot link 275

 

I

 

Icons
using 88, 93

Import command 214
Importing

code
retrieving by 171

Dylan text files 70
Inactive project 275
Inbox 275
Include Source Records command 214
Incremental compilation 275
Info for Selected Class browser 53
Info for Selected Class command 215
Information line 4, 275
Inline 275
Insert Special command 68, 216
Inspect Heaps command 216
Inspecting

heaps 153
Listener results 151
modules 154
stack 148

Inspect Listener Result command 218
Inspect Module Variables command 218
Inspector windows 116, 117, 275
Inspect Selection command 221
Inspect Stack command 221

 

K

 

Key command shortcuts 173, 175
Kill ring 276

 

L

 

Launch Application Nub command 227
Launching

runtime 135
Libraries 276

building 164, 166
setting characteristics 128
version numbers 106

Linking
browsers 34
panes 3, 34

Links 34
cold 274
hot 275
inbox 34

Listener 5, 273, 276
compiling code from 141
inspecting results 151
setting interaction defaults 87

Listener window 113, 116
List of Browsers command 228
Load order 120, 126, 237, 276
Load UI Builder command 230
Look Up in Online Reference command 230



 

I N D E X

 

284

 

M

 

Meter Expression command 231
Meter expressions 276
Metering

expressions 156
Method Template (Copy Special) command 232
Method Template (Insert Special) command 233
Module

source 277
Modules 276

inspecting 154
Modules of (Aspect) command 234
Monitoring

individual functions 159

 

N

 

New Browser command 234
New Module command 120, 237
New Project command 238
New Source Folder command 239
New Source Record command 239
New Text Window command 240

 

O

 

Object-oriented dynamic language 276
Objects

saving in panes 130
OODL 276
Open command 241
Open project 276
Orphan definitions 111, 276
Outbox 276
outbox 34

 

P

 

Page Setup command 241
Panes 2, 276

basis 2, 34
disclosure triangles 3
information line 4
Linking 34
linking 3
outbox 276
root 2
saving objects in 130
splitter control 277

Paste command 67, 241
Pattern Match Macro command 242
Pattern Match Macro Including Builtin 

command 242
Preferences command 84, 243
Print command 247
Project browser 276
Project files 276
Project menu

Activate Project command 176
Application Nub Info command 181
Compact Project command 200
Compile and Download Region command 200
Compile and Download Selection 

command 200
Compile Expression command 201
Compile Region command 201
Compile Selection command 202
Create Application command 204
Create Library command 205
Exclude Source Records command 208
Include Source Records command 214
Inspect Stack command 221
Launch Application Nub command 227
Load UI Builder command 230
Quit Application command 247
Quit Application Nub command 247
Recompile command 248
Run command 251
Set Project Type command 253
Target architecture command 264



 

I N D E X

 

285

 

Tether to Application command 264
Update Project command 268

Projects 95, 276
active 102, 273
applications

setting characteristics 126
browsing 16
compiling 133
creating new 120
debugging 146
files 101
inactive 102, 275
libraries

setting characteristics 128
open 276
opening 11, 101
root 102, 277
saving 130
scope 97, 100
setting characteristics 104

applications 104
libraries 104

sharing 168
starting 119
synchronization 109

orphan definitions 111
restoring 113

Prompt area 276

 

Q

 

Quit Application command 247
Quit Application Nub command 247
Quit command 247

 

R

 

Recompile command 248
Redo Clear command 248
Redo command 69
References From (Aspect) command 249

References From command 249
References To (Aspect) command 250
References To browser 49
References To command 249
Replace and Find command 250
Replace command 69
Reset Stack command 250
Resource files 276

adding 131
Resource Files of (Aspect) command 251
Revert command 251
Root project 277
Run command 251
Runtime 277

launching 135
untethering from 136

 

S

 

Save All command 252
Save Browser command 253
Save command 252
Saving

objects in panes 130
projects 130

Select All command 253
Selection 277
Selections

compiling 139
Set Project Type command 253
Sharing

code 168
by exporting 168

projects 168
user interface 164

Show Home command 256
Show Interface Builder command 257
Size command 258
Source Code of (Aspect) command 258
Source database 277
Source folder 277
Source Folders (Aspect) command 259



 

I N D E X

 

286

 

Source module 277
Source records 1, 2, 277
Source Records (Aspect) command 259
Source Records with Warnings (Aspect) 

command 259
Splitter control 277
Stack

Inspecting 148
Standalone applications

building 118
Status

code
checking 136

Status indicator column 277
Status indicators 277

and synchronization 111
Status Indicators command 260
Style command 263
Subprojects 277

adding 131
Subprojects (Aspect) command 263
Synchronization 109

restoring 113

 

T

 

Target Architecture 103
Target Architecture command 264
Tethering 6, 277

to running applications 145
Tether to Application command 264
Text menu

Color command 199
Find Again command 212
Find command 69
Find/Replace command 211
Find Selection command 212
Font command 212
Replace and Find command 250
Replace command 69
Size command 258
Style command 263

Text of (Aspect) command 265
Two-machine development 9, 120, 244

 

U

 

Uncompiled Modules of (Aspect) command 266
Uncompiled Source Folders (Aspect) 

command 265
Uncompiled Source Records (Aspect) 

command 266
Undefined Variables (Aspect) command 266
Undefined Variables command 266
Undo Clear command 267
Undo command 69, 267
Undo More command 69, 267
Unsaved Modules of (Aspect) command 268
Unsaved Source Records (Aspect) command 268
Unsaved Source Records command 268
Untethering

from runtime 136
Update Project command 268
Updating 277
User interface

adding new 163
creating 161
sharing 164

User-interface builder 277
adding 162

User model 95

 

V

 

Variable Definitions of (Aspect) command 269
Variable Search command 269

 

W

 

Warnings (for Selection) command 271
Warnings command 270



 

I N D E X

 

287

 

Warnings for Downloaded Code of (Aspect) 
command 270

Warnings of (Aspect) command 271
Warning Source Record of (Aspect) 

command 270
Windows menu

Apple Dylan Listener command 178



T H E  A P P L E  P U B L I S H I N G  S Y S T E M

This Apple manual was written, edited, 
and composed on a desktop publishing 
system using Apple Macintosh 
computers and FrameMaker software. 
Proof pages were created on an Apple 
LaserWriter Pro printer. Final pages were 
created on a Docutek. Line art was 
created using Adobe Illustrator™ and 
Adobe Photoshop™. PostScript™, the 
page-description language for the 
LaserWriter, was developed by Adobe 
Systems Incorporated.

Text type is Palatino® and display type is 
Helvetica®. Bullets are ITC Zapf 
Dingbats®. Some elements, such as 
program listings, are set in Apple Courier.

PRODUCTION MANAGER
Trish Eastman

LEAD WRITER
Linda Kyrnitszke

WRITERS
Sarah Lee Bihlmayer, Tom Parmenter, 
Daphne Steck

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITORS
Lorraine Findlay, Alexandra Solinski

SPECIAL THANKS TO
Jeremy Jones, Paige Parsons, Andrew 
Shalit


	Using the Apple Dylan Development Environment
	Contents
	Preface
	What to Read
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	For More Information


	Learning Apple Dylan
	Introducing the Apple Dylan development environment
	Running Apple Dylan
	Running the development environment
	Opening a sample project
	Running a sample application

	Using browsers
	Browsing a project
	Using the built- in browsers
	Linking panes and browsers
	Showing different aspects of objects
	Changing aspects
	Using the browser References To
	Using the browser Info for Selected Class
	Customizing browsers
	Saving a browser configuration

	Editing in Apple Dylan
	Copy, Cut and Paste in Apple Dylan
	Copy Special and Insert Special commands

	Undo and Clear commands
	Replace and Find commands
	Formatting commands
	Importing and exporting Dylan text files
	Macintosh and Emacs- style editing commands
	Macintosh- style key commands
	Emacs- style key commands

	Editing code

	Customizing the development environment
	Setting development environment preferences
	Setting editing defaults
	Setting Listener interaction defaults

	Using icons in Apple Dylan

	Using Apple Dylan
	Apple Dylan User Model
	The Project
	What goes into a project?
	WhatÕs
	in a project?
	What happens when you open a project?
	The active project

	Targeting 68K and PowerPC Platforms
	Application or library?
	Library version numbers

	The Application Nub
	Keeping your project synchronized
	Orphan definitions in the runtime
	Status indicators and synchronization
	Restoring synchronization

	Apple Dylan Listener
	Inspector windows
	Bailing out of Apple Dylan
	Building standalone applications

	Starting a project
	Creating a new project
	Setting the project type for an application
	Setting the project type for a library
	Saving a project
	Saving the objects in a pane
	Adding a subproject or resource file
	Adding the framework
	Including C code

	Compiling your project
	Launching the runtime
	Untethering from the runtime
	Checking code status
	Compiling a selection
	Compiling all uncompiled code
	Compiling code from the Listener
	Excluding code from compilation
	Including code in compilation
	Running an application in Apple Dylan
	Tethering to a running application

	Debugging a project
	Inspecting the stack
	Inspecting Listener results
	Inspecting heaps
	Inspecting modules
	Metering expressions
	Monitoring an individual function

	Creating a user interface
	Adding the Apple Dylan interface builder
	Adding the new user interface
	Sharing your user interface

	Building your application or library
	Building your standalone application
	Building a library

	Sharing code
	Sharing projects
	Sharing code by exporting
	Retrieving code by importing


	Apple Dylan Reference
	Key Command Shortcuts
	Command Reference
	Inspector window commands
	Abort
	About Apple Dylan
	Activate Project
	Add to Project
	All Methods of (Aspect)
	All Slots of (Aspect)
	All Subclasses of (Aspect)
	All Superclasses of (Aspect)
	Apple Dylan Listener
	Application Nub Info
	Argument List (Copy Special)
	Argument List (Insert Special)
	Aspect
	Break
	Call Grapher
	Call Recording
	Class Grapher
	Class Template (Copy Special)
	Class Template (Insert Special)
	Classes of (Aspect)
	Clear
	Close
	Collapse
	Color
	Compact Project
	Compile and Download Region
	Compile and Download Selection
	Compile Expression
	Compile Region
	Compile Selection
	Contents of (Aspect)
	Continue
	Copy
	Copy Special
	Copy Title Text
	Create Application
	Create Library
	Cut
	Direct Methods of
	Direct Methods of (Aspect)
	Direct Slots of
	Direct Slots of (Aspect)
	Direct Subclass of (Aspect)
	Direct Superclasses of (Aspect)
	Duplicate Definitions
	Duplicate Definitions of (Aspect)
	Exclude Source Records
	Expand
	Expand Macro
	Export
	Find/Replace
	Find Again
	Find Selection
	Font
	Function Family
	Function Family (Aspect)
	Functions of (Aspect)
	Grapher Pane
	Hide Interface Builder
	Import
	Include Source Records
	Info for Selected Class
	Insert Special
	Inspect Heaps
	Inspect Listener Result
	Inspect Module Variables
	Inspect Selection
	Inspect Stack
	Stack window commands
	Inspector window commands
	Launch Application Nub
	Listener
	List of Browsers
	Load UI Builder
	Look Up in Online Reference
	Meter Expression
	Method Template (Copy Special)
	Method Template (Insert Special)
	Modules of (Aspect)
	New Browser
	New Module
	New Project
	New Source Folder
	New Source Record
	New Text WindowNew Text Window
	Open
	Page Setup
	Paste
	Pattern Match Macro
	Pattern Match Macro Including Builtin
	Preferences
	Print
	Quit
	Quit Application
	Quit Application Nub
	Recompile
	Redo Clear
	References From
	References From (Aspect)
	References To
	References To (Aspect)
	Replace and Find
	Reset Stack
	Resource Files of (Aspect)
	Revert
	Run
	Save
	Save All
	Save Browser
	Select All
	Set Project Type
	Show Home
	Show Interface Builder
	Show Interface Mapping
	Size
	Source Code of (Aspect)
	Source Folders (Aspect)
	Source Records (Aspect)
	Source Records with Warnings (Aspect)
	Status Indicators
	Style
	Subprojects (Aspect)
	Target Architecture
	Tether to Application
	Text of (Aspect)
	Uncompiled Source Folders (Aspect)
	Uncompiled Source Records (Aspect)
	Uncompiled Modules of (Aspect)
	Undefined Variables
	Undefined Variables (Aspect)
	Undo
	Undo Clear
	Undo More
	Unsaved Modules of (Aspect)
	Unsaved Source Records
	Unsaved Source Records (Aspect)
	Update Project
	Variable Definitions of (Aspect)
	Variable Search
	Warning Source Record of (Aspect)
	Warnings
	Warnings for Downloaded Code of (Aspect)
	Warnings (for Selection)
	Warnings of (Aspect)


	Glossary
	Index


