Using the Apple Dylan
Development Environment

Preliminary

Developer Press
Apple Computer, Inc.

Apple Computer, Inc.

0 1993-1995 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating
into another language or format.
You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

Printed in the United States of
America.

The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not

responsible for printing or clerical
errors.

This is a draft document. All
information herein is subject to
change without notice.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
Macintosh, Macintosh Quadra,
MPW, PowerBook, and ResEdit are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

ResEdit is a trademark of Apple
Computer, Inc.

Adobe Illustrator, Adobe
Photoshop, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
Docutek is a trademark of Xerox
Corporation.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

QuickView is a trademark of Altura
Software, Inc.

RAM Doubler is a registered
trademark of Connectix, Inc.
Mercutio MDEF from Digital
Alchemy

Copyright 0 Ramon M. Felciano
1992-1995, All Rights Reserved
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Contents

Preface vii

Chapter 1

What to Read vii

Conventions Used in This Book viii
Special Fonts viii
Types of Notes viii

For More Information ix

Learning Apple Dylan 1

Introducing the Apple Dylan development environment
Running Apple Dylan 8
Running the development environment 9
Opening a sample project 11
Running a sample application 15

Using browsers 15
Browsing a project 16
Using the built-in browsers 24
Linking panes and browsers 34

Showing different aspects of objects 42
Changing aspects 46

Using the browser References To 49

Using the browser Info for Selected Class 53
Customizing browsers 58

Saving a browser configuration 61

Editing in Apple Dylan 66
Copy, Cut and Paste in Apple Dylan 67
Copy Special and Insert Special commands 68

Undo and Clear commands 69
Replace and Find commands 69
Formatting commands 70

Importing and exporting Dylan text files 70
Macintosh and Emacs-style editing commands 71

iii

Macintosh-style key commands 71
Emacs-style key commands 72
Editing code 76
Customizing the development environment 83
Setting development environment preferences 84
Setting editing defaults 85
Setting Listener interaction defaults 87
Using icons in Apple Dylan 88

Chapter 2 Using Apple Dylan 95

Apple Dylan User Model 95

The Project 95
What goes into a project? 97
What's really in a project? 101
What happens when you open a project? 101
The active project 102

Targeting 68K and PowerPC Platforms 103

Application or library? 104
Library version numbers 106

The Application Nub 107

Keeping your project synchronized 109
Orphan definitions in the runtime 111

Status indicators and synchronization 111
Restoring synchronization 112

Apple Dylan Listener 113

Inspector windows 116

Bailing out of Apple Dylan 117

Building standalone applications 118
Starting a project 119

Creating a new project 120

Setting the project type for an application 126

Setting the project type for a library 128

Saving a project 130

Saving the objects ina pane 130

Adding a subproject or resource file 130

iv

Adding the framework 131
Including C code 132
Compiling your project 133
Launching the runtime 135
Untethering from the runtime 136
Checking code status 136
Compiling a selection 139
Compiling all uncompiled code 140
Compiling code from the Listener 141
Excluding code from compilation 143
Including code in compilation 143
Running an application in Apple Dylan 144
Tethering to a running application 145
Debugging a project 146
Inspecting the stack 148
Inspecting Listener results 151
Inspecting heaps 153
Inspecting modules 154
Metering expressions 156
Monitoring an individual function 159
Creating a user interface 161
Adding the Apple Dylan interface builder 162
Adding the new user interface 163
Sharing your user interface 164
Building your application or library 164
Building your standalone application 164
Building a library 166
Sharing code 167
Sharing projects 168
Sharing code by exporting 168
Retrieving code by importing 171

Chapter 3 Apple Dylan Reference 173

Key Command Shortcuts 173
Command Reference 175

Stack window commands
Inspector window commands

Glossary 273

222

223

Index 279

vi

PRETFAUCE

Preface

This book, Using the Apple Dylan Development Environment, gives you a good
look at the user interface and program development environment in Apple
Dylan. You'll find that the Apple Dylan tools allow flexible programming and
full access to information about your program.

The term Apple Dylan refers to the development environment and associated
tools, extensions and capabilities developed by Apple Computer for
programming in the Dylan language, an object-oriented dynamic language.

For more information on programming in the Apple Dylan language, see the
books Programming in Apple Dylan and Apple Dylan Extensions and Framework
Reference. For more details on creating a user interface for your application, see
the book Creating a User Interface in Apple Dylan. For information on how to
install and configure Apple Dylan on your system, see the booklet Apple Dylan
Quickstart.

What to Read

This book has three chapters, a glossary, and an index. You can either read it
sequentially or move around in it from one topic to another.

= Learning Apple Dylan—introductions to and explorations of the
development environment. This chapter should give you a chance to learn
how to interact with the development environment without a lot of
explanation. This chapter primarily familiarizes you with the browsing and
editing features of the Apple Dylan environment.

= Using Apple Dylan—deeper understanding and in-depth tasks described.
This chapter opens with a description of the Apple Dylan User Model,
which is the chain of actions and events that takes you from starting to write
code, through compiling, and finally to creating a running standalone
application.

vii

PRETFACE

= Apple Dylan Reference—alphabetical listing of all commands used in Apple
Dylan, along with examples. This chapter opens with a list of the keyboard
equivalent shortcuts for each command.

= Apple Dylan Glossary—all words introduced in bold are defined in the
glossary, along with many other terms used in Apple Dylan.

All chapters include many examples, and Learning Apple Dylan and Using
Apple Dylan include many step-by-step descriptions of common tasks.

Apple Dylan is probably different from any development environment you
have used in the past. By following the information presented in this book you
will soon find yourself interacting with the programs you develop in an
entirely different way, not as an editor buffer full of code or as a flow chart, but
as a living program. All of the program’s features are directly under your
control and organized, not by the requirements of a language or compiler, but
according to the way the program actually works.

Conventions Used in This Book

viii

This book uses various conventions to present certain types of information.

Special Fonts

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in a monospaced font (this is
monospaced).

When new terms are introduced, they are in boldface. These terms are defined
in the glossary.

Types of Notes

There are several types of notes used in this book.

PRETFAUCE

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main text.
Often, these Notes include additional information. See for
instance,“The active project” on page 102.

WARNING

A note like this contains information that is especially
important. As this is an early release of Apple Dylan, not
all interactions are as smooth as we want them to be. For
instance, the warning in “The active project” on

page 102. a

For More Information

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and the
most popular third-party development tools. APDA offers convenient payment
and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

ix

PRETFAUCE

America Online APDAorder
CompuServe 76666,2405
Internet APDA@applelink.apple.com

CHAPTER 1

Learning Apple Dylan

Dylan is a new programming language and Apple Dylan is a development
environment designed to be used with Dylan. The language provides
automatic memory management, type checking at both compile-time and
run-time, and a high-level exception handling mechanism. The Apple Dylan
framework further simplifies programming.

The Apple Dylan development environment supports incremental compilation
and the Apple Dylan Listener for executing individual expressions without
having to create the code scaffolding around them. User-interface design can be
performed in the graphically-oriented user-interface builder, which allows you
to see what your user interface will look like before you have written any code
for it, thus cutting down on recoding.

This chapter provides a general introduction to Dylan and the Apple Dylan
development environment, including installation, examples of interacting with
the browsers, and editing. See the chapter “Using Apple Dylan” on page 95 for
more specific information on using the environment to develop applications.

Introducing the Apple Dylan development environment

In Apple Dylan, you write code, compile, debug and build an application, but
the way you go about it is probably different from what you are used to. For
instance, the source code for an application is not written in files, but is broken
into individual source records, each method and class in its own source record.
Each construct of the Dylan language is an object that is stored individually in
a database and can be manipulated independently making the concept of
header files and object files obsolete. Everything that you have compiled is
stored in a database that can be viewed and manipulated through Apple Dylan
browsers.

Introducing the Apple Dylan development environment 1

CHAPTER 1

Learning Apple Dylan

The source database contains all your source code with all its links and
structure. What you see is a project displaying objects of finer and finer
granularity, right down to the source code. The largest containers in a project
are modules, which contain source folders. The source folders hold source
records, which contain the source code. All of these containers can be dragged,
dropped, and copied as if you were in the Finder.

The development environment displays the project in browsers, windows with
one or more linked panes. The browsers operate as if a set of panes were tiled
next to each other and then bound together so they could interact. Most
browsers are linked together in such a way that the object you select in one
pane has its contents displayed in another pane. This way you can browse
through a list of objects in the first pane, examining the contents of each in turn.
Information displayed in each pane is under your control.

A number of browsers are supplied with Apple Dylan but you can also create
browsers of your own. The main browser for a project is called the project
browser. The browser in the following figure is the default project browser
shipped with Apple Dylan. When you first open or create a project, this
browser configuration is displayed. In this example, the sample project
text-app was opened.

The default project browser has three panes linked to display the text-app
project. The title bar for the browser displays the project’s name, as does the
header of the pane in the upper-left. That pane displays the major components
of the project, mostly modules and subprojects. This is the root pane of the
browser because it is the browser’s upper-left pane. The root pane’s basis (or
source) is the project itself.

Introducing the Apple Dylan development environment

CHAPTER 1

Learning Apple Dylan

Project: text-app Eﬂgl
Gontents of ss O]| @ contents of [
il text-app » | » [text-app -
& Dylan g > 1 Copyright © 1994 by Apple Computer, Inc. AT rights Feserved. 5
[+ E# rmac-toolbosx [» Dg define-framework-Tibrary(“text-app")
ylan=framewor % dafine closs <text—app-behavior? (:behavior:
[+ B dylan-fi k = O5 dafi 1 text behavi <hehay i 3
D = [wylan-uszer P end class;
— 7 I define method behavior—setup—menus cbehavior :: <text-app-bd
== b B fextoapp 'k next-behaviors :: ¢list
"h text-app.rsrc main-handler :: <main-h

ighore(next-behaviors, main—handler;
ret—methodd) ;

ehable—itemi# " naw” 3 ;
[T Gentents of end method;

» [E text-app

Ehls@f@

B ﬂ Error in behavior-setup-rnenus : module text-app has not been defined
P [0 styled-text-behavior [p [behavior-event (behavior i1 thesxct-app-behavior, nest-behaviors 11 <list>, main-h
= [0 text-document [+ B behavior-event (behavior :: <text-app-behawior:, next-behaviors :: <list:, main-h
13 [Copyright @ 1994 [& $file-menu-id
[O, chewt-documents (4 I G $edit-menu-id
I % make-windows (do [» @& $font-rnenu-id
3 I read-from=file (do 7 [define constont $font-size-menu—id = 1003;
I % write-to-file (docu [Gt $font-style-menu-id
== [@@ text-app B B init-text 0 =210
¥ [set-library-init-functiondini t—text);

| ‘farnings indicator.

The pane in the lower-left displays the contents of whatever object you select in
the upper-left pane. The panes have been linked in the project browser to
display that relationship, although that link could be changed to display other
relationships. Likewise, in the default project browser the contents of any object
selected in the lower-left pane are displayed in the pane on the right.

In the previous figure the module named text-app has been selected in the
upper-left pane. That module holds the code for the project that the project’s
author wrote. Its contents appear in the lower-left pane. Notice that some of the
contents have been expanded within the pane using disclosure triangles, just
as you would in the Finder. The last object in the lower-left pane, a source
folder named text-app, has been selected, so its contents appear in the pane on
the right. In the pane on the right the numerous source records are listed and
some of them have been expanded. There is even a warning that has been
generated during compilation. The warning appears at the end of the source
code for the source record behavior-setup-menus.

The following figure shows the two left-hand panes of the browser in the
previous figure. This figure identifies some of the features on the panes and on
the browser, which surrounds the panes. The browser’s name is on the bar at
the top of the figure. In this example, the name is “Project: text-app”.

Introducing the Apple Dylan development environment 3

CHAPTER 1

Learning Apple Dylan

Name of project Zoom box
Project:Gent-app—e——xo—o———="

Name of project

Status indicator visible in pane

. Contents of mw” 7|
Icon representing —ﬁ text-app #»-——— Outgoing link
project @ Culan ’

> @ mac-toolbosx

> B dylan-framework

[> @ Dylan-user

Status indicator =s [» [text-app
Resource file

Praject: tent-app

T contonte of
% [text-app
> [Copyright © 1954 by Apple Computer, Inc. ATl rights reser ved
I Gy define

% text-app.raro

aric-Tiorary(“text=app™)
= ctext-app-behavior> {cbehavicr>)

setup-menus (beh

Name of module

Close pane box

o Contents of

» @ text-app

] Joruriant @ 19941

texct-document> (

Icon representing

module — [o] | Sfomtcsize-maracid - 005
I [0 styled-text-behavior i
Expanded == [text-document | i - umc Lionini t-text3; H
source folder D [Copyright [SREEES R e

[arnings indicatar

<tesct-document > 4

3

[make-windows (do
[read-from-file (do
=Y

B
B

Disclosure triangle —— [; ritemto-file (dooy
I

Status indicator .

BA text-app

]

Vertical splitter

text—appb G\"arni ngs indicatoD |

Information line
Module

The information line prompts you with ephemeral information depending on
what you have selected. If you have selected a function, its arguments are
displayed. If you are dragging an object, you are told whether it can be
dropped or not. In general, the information line gives feedback on current
activities in the browser; it is sometimes called the prompt area or status line.
The information line may be blank. The current module is displayed to its left.

The following figure identifies the features of the pane on the right side of the
browser.

Introducing the Apple Dylan development environment

Name of
source folder

Aspect visible
in pane

CHAPTER 1

Learning Apple Dylan

roject: text-app

| » [text-app

lose pane DOX — Nu.eeeNTT I b 03 Copyrignt @ 1924 by Appls Camputer, In. ATl Fights reserved. .
N\ = . : .
o entents of Ll Zoom box
Icon ——=5—" tent-app -
representing =2 Horizontal
source folder [* £1 Copyright @ 1994 by Apple Comnputer, Inc. ATl rights reserved.] .
i . . . [t splitter
Ir D define-framewark-library (" text-app™)
Incoming link = [define class <text—app—behavior? ¢:behauiors:)
end class;
Status -XV rﬁ define method behawvior-setup—menus (behavior :: <{text-app-bdg
indicator rext-behaviors ::
main=-handler :: Expanded
igharelnext-behaviors, main-handler?; || source
rnext-method) ; .
record with
gnablﬁ-étemf“"new" iH b an error in it
end method; —
rror in behavior-zetup-rmenus : module text-app has not been define .
E in behavi t dule text h t been defined Warnin
[B behawior-event (behavior o0 <text-app-behawior s, next-behaviors 1 <lists, rain-h generatged
rm behawvior-event (behawvior @ <text-app-behaviorr, next-behaviors 11 <listr, main- .
& behavi t (hehavi et behavi t-behavi list in—h. durlng
Unexpanded Jr & $file-menu-id compilation
source record I & $edit-menu-id
I & $font-menu-id
Expanded B define constant @
source record [Bt $font-style-menu-id
I B init-text O =202
Status F [a set-librarg-init-functiondinit—text); ||
indicator %
column =

There are many other types of browsers provided or supported by the

development environment to help you understand your project. You can create
a browser based on any aspect of an object. For instance, you could get a list of
the family of methods and the generic function a method belongs to. In
addition to the browsers supplied with Apple Dylan, you can create your own,
suited to the needs and nature of your project.

The development environment provides a means of executing individual
expressions outside the browsers. The Apple Dylan Listener allows you to type
in an expression and execute it independently of the project’s structure of
containers. The Listener allows you to try out coding ideas without creating an
entire structure to hold the code. In addition, all values returned and other
program results are printed to the Listener window for any code executed
anywhere in the development environment, even in the browsers.

Introducing the Apple Dylan development environment 5

CHAPTER 1

Learning Apple Dylan

You can enter any Dylan expression into the Listener for immediate execution.
For example, you can call functions in the Listener (including your
application’s startup function), and you can define functions, variables, and
classes in the Listener. The following figure shows the Apple Dylan Listener
window with a simple expression, 3 plus 4, entered at the prompt and the
return value, 7, returned by the Listener. The Listener is ready for the next
expression, as indicated by the waiting prompt, >.

Apple Dylan Listener: 68K
kHelcome to Apple Dylan!
>3+ 4

3

¥

EE|
&

puzz e vl [in puzzle |ibraryl |<:J|II

Your application under development can run under the control of the Apple
Dylan development environment. It doesn’t need to be complete and built as a
standalone application to do so. While you are still developing the program,
your code can run loaded into a small, “nub” of an application called the
Application Nub, which is tethered to the development environment. The code
you write is added to the application nub every time you compile the code,
allowing you to slowly build up to your final standalone application.

The following figure shows Apple Dylan tethered to the Application Nub, as it
is while you are developing your application.

Introducing the Apple Dylan development environment

CHAPTER 1

Learning Apple Dylan

AppleDylan

Application nub

Project sources

2 Library ~_ '@
/ Caches debuginfo

Database Libraries

When your project is complete and you build your standalone application, the
services provided by the application nub and the code in your project are
bundled together. The connection to the development environment is severed.

The following figure shows that when you build your standalone application,
the Application Nub and your application have become one and it has been
severed from the development environment.

Introducing the Apple Dylan development environment

CHAPTER 1

Learning Apple Dylan

AppleDylan

— N

Your application

/~ Caches Library

debug info

Database Libraries

Project sources

This means that from your point of view as a programmer, the application
under development and the standalone application are equal. Just as you can
interact with an unfinished project connected to the application nub, so too can
you interact with a standalone application that was already been built in Apple
Dylan. You might need to do this for further debugging of the application.

The browsers and the Listener help you write your source code and compile it,
but you need to debug it too. For that the development environment provides
inspector windows. When you have a problem, inspector windows let you
examine runtime objects to help you determine the cause of the problem.

Running Apple Dylan

When you have your system configured, you can install Apple Dylan by
following the instructions in the pamphlet Apple Dylan Quickstart.

To use Apple Dylan you must run it and open a project, either a sample project
or a new one. You might also want to run some of the sample projects’
standalone applications in the Finder to see what they do. You can run the
interface builder’s standalone version from the Finder if you want to see how it
works. To use it as you write your application, run it from inside the

8 Running Apple Dylan

CHAPTER 1

Learning Apple Dylan

development environment. See the chapter “Using Apple Dylan” on page 95
for more information.

You can run Apple Dylan on two machines by installing the Application Nub
and any pre-built libraries on a separate machine from the rest of the
development environment. The pre-built libraries, such as the Dylan library or
any libraries you have included with your application, must be in the same
folder as the Application Nub or in the Extensions folder on the separate
machine. If you wish to do two-machine development, see the book Apple
Dylan Quickstart for more information on memory and special setup
requirements.

Running the development environment

Apple Dylan is an application in the Apple Dylan folder you copied from the
Apple Dylan CD to your computer. You can run Apple Dylan SI instead, if
don’t have enough RAM to run the standard Apple Dylan. Depending on the
amount of RAM available on your system, you might want to quit any other
applications before running Apple Dylan.

Ordinarily, to run Apple Dylan you simply double-click its executable file. In
the following task you also adjust the memory. That is something you only
need to do the first time you run Apple Dylan.

You can run Apple Dylan on two machines by installing the Application Nub
and any pre-built libraries on a separate machine from the rest of the
development environment. The pre-built libraries, such as the Dylan library or
any libraries you have included with your application, must be in the same
folder as the Application Nub or in the Extensions folder on the separate
machine. If you wish to do two-machine development, be sure to select that on
the Application Nub sheet of the Preferences command. See the book Apple
Dylan Quickstart for more information on memory and special setup
requirements for two-machine development.

1. Follow the instructions in Apple Dylan Quickstart to set up your machine
properly.

2. Open the Apple Dylan folder.
The Apple Dylan folder contains two main folders, Apple Dylan and Apple

Dylan documentation. The Apple Dylan applications are in the folder Apple
Dylan.

Running Apple Dylan

CHAPTER 1

Learning Apple Dylan

3. Double-click on the Apple Dylan application.
You can also run Apple Dylan by double-clicking on Apple Dylan SI.

When you run Apple Dylan, the development environment displays the
unconnected Listener and the Apple Dylan menu bar. To use Apple Dylan
you should open a project. For more information on that, see the next task.

" & File Edit Texnt Projekt Browse Debug Windows

Apple Dylan Listener: 68K (Unconnected) ;@§|

lelcome to Apple Dylan! <
> =

Oyl an-User v| [in Dylan |ibraryl |¢I|]

4. Double-click on the file Application Nub from the Finder.
The Application Nub file is in the folder Apple Dylan: Apple Dylan Files:
Application Nub.
You must set the preferred memory for both the Application Nub and Apple
Dylan files to leave at least 50K unused when both are running. This is
because the system heap in Apple Dylan cannot expand properly when all
available memory has been allocated to applications. When you run Apple
Dylan in the future, after resetting the preferred size for these two files, you
don’t need to run the Application Nub file as well.
You will notice that the Application Nub has no user interface within Apple
Dylan, so even when it’s running, there is no menubar for it. That is because
it is the nub, or core of, the application you create. You create the menubar
and other user interface elements in the course of creating your application.
Ordinarily you launch and quit the Application Nub from within Apple
Dylan.

5. Quit Apple Dylan and choose About This Macintosh from the Apple
menu.
Note how much unused memory is left when both applications are running.

6. Set the preferred size for both Apple Dylan and the Application Nub
using the Get Info command.

Running Apple Dylan

CHAPTER 1

Learning Apple Dylan

7. Double-click on the Apple Dylan icon from the Finder and then
double-click on the Application Nub.

8. Choose About This Macintosh from the Apple menu.
Verify that at least 50K of unused memory is available.

9. Double-click on Quit Application Nub from the Finder.
When you have the memory adjusted properly, quit the Application Nub
before proceeding with any other tasks in this chapter. The Quit Application
Nub file is in the folder Apple Dylan: Apple Dylan Files: Application Nub.

Ordinarily you launch and quit the Application Nub from within Apple
Dylan. However, in this case and other rare cases, you might need to quit the
Application Nub using this executable file in the Finder.

Opening a sample project

Several sample projects have been included with Apple Dylan. You can find the
samples in the Sample Code subfolder or via an alias to more samples that is in
Sample Code. To open a project, you use the Open command on the File menu
and select its project file, which has the suffix ”.7". You can also open a project
by double-clicking on its project file in the Finder. This will also launch Apple
Dylan if it’s not already running.

Open one, such as the puzzle project, to see how it looks in the development
environment. The sample project puzzle is interesting because it includes the
Apple Dylan framework, which is a subproject called dylan-framework in the
root (upper-left) pane of the project browser. It also includes mac-toolbox,
which allows access to existing Macintosh toolbox code.

The first project you open in each session of Apple Dylan is automatically
made the active project. If you open other projects in the same session, they are
inactive. Only one project can be active at one time and only the active project
has full Apple Dylan functionality in it, such as being able to compile it or see
its various aspects. You can change the active project using the Activate Project
command.

1. Choose Open from the File menu.
A dialog box allows you to choose the sample project you want to open.

Running Apple Dylan 11

12

CHAPTER 1

Learning Apple Dylan

2. Choose the alias “More Samples” to go to more sample code.
In the folder Sample Code in Apple Dylan, you will find several sample
projects, as well as an alias to other samples. The alias takes you to samples
that use the framework.

3. Find the puzzle project, which is in the puzzle folder, and select the file
that ends with “.1t“.
Click OK when you have selected the file puzzle.t

The puzzle project opens displaying its default project browser. It consists of
three panes. The pane in the upper-left is the root pane for the project
browser. You can see the name of the project in the browser’s name, “Project:
puzzle,” as well as in the header of the root pane. The icon for a project is
also in the root pane’s header.

E[[==——————————— Project:puzzle ==———— 1|5
Contents of C]| F Gentents of |
@ puzzle % | » []library & module o

@& Dylan [> B Copyright © 1994 by Apple Cornputer, Inc. ATl right‘;
[+ B8 rmac-toolbox I B puzzie .
[+ B8 dylan-framework I+ @ puzzie

[+ B Dylan-uzer
I @ puzzie

[@ Gontents of =l
+ [E Dylan-user *

[» B tibrary & module

=&l

Dylan-user |

4. Resize the project browser for easier viewing, if you want.
You can expand the browser, if you want, by zooming the window with its
zoom box. You can also drag the browser and each pane with their resizing
boxes in their bottom right-hand corners.

Notice the six objects in the root pane. Three are libraries, which are
represented with the subproject icon in Apple Dylan, two are modules and
one is a resource file.

Running Apple Dylan

CHAPTER 1

Learning Apple Dylan

Dylan is a library that contains the basic definitions of the Dylan language
and the Apple Dylan extensions. This subproject is automatically included in
all projects and cannot be removed or modified.

Mac-toolbox is a library containing the Macintosh toolbox calls that have
been included with this project. It is up to you to add this library and
include any of the Macintosh toolbox calls you want to use in your project.

Dylan-framework is a library containing the Apple Dylan application
framework. You must add the framework to your project if you want to use
it; it is not automatically added to a new project. Since the source code for
the framework is included in Apple Dylan, you could modify it if you want,
however, this is not a common practice, nor is it recommended.

Dylan-user is a module. Every project has its own individual Dylan-user
module. In very simple projects all the code for the project can be in the
Dylan-user module. More commonly, it is standard practice for the
Dylan-user module to contain the module definition and library definition
used to structure the rest of the project. You will have to write your own
module definition and library definition for your project.

The puzzle module is a container for most of the source code for this project.
You will create your own module for your project that will contain your
source code.

The file puzzle.rsrc is the resource file used by the puzzle project. If you
want to use resource files in your project, you must add them to your project
using the Add to Project command.

5. Choose the Preferences command from the Edit menu.

6. Increase the icon size from the Environment sheet.
By changing the Browser Icon Size setting to 16 (or even 32), the differences
between icons are easier to see. If you do that, you might want to increase
the font size to 10 or more as well. For a complete listing of the icons in
Apple Dylan, see the section “Using icons in Apple Dylan” on page 88. You
can set other preferences from the other Preferences sheets. They can be
reached from the Category pull-down list at the top of the Preferences dialog
box.

Running Apple Dylan 13

14

CHAPTER 1

Learning Apple Dylan

Preferences

Category:| Environment «

BErowser Font: | Geneva | E“El
Browser lcon Size:

16
[Inspect Stack on ﬂ

The following figure shows part of a pane with the icon size at 12, which is the
default.

EC] puzzle
contents of
% [T puzzle e
[* @ Copyright @ 1994 by Apple Computer, Inc. All rights reserved.
> Ty define-framework-library("puzzle™); =]

e B <puzzle—vwiew: [tviews)
[r [initialize Cview 1o <puzzle-wiew?, ¥key)
[By is-puzzle-solved? Cview i@ <puzzle-view:) =3 solved 1 tbooleans ;

puzzle |
The following figure shows part of a pane with the icon size increased to 16.

S puzzle

Contents of

% [puzzle L
[» [] Copyright @ 1994 by Apple Computer, Inc. 411 rights reserved.
=]

[Ea define-framework-libraryl "puzzle”y;

b [<puzzle-views { oriews)
[E}. initialize {view @ <puzzle-view:, *key)

Running Apple Dylan

CHAPTER 1

Learning Apple Dylan

Running a sample application

You can run the sample applications from the Finder to see what they do as
standalone applications. To run applications from inside Apple Dylan, use the
Run command; see the section “Running an application in Apple Dylan” on
page 144.

1. Open the Apple Dylan folder, if it's not already open.
The Dylan Files folder contains several folders, including Sample Code,
which contains the sample projects and their standalone applications. It also
contains an alias to samples that use the framework.

2. Open the Sample Code folder and choose the alias to more samples.
This takes you to samples that use the framework.

3. Double-click on a sample application, such as the puzzle application.
The application’s executable file appears just as all executables files do on
the Macintosh.

The following figure shows the puzzle application running. The game is to
move the squares on the puzzle around until an image appears. The puzzle
application has a menu bar that allows you to create new puzzles and to
quit. When you're done observing the sample application’s behavior, quit
the application.

mmit

New 3N| SeIFrem

Close LD

Ouit %0

Using browsers

Browsers are windows with one or more panes. The panes are tiled so none are
in the background or foreground in relationship to one other and can be linked
to work together. Browsers are where you will do most of your coding and
compiling.

Using browsers 15

16

CHAPTER 1

Learning Apple Dylan

If you have just launched the development environment, you need to open a
project before you can open any browsers. The project browser must remain
open as long as you are working on that project. To close the project browser is
to close the project.

Once you have opened a project or created a new one, you can open other
browsers to get other views of the project. Several built-in browsers are listed in
the third and fourth sections of the Browse menu. To get a complete list of all
browsers available to you, choose List of Browsers from the Browse menu. You
can have several browsers other than the project browser open at once and
closing them does not close the project.

You can change the configuration of the panes in an existing browser, create
new browsers, and save a browser’s configuration. You don’t need to save the
code changes you make in a browser when you close it, but if you have
changed the configuration of the browser, you can choose to save that new
configuration with the Save Browser command.

The code changes are not lost when you close a browser (unless that browser
was the project browser and you specifically chose not to save any changes). To
save code changes, you select the pane containing the changes, and then choose
Save from the File menu. Likewise, you can save all the code in an entire
project by issuing a Save All command or simply choosing to save it when
prompted to do so as you close its project browser.

You can open a project from inside the development environment or from the
Finder. Double-clicking on a project file, which has the suffix “.1t", launches
Apple Dylan (if it's not already running) and opens that project.

The sample projects provided with Apple Dylan include puzzle, text-app, tiles,
paint-app, hello, Online Insultant, and skeleton, among others. The sample
projects can be found in the folder Sample Code, or the alias in it. Some have a
Read Me file with them, either as a file in their folder or within their project
itself as a text file.

Browsing a project

When you open a project, its project browser appears. In the upper-left pane, or
root pane, of that browser the contents of the project are listed.

Every project has a Dylan subproject, which always appears first on the list in
the root pane of the project browser. This is the library containing the Dylan

Using browsers

CHAPTER 1

Learning Apple Dylan

language itself. The Dylan subproject is created automatically and you cannot
edit it.

Every project also has a Dylan-user module. It is also created automatically
when you create a new project, but it must be edited to specify your project’s
library and module definitions.

If a project uses the framework or the mac-toolbox library, these also appear as
subprojects. You can add these to a project using the Add to Project command
on the File menu.

The default project browser has three panes that are linked so they can work
together to display a project in detail. Whether you click an object’s disclosure
triangle, icon, or name produces different results in a browser. Double-clicking
produces still other results. You can change the aspect visible in a pane, if you
wish, using the Aspect command on the Browse menu.

1. Open the puzzle sample project, if it’s not open already, and make sure it’s
the active project.
Use the Open command and choose the file puzzle.t The sample projects
can be found in the Sample Code folder or the alias in it. If you had another
project open before opening puzzle, you will need to click in the puzzle
project once you open it, and then use the Activate Project command from
the Project menu. If puzzle were not the active project, the project browser’s
name would read “Project: puzzle (inactive)” and the root pane’s name
would read “puzzle (inactive)”.

2. When puzzle opens, click on the icon or name of the subproject Dylan.
You will see that you can’t open it and a message prints “No applicable
aspect”. This subproject is the library containing the Dylan language, which
you cannot change (or even view) from within the development
environment.

Using browsers 17

CHAPTER 1

Learning Apple Dylan

E[[E==————— Project: puzzle
Contents of =i e
Bl puzzle % | # [*JNoaspect shown

Ly lan ’ Mo aspect shown

> B mac-toolbosx

[> @8 dylan-framework

[> @ Dylan-user

I> @ puzzle

|¢1.§.DE

[=
» & Dylan »
’ No aspect shown

&[]

3. Click the icon and then the disclosure triangle for the subproject
mac-toolbox.
You can see the contents of an object by clicking on the disclosure triangle to
its left. When you click its disclosure triangle, the contents of mac-toolbox
are displayed much as they would be in the Finder. The contents are Dylan,
Dylan-user, and mac-toolbox. These are references to the Dylan project, the
Dylan-user module, and the mac-toolbox module.

Using browsers

CHAPTER 1

Learning Apple Dylan

=

Project: puzzle

Contents of |

[F GCentents of

Bl puzzle + | » [E Dylan-user

q&h Cylan [BB library & module
T* @ mac-toolhosx
& [vylan
I [E Dylan-user
D [E mac-toolbox

|¢1.§.DE

[@ Gontents of =l
» Ef mac-toolbox *
f&h Dylan

[+ B Dylan-uzer
[B mac-toolbex

&[]

For now, click the disclosure triangle again to collapse the list of the contents
of mac-toolbox.

. Click the disclosure triangle left of the subproject dylan-framework to
expand its contents inline.
This is the Apple Dylan framework, which you might want to study later. Its
contents are Dylan, mac-toolbox, Dylan-user, dylan-framework, and
dylan-framework.rsrc. Don’t be concerned about efficiency or memory and
disk space when you see redundant references to such objects as Dylan or
mac-toolbox. These are only references to these objects, which are not being
duplicated with each reference.

As shown in the following figure, since you did not select the name or icon
of dylan-framework, only its disclosure triangle, you have not selected
dylan-framework. The subproject mac-toolbox was your last selection so its
contents are displayed in the other two panes in the project browser.

Using browsers 19

20

CHAPTER 1

Learning Apple Dylan

=

Project: puzzle

Contents of

Bl puzzle

@ Contents of
+ [E Dylan-user

q&h Cylan
[> @ mac-toolhosx
i B dylan-framework
& [vylan
B mac-toolbos

[@ Gontents of

» Ef mac-toolbox

f&h Dylan
[+ B Dylan-uzer
[B mac-toolbex

[> Bm library & modale

|¢1.§.DE

&[]

5. Click the icon or name of the Dylan-user module in the root pane, then
click the disclosure triangles for its library and module source records in

the pane on the right.

As shown in the following figure, the module Dylan-user has been selected
so its contents, the source folder library & module, appear in the lower-left

pane. Then library & module has been selected so its contents appear in the
pane on the right. This is because the three panes are linked in this way.

Using browsers

CHAPTER 1

Learning Apple Dylan

E[|=————"—"— Project: puzzie HIE
Contents of C]| F Gentents of |
Bl puzzle % | % [library & module »

f& Dylan [* @ Copyright © 1994 by Apple Cornputer, Inc. ATl right5

> @ mac-toolbox + B defire |ibrary puzzle

[> @8 dylan-framework use DOylan;
D . Ly lan-user
[> = puzzle

use mac—toolbos;
use dylan—framemork;

export puzzle;
end | ibrary;

- [define modulse puzzle
O B 6 1 use Apple-Oylan;
- = Dylan-user » uze mac—toolbox;

- use dylan—framemork;
[» B tibrary & module end module;

| =

Dylan-user |

When you click the name or icon of an object in a pane, such as the root
pane, you see its contents displayed in the pane it’s linked to, the lower-left
pane in this case. The name and icon for the selected object, in this case the
Dylan-user module, also appear in the header of the other pane. As seen in
the preceding figure, the header for the lower-left pane shows the

Dylan-user module’s name and icon, as well as its default aspect, Contents
of.

The lower-left pane is linked to the right-hand pane, so the contents of the
object selected in the lower-left pane appear on the right. In this case, the
contents of the library & module source folder in the lower-left pane appear
in the right-hand pane. The contents of the source folder are the source
records. The header for the pane on the right now has the name and icon for

the library & module source folder in its header. Its default aspect is also
Contents of.

Within library & module are the two source records, the puzzle library
definition and puzzle module definition. As shown in the preceding figure,
they have been expanded in the pane on the right to reveal their source
code. Notice that a dark line surrounds the content area of the right-hand

pane in the following figure, indicating that it is the active pane. When you
click in a pane, you make it the active pane.

Using browsers 21

CHAPTER 1

Learning Apple Dylan

6. Select the module puzzle in the root pane.
The puzzle module contains the source folder puzzle, which in turn contains
numerous source records. The source records appear in the pane on the right.

Alf———— Pruject: puzzle ==———————— "[T5
Contents of C]| F Gentents of |
puzzle % | = []puzzle o
f& Dylan [> B Copyright © 1994 by Apple Cornputer, Inc. ATl right;
[> B mac-toolbosx > T define-framewark-Tibrary("puzzle");
[> @8 dylan-framework e B <puzzle—wicw: [dwiew?)
[> @ Dylan-user [P [initialize Cview :: <puzzle-view?, ¥ley)
Ir B is-puzzle-solved? (view :: <puzzle-view?:) =3 solved
> B random-state () => state @ <vectors ;
Ip [tile-size-h Cview :: <puzzle-view:) =» size :: <inteqgq
= cEntentaion ol Ir B tile-size-v (view :: <puzzle-view:) =» zize :: integ
- li‘ DUZZIB * Ip [aet-tile-rect (view :: <puzzle-wiew?, tile :: <zsmall-
[B puzzle Ip [draw-puzzle-tile (wiew :: <puzzle-wiew !, source-tild
Ip B draw-puzzle-tile (wiew :: <puzzle-wiew?, source-t
[r B draw Cview o0 <puzzle—view:, draw-region :: regio
I» [left-tile (tile :: <small-integer:) =» result :: <object
[» [right-tile Ctile :: <small-integer) =3 result :: <objed
m
puzzle |

7. Expand the contents of the puzzle source folder by clicking its disclosure
triangle in the lower-left pane.
When you expand the puzzle source folder in the lower-left pane, you see its
contents listed inline in the lower-left pane. If you select the puzzle source
folder, its contents are also listed in the right-hand pane because these two
panes have been linked. You could edit this code in either pane and the
other pane would immediately update. For now, just click disclosure
triangles in the right-hand pane to see the code in individual source records.
You can click the pane’s zoom box for more space or drag its resizing box to
make it bigger.

Using browsers

CHAPTER 1

Learning Apple Dylan

= Project: puzzle
Contents of C]| F Gentents of
Bl puzzle % | % []puzzle

&R L 1EN
[+ B8 rmac-toolbox
[+ B8 dylan-framework
> E Dylan-user
[+ B puzzle

[* B Copyright @ 1994 by Apple Computer, Inc. Al Fight

> T define-framewark-Tibrary("puzzle");

e B <puzzle—wicw: [dwiew?)

T&rﬁ define method initialize (view :: <puz
rext—method);

M4 check for the almost impossible
while Cis—puzzle—solved?Cuiamil

[@ Gontents of =l

+ E puzzle *

- @@ puzzle

[O cpuzzle-wiews (¢
B initialize (view

view. puzzle-state = raondom-statedl;
end while;
end method;

is-puzzle-solved ? (view 1@ dpuzzle—view:) = salved
randarn-state () =» state 10 ovector:
tile-size—h (view :: <puzzle-wiew) = zize 1 vintegy

tile-size—v [view : dpuzzle—view:) =: zize 1 <integ

v T v W™
(T T

get-tile-rect (view 1 <puzzle-view?, tile 1 <small-

ﬂhau%

puzzle |

8. Double-click on any object, such as the source record initialize.
You can double-click on any object, which means its icon or name, to open a

new, separate browser for it. In the following figure, the source record

initialize has been expanded and it has also been double-clicked.

Double-clicking on an object opens a new browser which, in the following
figure, has been dragged below the project browser so you can see both

browsers. You could change the source code in either browser and the other
would be updated immediately.

The default aspect of the double-clicked object determines which aspect of

the object is displayed in the new browser. In this case, the default aspect for

initialize is Source Code of +Warnings of. That is the default aspect for all

source records.

Using browsers

23

CHAPTER 1

Learning Apple Dylan

Project: puzzle
contents of C)| = contents of =l
Ed puzzle » | » [7jpuzzle -
o — [*) Copuright @ 1954 by Apple Computer, Inc. AT right—|
[> B mac-toolbosx . . " "
I* D define-framework-Tbrary“puzzle");
[> @8 dylan-framework . .
e O, <puzzle—wicw: Cview:)
> @ Dylan-user . L R .
= B define method initialize cuiew :: <pUZ
P @ puzzie rnext-method? I;
B puzzle rsre
'l = J4 check for the almost impossible
= while Cis—puzzle—solved?Cuiamil
& Contents of = view. puzzle-state = rondom-state(l;
|:| puzzie end while;
b - end method;
= [l puzzle = [By is-puzzle-solved? (view 10 <puzzle-view:) =3 solved
[[Copyright @ 1994 [+ [randorn-state () => state o svectors
[[y define—framewark [+ By tile-size-h (view i <puzzle-wiew:) =3 size 11 <nteq
[O cpuzzle-wiews (o [By tile-size-v Cwiew 10 <puzzle-view?) =» size :: dnteq
[B initialize (view @ [By get-tile-rect Cwiew oo cpuzzle-wiews, tile oo <zmall-
b | N 1 N N 1. ann : e an
] @ | [&
puzzle |
S[IE==——=—initialize (view :: <puzzle-view:, #keg] ﬁmg
Source code of + Warnings of
[initialize (view : <puzzle-view>, #key) o
define method initialize (view :: <puzzle-view:, #keyl =
rext-methodd) ; [
M4 check for the almost impossible E
while Cis-puzzle-solved?Cuiamil
view. puzzle-state = rondom—stated);
end while;

9. Double-click the object puzzle.rsrc in the root pane of the project browser.
You might need to scroll the root pane so you can see the resource file. You
cannot edit a resource file from within Apple Dylan, but must use the
resource editor of your choice from the Finder. You add a resource to a
project using the Add to Project command.

Using the built-in browsers

There are many other browsers in Apple Dylan in addition to the project
browser and the single-paned, new browser described in the previous task.
These built-in browsers display various aspects of the active project and its
contents. Using these browsers, you can see such aspects as all the unsaved
source records in the active project or see a graph of a class’s inheritance

Using browsers

CHAPTER 1

Learning Apple Dylan

hierarchy. For more information on aspects, see “Showing different aspects of
objects” on page 42 and “Changing aspects” on page 46.

The built-in browsers are available on the Browse menu. The browsers listed in
the third section of the Browse menu work with the project as their bases, while
those in the fourth section work with selected objects as their bases. You can
open only one of each browser from the third section, but as many as you want
from the fourth section, if you choose different objects as their bases. For
example, the browser Unsaved Source Records from the third section lists all
the unsaved source records for the entire active project. Only one such browser
is necessary, so only one can be opened. By contrast, each of the browsers in the
fourth section can have many versions open at once, since you could select any
number of classes, for example, and open a Direct Methods browser for each.

The List of Browsers browser in the third section lists all the browsers available
and includes commands from the Browse menu. The objects on List of
Browsers have drag and drop functionality, which makes it a handy browser to
keep open as you are using Apple Dylan.

ECIE List of Browsers: | EAE
Faved Erowsers of

= & Apple Dylan
Call Grapher

BRI

Clazs Grapher

Direct Methods

Direct Slots

Cuplicate Definitions
Find in Project
Function Fannily

Infa for Selected Class
Lizt of Browsers

Mew Browser

Project

References From
References To
Undefined Yariables
Unzaved Source Records
“ariable Search
Warnings

DO EDEECEEOEEEODEEEDEREAE

Warnings (For Selection)

I-
Sl

For more information on List of Browsers, see its reference entry in the third
chapter.

Using browsers 25

CHAPTER 1

Learning Apple Dylan

1. Open the puzzle sample project, if it’s not already open, and make sure it
is the active project.
The sample projects can be found in the Sample Code folder or an alias in it.

In the following figure you can see that the module puzzle has been selected
in the root pane. Its contents are listed in the lower-left pane. In addition to
the puzzle module being highlighted in the root pane, it is also named at the
bottom of the project browser as the active module. The puzzle source folder
has been selected in the lower-left pane, thus revealing its source records in
the right-hand pane.

EeYeV——————————— Project: puzzle HIE
contents of C]| @ contents of =l
Ed puzzle » | #» [puzzle -

o [C Copyright @ 1994 by Apple Computer, Inc. ATl rightl=
[> B mac-toolbosx . N " "
[+ Oy define—framewark-library("puzzle™);
[> @8 dylan-framework § §
b E oyl ['k spuzzle—visw s [Oview:]
b E 4 a]n e [+ Ba' initialize Cuwiew @ puzzle-wiew:, ®hkey)d
puzzle [B is-puzzle-solved? Cwiew i puzzle-wisw:) =3 solved
[+ B randorn-state () =» state o tvectors ;
[B tile-size-h Cview @ <puzzle-view:) =» gize 1 tintegy
[Cantents of = [B tile-size-w (wiew 11 <puzzle-wiew:) =3 size 11 <integ
+ [® puzzle -) . . .
[B get-tile-rect (view @ dpuzzle-view:, tile i <zmall-
[B puzzle [B draw-puzzle—tile (view 10 <puzzle-view?, source—t
[B draw-puzzle—tile (view @0 puzzle-view?, source-tilg
[B draw Cview 1o <puzzle-wiew:, draw-region o
[B Teft-tile (tile 11 <small-integers) =» result o
[B right-tile (tile :: <smnall-integers) =» result o
m

2. Select a source record for a class in the right-hand pane, such as the class
<puzzle-view>, and choose Direct Methods from the Browse menu.
The class <puzzle-view> is the third source record from the top in the
right-hand pane of the project browser. The top source record is a comment.
For more information on the icons in Apple Dylan, see the section “Using
icons in Apple Dylan” on page 88.

In the following figure you can see all the direct methods for <puzzle-view>
listed in the Direct Methods browser that opens. You can investigate each of
these source records further, if you wish, expanding them to see their source
code or opening other browsers for them. If you edit their source code here,
the changes are updated in all the browsers immediately. To save the code
changes, click in any pane where the source code is displayed (even if it is

Using browsers

CHAPTER 1

Learning Apple Dylan

currently out of view due to scrolling) and use the Save command from the

File menu.

Project: puzzle
Contents of C]| @ Sontents of |
Bl puzzle % | # [puzzle -
i = [[Copyright @ 1994 by Apple Computer , In. ATl rightt—|
[+ B8 rmac-toolbox) - . v
[» [define-frarmework=-library("puzzle™);
[> @8 dylan-framework E E
b E oyl [By cpuzzle—views: (oview)
b E 4 a]n e [+ B initialize Cview 1o <puzzle-wicw:, ®key)
% puzz]e [B is-puzzle-solved? (wiew 11 (puzzle-wiew>) =3 solved
T puzzle rere [+ B randorn-state () = state o0 <vectors ;
i Po [441 i b i 1 i 1=

[Contents ED

Direct Methods: <puzzle-view? ({views:)

b m [3 <puzzle-view> (<view>)

L I

check-for-solved«puzzle [view :: <puzzle-wiew »«puzzle)

drawpuzzle [view :: <puzzle-view»«puzzle, draw-region :: <region><dylan-fram
draw-puzzle-tilespuzzle (view :: <puzzle-wiew >« puzzle, source-tile :: <small-ints
draw-puzzle-tilespuzzle (view ©: spuzzle-viewr«puzzle, source-tile :: singletan(1
get-tile-rectspuzzle (view :: <puzzle-viewrspuzzle, tile :: <small-integer») = il
initialize (wiew :: <puzzle-view rapuzzle, #key)

invalidate-tilespuzzle (view @ <puzzle-viewrxpuzzle, tile :: <zmall-integer:)

is-puzzle-solved P puzzle [view i <puzzle—view r«puzzle) =3 solved o <hoolean>

» @ pu Direct Methods of
I
I
I
I
I
T
l I
puzzle [
I+
I+
puzzle

Drag the Direct Methods browser off the project browser before continuing.

3. Select the class <puzzle-view> in the project browser and choose Direct

Slots from the Browse menu.
Another browser, Direct Slots, opens with <puzzle-view> as its basis as well.
This browser lists all the direct slots for <puzzle-view>. You are now able to
view two aspects of <puzzle-view> in the new browsers, its direct methods
and its direct slots.

Using browsers

27

CHAPTER 1

Learning Apple Dylan

Project: puzzle I
contents of D [& contents of DI
—wma puzzle » | » [)puzzIelsM= pirect Slots: <puzzle-view> (<view>) M
M [» 1 Copyr Direct Slots of

> B mac-toolbosx

[+ B dylan-framework
[+ @ Dylan-user

[E puzzle

E puzzle rsre

defined @ L3, <puzzle-view> (<view>)

<puzzl puzzle—pictspuzzle

initiali puzzle—pict-setter«puzzle
i5-puz; puzzle-statespuzzle

randary

T | puzzle-state-setter«puzzle

tile—zi solved Pe puzzle

R A v
momomomomow

[§ Contents of

[eo|@
ol v v v i v v v
FPPPPPPPPPOPTPE

tile-si solved P-setterapuzzle
[E puzzie
- P get-tl
[> B puzzle draw
dravw|
Fight- puzzle
|
il &[] =
puzzle |

If you drag the Direct Slots browser off the project browser and expand the
<puzzle-view> source record inline, you see its source code inline. As shown
in the following figure, you would be viewing three aspects of
<puzzle-view> simultaneously. In fact, a built-in browser named Info for
Selected Class is very similar to this. For more information on it, see the task
“Using the browser Info for Selected Class” on page 53.

Using browsers

CHAPTER 1

Learning Apple Dylan

Project: puzzle HIE
contents of C)| = contents of =l
Ed puzzle » | » [7jpuzzle -

TER D Ian =
i}

[* 01 Copyright © 1954 by Apple Computer, Inc. &1 right
I* D define-framework-Tbrary"puzzle");

[> B mac-toolbosx

dy lan-framework
D ' Y A ‘. define closs {puzzle—viewr ({uisw:)
[» @ Cylan-user k slot puzzle-state,

[+ E puzzle init-function: random-=stote;
B puzzle rsre

slot puzzle-pict :: <PicHandlea:,
init-value: ast<PicHandle:, 0O,
init-keyword: pict-handle:;

[@ Gontents of =l
» l:‘ puzzle » slot solwed? :: <boolean:,
init—walue: #f;
[B puzzle end class;

[P [initialize Cview :: <puzzle-view?, ¥ley)
Ip B is-puzzle-solved? (view :: <puzzle-view?:) =3 solved

random-state () => state :: <vector> ;

P
[+ By tile-size-h (view @i <puzzle-wiew:) = size 11 <integd

puzzle |
Direct Methods: <puzzle-view? Direct Slots: <puzzle-view>
Direct Methods of Direct Zlots of
» [3 <puzzle-view> [<views:) o | = [3 <puzzle-view> Kuiews) &
[P @ check-far-solvedepuzzle [view :: <puzzlf— [= puzzle-pict«puzzle —
[P @ do-eventspuzzle (view :: <puzzle-wiew: [= puzzle-pict-setter«puzzle
Ir = drawspuzzle Oview 10 puzzle—viewapu [= puzzle-statewpuzzle
I = draw-puzzle-tilespuzzle (view 1@ <puzzlq [= puzzle-state-setterspuzzle
I = draw-puzzle-tilespuzzle (view 1@ <puzzlq [= solved?wpuzzle
Ir % get-tile-recteouzzle (view o <puzzle—vi [= solved?-setter«puzzle
] & [T =
puzzle | puzzle |

4. Select a source record for a method in the right-hand pane, such as
initialize, and choose Call Grapher from the Browse menu.
The initialize method is the third source record from the top in the
right-hand pane of the project browser.

In the following figure you can see all the callers and callees of initialize
graphed in the Call Grapher browser that opens. You can investigate these
calls further, if you wish, by expanding or collapsing the arrows on the bars
that graph the calls. For more information on how to use grapher panes, see
the task “Using the browser Info for Selected Class” on page 53.

Using browsers 29

30

CHAPTER 1

Learning Apple Dylan

Project: puzzle

[[Copyright © 1994 by Apple Computer, Ing. AT right
> Do define-framework-Tibrary(puzzle");

[Bs <puzzle-wiew: (tviews)

[+ BB rac-toolbos
[B dylan—framework

Doy lan—
b B Dylan-user [By initialize (view @ <puzzle-view?>, #key)

contents of D [@ contents of D
puzzle » | » []puzzle e
1= Cgran = =)

]

puzzle

puzzle |

[+ puzzle
B Call Grapher: initialize (view :: <puzzle-view>, ¥key)
[| @rapher
—ortl % P initialize (view :: <puzzie-view?>, ¥key) 2
- =] o initialize (instance, *key) =7 m initialize (view :: <puzzle-view>«... u is-puzzleit |
b u puzzle-state

random-stat]

Drag the Call Grapher browser off the project browser before continuing.

5. Select initialize in the project browser and choose Function Family from

the Browse menu.

Notice that another browser, Function Family, opens with initialize as its
basis as well. This browser lists all the other initialize functions in the active
project. You are now able to view two aspects of initialize in the new

browsers.

Project: puzzle

Function Family: initialize (view :: <puzzle-view>, ¥key)

contents of D r contents of D
£ puzzle » | » [puzzie
O —
HIl b o Conurwht@_l_asﬂ_lm_amumnu.tmmun.mnﬂzl_

Function Farily of

& E} initialize (view :: <puzzle-view:>, ¥key)

initialize (object :: <statically-typed-pointers, #key pointer, extra-bytes)
initialize (string :: <pascal-strings, ¥key pointer, size, fill)
initialize (string :: <c-strings, ¥key pointer, size, fill)

initialize (instance, *key)

initialize (s, ¥key)
initialize (w :: <wrapper r«DylansDylan, *key layout-Tist)

initialize (id :: <nit-descriptor e DylancDylan, ¥key init-data, type-data, init-value,

&
[V s I I

initialize (=d :: <slot-descriptar>«DylanzDylan, ¥key required-init-keyword, init-key

initalize (class @@ <class>, ®key slats, superclasses, primary 7, subclassable?, id?-is-=7)

init-functio

word, alloc

Drag all the browsers off the project browser before continuing.

Using browsers

CHAPTER 1

Learning Apple Dylan

6. Expand the class <puzzle-view> in the project browser and type an extra <

into its definition.

Notice that a small square appears in the gray, status indicator column to the

left of the source record. This is a status indicator. If you click the status
indicator, its name appears on the information line at the bottom of the
browser. In this case, it is the Unsaved indicator, meaning that you have

changed this source record but haven’t saved it yet.

There are several other status indicators in Apple Dylan, including the
Uncompiled indicator and Warnings indicator. You can see the list of
indicators using the Status Indicators command on the Browse menu. For
more information on using them, see the chapter “Using Apple Dylan” on

page 95.

EC] Project: puzzle HIE
contents of = T]| @ contents of =l
Ed puzzle » | » [7jpuzzle -

o [* 0 Copyright © 15954 by Apple Computer, Inc. ATl Fight=
[> B mac-toolbosx . . " "
I* D define-framework-Tbrary“puzzle");
[> @8 dylan-framework X _)
LA E:', define class <{{puzzle-view> (uview:l

[> @ Dylan-user
= [@ puzzle

% puzzle.rsrc

[F GCentents of |
+ [® puzzle »
= B puzzle

k

F~" 7

&P

slot puzzle—=state,
init—function: random—state;

slot puzzle—pict :: <PicHandle:,
init-value: asC:PicHandle:, 0,
init—keyword: pict-handle:;

slot solwved? :: <boolean:,
init—walus: #f;
end class;

initialize (wiew @ <puzzle-view:, ®key)

is-puzzle-solved ? (view 1@ dpuzzle—view:) = salved

randarn-state () =» state 10 ovector:

tile-size-h (view :: <puzzle-wiew>) => gize 1 i

puzzle

| Ungaved i ndicator .

7. Scroll down the source records in the right-hand pane and expand some

source records until <puzzle-view> is no longer visible.

Notice that, although you cannot see the unsaved source record anymore,

you can see that the source folder it’s in, puzzle, has an Unsaved indicator in
the lower-left pane marking it as containing something unsaved. The puzzle
module in the root pane has one as well. If you had gone on to editing other

source records and forgotten exactly which source records were still
unsaved, you might have a difficult time finding them. In that case, you
would want a way to list all the unsaved source records in the project.

Using browsers

31

CHAPTER 1

Learning Apple Dylan

= Project: puzzle ==———— 1=
Contents of = C]| @ centents of |
Bl puzzle % | % []puzzle -

&R L 1EN

behavior-event (behavior :: <puzzle-behawior:, nex
$file-rnenu-id

$edit-rnenu-id

[> , mac—toolbos D rﬁ check-for-solved [view :: <puzzle-view>) => (]
[> , dylan-framewark [P [invalidate-tile (view :: <puzzle-view?, tile :: <smal
[> =) Dylan-user Ir B slide-tiles-left (view :: <puzzle-view?, start :: <sm.
- [> . puzzle Ip B slide-tiles-right (view :: <puzzle-view?, start :: <5
B puzzle rere Ip [slide-tiles-up Cview @ <puzzle-view?, start :: <sma
Ip [slide-tiles-down Cwiew :: <puzzle-view?, start 12 <s
= e o = [P [make-puzzle-window (pict-handle :: <PicHandlex) =
- = puzzle - [+ B <puzzle-behavior: {<behavior =)
> [behavior-setup-menus (behavior :: <puzzle-behavio
-* P B puzzle I & $pict-rsre-id
P&
P G
P G
P&

init-puzzle) =: ()

puzzle | Unzawved i ndicator .

8. Choose Unsaved Source Records from the Browse menu.
The Unsaved Source Records browser opens, listing <puzzle-view>. Notice
that the puzzle project icon appears in the pane’s header of the Unsaved
Source Records browser. It does not matter if you have anything selected
when you choose this command; as with all browsers in the third section of
the Browse menu, they work on the entire active project regardless of
selection.

S Unsaved Source Records: pu

uUnzaved Source Records of "
+ E@ puzzle -

s Oy copuzzle-wiew: (oview?)

9. Expand the source record and delete the extra < from the source code.

32 Using browsers

CHAPTER 1

Learning Apple Dylan

Project: puzzle

Contents of

[@ contents of

I =
Bl puzzle % | % [puzzle -
BT = I+ 0 Copyright © 1994 by Apple Computer, Inc. ATl rightl—|
[+ B8 rmac-toolbox) - . v
[» [define-framework-library("puzzle™);
[+ @ dylan-framework .) .
= 7 [o define class <<puzzle—viewr (wisws)
[@ Dylan-user slot puzzle-state,
= [H puzzie init—-function: random-state;
B puzzlersre =lot puzzle-pict @ <PicHaondle:,
1] o] init—walue: as(<PicHandler, O3,
— et o 0 init-keyword: pict-handle:;
0 ontents o == - T =
- = puzzle - 1 S Unsaved Source Records: pu: S
Unzaved Source Records of "
= [I puzzie i end 4 @ a puzzle i
B initi =
[> = Tmha a o= [:', define cIassI<<puzzle—uie- n
P B is-pu slot puzzl|é-=state,
[B rando init-function: random-st
P tile-s slot puzzle-pict :: <FicHa
b init-value: as{<FicHand
'l e [l init-keyword: pict-handl
puzzle | Killed region saved

You will notice that the code is still marked as unsaved with a status
indicator and still listed in the Unsaved Source Records browser.

10. Click in the Unsaved Source Records browser and choose Save from the

File menu.

Notice that <puzzle-view> is no longer listed in the Unsaved Source Records

browser.

Using browsers

33

34

CHAPTER 1

Learning Apple Dylan

Project: puzzle
Contents of C]| F Gentents of |
Bl puzzle % | % []puzzle -
TEp AT = [01 Copyright € 1994 by Apple Computer, Inc. ANl righth—
[+ B8 rmac-toolbox)) “ R
> T define-framework-Tibrary("puzzle");
[+ B8 dylan-framework . . .
= [% define class <fpuzzle—view* (dujsm:l
[@ Dylan-user slot puzzle-state,
[+ E puzzle init-function: random—=state;
B puzzlersre =lot puzzle—pict :: <PicHandla:,
l| L] init-value: asC<PicHandle:, 0O,
= e o 0 init-kegword: pict-handle:;
] ontents o == N =g
+ [puzzie » <l EE Unsaved Source Records: pu: EF1E
Unzaved Source Records of []
> B puzzie o and { & ﬁ puzzle L
Ip [initia
P is-pu
> [randol
I B tile-g
(=Y
] |
puzzle | Killed region saved

Close the empty browser or move it off the project browser before
continuing. Notice that the source code in the project browser has been
updated, as has all the status indicators.

Linking panes and browsers

The panes in a browser can work together through links. The contents of an
object you select in one pane show up in another pane through a link between
them. You can create, remove or redirect links.

To see a link’s origin or destination, hold the mouse down over the link’s inbox
or outbox. The inbox is a small right-pointing arrow at the left edge of a pane’s
header. The outbox is a small right-pointing arrow at the right edge of a pane’s
header. When you hold down the mouse on an inbox or outbox, the name of
the pane it’s linked to is displayed. If no link has been established, no name is
displayed and the inbox or outbox is gray. When a link has been created, the
inbox and outbox turn red. You can create a link by dragging the outbox from
one pane onto the inbox of another pane. An aspect of the object selected in the
first pane is displayed in the second pane. That object selected in the first pane
is called the basis of the second pane.

Using browsers

CHAPTER 1

Learning Apple Dylan

You can open one of the browsers on the Browse menu or you can create a new
browser of your own, either by double-clicking on an object or selecting it and
choosing the New Browser. A new browser has only one pane, so if you want
to have more than one pane in the browser, you split the pane in two. The new
pane is automatically linked to the original pane. You can close an individual
pane within a multi-pane browser by using its close box in the upper left
corner of its header.

1. Open the puzzle project, if it’s not open already, and make it the active
project.
The sample projects can be found in the Sample Code folder, or by using the
alias in that folder.

The following figure shows the project browser for puzzle with the module
Dylan-user selected in its root pane and the source folder library & module
selected in its lower-left pane. The contents of the source folder are
displayed in the pane on the right.

EI=———— Project: puzzle ==
contents of C)| = contents of =l
@ puzzle % | » [7]library & module e
& [nylan [+ B Copyright @ 1994 by Apple Computer, Inz. All r'ight;
[+ E¥ mac-toolbos I B puzzie .
[+ E¥ dylan-framework I+ @ puzzie

[+ B Dylan-uzer
[@ puzzle

[Gontents of |
+ [E Dylan-user »

[IK library & module

=&l

Dylan- user |

2. Hold down the mouse on the outbox of the root pane without releasing
the mouse.

The outbox displays the outgoing link, which in the following figure is from
the puzzle project’s root pane to the lower-left pane.

Release the mouse when you have seen the link’s name.

Using browsers 35

36

CHAPTER 1

Learning Apple Dylan

Project: puzzle
Contents of C]| [Gentents of

Ed puzzle

«0ylan-user iyl

|¢I@DE

g [wylan [» B Copyright & 1994 by Apple Comnputer, Inc. A1l Fight
[+ E¥ mac-toolbos I B puzzie
[+ E¥ dylan-framework I+ @ puzzie

[+ B Dylan-uzer
[E puzzle

[Contents of =l

+ [E Dylan-user *
[» B3 Tibrary & module

=

Dylan- user |

3. Hold down the mouse on the inbox of the lower-left pane.

The inbox displays the incoming link, which in the following figure is from
the puzzle project’s root pane above.

Release the mouse when you have seen the link’s name.

Project: puzzle E=————""EF

Contents of C]| @ Sontents of =l
i puzzie % | # [7library & module >

& Dylan [* B Copyright @ 1994 by Apple Computer, Inc. ATl right{;
[> B mac-toolbos [l". puzzle |
[> @ dylan-framewaork [ITE puzzle

[> B Dylan-user
[> B puzzle

library & module

]

Dylan- user

Using browsers

CHAPTER 1

Learning Apple Dylan

4. Hold down the mouse on the outbox of the lower left pane.
The following figure shows the destination of the outbox’s link is the pane to

the right, which has “library & module” as its basis, as noted in its pane’s
header.

Release the mouse when you have seen the link’s name.

ElliV—————————— Project: puzzle HE
contents of C]| @ contents of |
£l puzzie % | # [7library & module o

& Dylan [* B Copyright @ 1994 by Apple Computer, Inc. ATl right{;
[> B mac-toolbos [l". puzzle |
[> @ dylan-framewaork [ITE puzzle
[> @ Dylan-user
> @ puzzle
@ Contents of =l
» [Dylan-user ‘library & module
[> Bm library & module ;
o]
T
Dylan-user |

5. Select the puzzle module in the root pane and the puzzle source folder in
the lower-left pane.

6. Select a class, such as <puzzle-view> in the right-hand pane and choose
the browser Info for Selected Class from the Browse menu.
Leave the project browser open as you work with the other browser.

The browser shown in the following figure opens with <puzzle-view> as its
basis, as noted in the browser’s name and in its root pane’s header. The class
<puzzle-view> is automatically selected in the grapher pane at the top of the
browser, while its direct slots and direct methods are listed in the two lower
panes, as shown in the following figure.

Using browsers 37

38

CHAPTER 1

Learning Apple Dylan

E(I=——— Info for 5Selected Class: <puzzle-view> [Kview>) HE
[Grapher (ol
2 |3 <puzzle-view> (<uiews) »

< & eviewrsdylan-frameworksdylan-frame... s==1 z <puzzle-¥iewrxpuzzle 2
=

i Clal
[@ Direct Slots of C]| @ pirect Methods of (ol
» on <puzzle-view>gpuzzle (£... » | & 4% <puzzle-view>«puzzle (<view>«dy... =

[» & puzzle-pictespuzzle [r @ check-for-solvedspuzzle (wiew @ <puzzle—view rup—
[P # puzzle-pict-setters«puzzle E 5 [» B do-ewentwpuzzle (view :: {puzzle-viewrxpuzzle, & =
Ir = puzzle-statespuzzle g I = drawspuzzle (view o <puzz]e—view><<puzzle,draw
[+ = puzzle-state-setterspuzzle [[P = draw-puzzle-tilespuzzle (view <puzzle-views«plg]
5]
puzzle |

If this browser were already open, you could have dragged the
<puzzle-view> class from the project browser to the inbox of the root pane
in this browser. This would have made <puzzle-view> the basis of this
browser. Dragging an object from one browser to the inbox of the root pane
on a separate browser is similar to linking them, but it does not create a link.
This is drag and drop behavior that is common to all browsers. The dragged
object is simply the basis for the separate browser; the two browsers are not
linked. The project browser’s outbox and the separate browser’s inbox are
still gray and no link exists.

N

Examine all the links on the inboxes and outboxes for the Info for
Selected Class browser, just as you did for the project browser.

Notice the inboxes and outboxes. The two outgoing links in the lower panes
are not red; they are not linked to anything yet.

®

Drag the outbox for the lower-left pane to the inbox of the lower-right
pane.

In the following figure the inbox for the lower-right pane is red as the
outbox from the other pane is being dragged onto it.

Using browsers

CHAPTER 1

Learning Apple Dylan

Info for Selected Class: <puzzle-view> [Kview>) EE'
[Grapher (ol
2 |2 <puzzle-view:> (<uviews) »
< & <viewradylan-frameworksdylan—frame... s=—=J sz <puzzle-view rxpuzzle <+
it
I B
[Direct Slots of C]| @ pirect Methods of (ol
» on <puzzle-viewr«puzzle (<... o EE o <puzzle-viewr«puzzle <view><dy... =
[» & puzzle-pictepuzzie i [r & check-for-solvedspuzzle (view <puzz]e-v1’ew>«
[r # puzzle-pict-setters«puzzle 5 [» B do-eventewpuzzle [view 1 {puzzle-wiewrxpuzzle, & E
Ir = puzzle-statesxpuzzle P = drawspuzzle (view 11 <puzzle-view rapuzzle, draw
[+ = puzzle-state-setterspuzzle [P = draw-puzzle-tilespuzzle Criew <puzzle-view>«plg]

puzzle | Drag OK

Release the mouse on the inbox and the two panes are linked.

9. Click the puzzle-pict-setter source record in the lower-left pane.
Notice that the selected source record is now the basis for the lower-right
pane. In the following figure the source record puzzle-pict-setter is selected
in the lower-left pane and is named as the basis of the lower-right pane in its

header. Examine all the links.

El Info for Selected Class: <puzzle-view> (<views:) s
[§ &rapher I
» [3 <puzzle-view> (<view>) »

Ok & dviewradylan-frameworkadylan-frame. .. == = <{puzzle-view>xpuzzle ||
=
|l B
[@ Direct slots of C]| @ wariable pefinitions of =]
» oo fpuzzle-view><puzzle (<... » | » ¥ puzzle-pict-setterspuzzie W
[+ = puzzle-pictspuzzle = [» ® puzzle-pict-setter«puzzle (value, object @ <puzzle 5

[+ ® puzzle-pict-setter«puzzle

[+ = puzzle-statesxpuzzle
uzzle-state-setter«puzzle B
]
|

Notice that the outbox of the lower-left pane names the lower-right pane as

its destination, as shown in the following figure.

Using browsers

40

CHAPTER 1

Learning Apple Dylan

Ell Info for Selected Class: <puzzle-view:> (<view:) H5
@ Grapher |
» [3 <puzzle-view: (<views) »

Tk & tview redylan-frameworkedylan-frarme... S=—=7k & {puzzle-view>zpuzzle ||
3
17
i< B
[Direct Slots of]| @ Dpirect Methods of (|
. _r . _
» su <puzzle-viewr<puzzie .. wpuzzle-pict-setterzpuzzle ks
P u puzzle-pictepuzzle " 3 Inapplicable Aspect
[+ ® puzzle-pict-setter«puzzle
[r # puzzle-statesxpuzzle
uzzle-state-setterwpuzzle
|

10

Direct methods is not a valid aspect for puzzle-pict- setter, but you can easily
change it to show one that is, such as the variable definitions of it in the
active project. For more information on how to change aspects in Apple
Dylan, see the task “Changing aspects” on page 46.

Drag the outbox from the right-hand pane on the project browser to the
inbox of the root pane on the Info for Selected Class browser.

You can link two separate browsers by dragging the outbox from a pane in
one browser onto the inbox of any pane in the other browser. This allows
you to create complex sets of browsers.

Notice that the inbox of the Info for Selected Class browser turns red as you
drag the outbox from the project browser onto it, as shown in the following
figure.

Using browsers

CHAPTER 1

Learning Apple Dylan

Project: puzzle

[Contents of
» [puzzle
Copyright € 1994 by Apple Computer, Inc. A11 Fight]

define-frarnework-library("puzz1e");

contents of
@ puzzle
& Dylan
> B mac-toolbosx
[+ @@ dylan-framework
[» E Dylan-user
[+ E puzzle
T, 1

Info for Selected Class: <puz

@ Grapher

ﬁ [, <puzzie-view> (<view>)

[fem@
[le @

~
O

avigws - - <
<puzzle-views (eviews) e & dviewrgdylan-frameworksdylan-frame.., == = <p

initialize Cview o <puzzle-views, ¥key)
is-puzzle-zolved ? [view @ <puzzle-view:) =» solved

random-state () => state @ <vectors ;

]

tile-size-h [view @ <puzzle-view?:) =» size :: <inteq

contents of P y N y :
& tile-size-v (view :: {puzzle-view:) =2 size :: <inteq

(e @
TV VNV VYV VVVVvV«~YvT
PPFPPPPPPRPPPPE

[E puzzle
o) p get-tile-rect (view @ <puzzle-view>, tile :: <zmall- T |¢||
[» BB puzzle draw-puzzle-tile (view @ dpuzzle-view:, source-til
_ " N . » [§ Direct slots of r]| @ variable
draw-puzzle-tile (view :: <puzzle-view >, source-til o ... (DI.IZZ|B—I.|iBI.IJ)<<|JUZZ|E {(= [% pu
draw (view o0 <puzzle-view?, draw-region :: <regio
Teft-tile (tile :: <small-integer:) =» result :: <object Bo# puzzle-pictcpuzzle shEe
right-tile (tile @ <zrall-integer:) =3 result :: <obje b % puzzle-piot-settercpuzzle
[» = puzzle-statecpuzzle
| =i [
[» = puzzle-state-setterwpuzzle
puzzle |

11. Release the mouse.
You will notice that the outbox and inbox of the two browsers are now red.
The outbox on the project browser names the <puzzle-view> class as its
basis and the <puzzle-view> class is also the basis of the Info for Selected
Class browser. Any other class you select in the right-hand pane of the
project browser will be displayed in this Info for Selected Class browser.

This link applies only to this particular Info for Selected Class browser.
Furthermore, if you close it, this link is lost.

Project: puzzle |
ententalet S| ®i eontente ot Info for $elected Class: <pu;
@ puzzle » | » []puzzle
& Cylan — [> [Copyright @ 1994 by Apple Computer, Inc. ATl right—% & |2 <puZ2Zle-DieLw UIews)

[+ @3 mac-toolbox define-framework-Tibrary("puzzle");
[* B dylan—framework
> @ Dylan-user

[» E puzzle
T,

1

5 Griews - - = %
<puzzle-view? (<view?) k& viewradylan-frameworksdylan-frame.. === 2

initialize (view :: <puzzle-wiews, Fkey)
is-puzzle-solved ? [view @ <puzzle—view) = zolved

random-state () =3 state :: <vectors ;

]

tile—size-h Cview @1 puzzle-view:) = size @ dinteq

Contents of — : y X .
=l tile-size—v (view :: <puzzle-view:)l =» size :: <inteq

Meo| @
v i v v S i i i v v v
FPrPFPrPrPrPrvreee

E puzzie
o) p get-tile-rect (view @ spuzzle-view:, tile :: <small— r|¢||
[+ BB puzzle draw-puzzle-tile (view :: <puzzle-view? , source-til
- " o . " [§ Direct Slots of r]| @ variable
draw-puzzle-tile (view :: <puzzle-view, source-til " ... (DUZZ|E'UiELU)<<|JI.IZZ|E [(-" I % pu
draw Cview o0 <puzzle-view?, draw-region :: sregio —
Teft-tile Ctile 11 <small-integer) => result ©: <object b= puzziepistapuzzle &= F=r
Fight-tile (tile :: <small-integer ») => result :: <abje b % puzzle-pict-setter «puzzle B
T T Ir = puzzle-statespuzzle g
= = [+ = puzzle-state-setterspuzzle [
puzzle

Using browsers

41

CHAPTER 1

Learning Apple Dylan

12. Click the class <puzzle-behavior> in the project browser to see it as the
new basis for the Info for Selected Class browser.
In the following figure, <puzzle-behavior> has been selected in the project
browser, which causes it to become the basis for the other browser. Examine
the outgoing link from the project browser.

=————— Project:puzzle =E=E==——— =
Santents of E| [sentents of = Info for Selected Class: <puzzle-b
i puzzle » | » []puzzle » | =

& Dylan . + [3 <puzzle-behavior> (<behavior>)
D ' rnac-toolbox
[+ @@ dylan-framework
[> = Dylan-uzer

bottarn-tile (tile :: <small-integer:) =» result ::

point-to-tile (view :: qpuzzle-view?, p :: <peints) = & & <behaviorredylan-frameworks dylan-fra.. =0 & <pu
do-event (view :: <puzzle-view?, event @ <mouse-d

check-for-solved (view 1 dpuzzle-view:) =» (]

b
b
bR
b
b B puzzle [r By invalidate-tile (view :: <puzzle-views, tile :: <srall
[By slide-tiles-left (wiew @ <puzzle-view?, start oo <sm.
= e o 0 [» By slide-tiles-right (view :: <puzzle-view?, start :: <si
> = puzzle - [By slide-tiles-up (view :: <puzzle-views?, start :: <sma
& i [» B slide-tiles—down (view :: <puzzle-view?, start @ <5 |
uzzle
P [» B make-puzzle-window (pict-handle :: <PicHandles) =» = Direct slots of ci[@ warisble oe
I 'k<puzz1e-behavior>(<behavior>) % oo <puzzle-behavior><puzz... » | »
[» B behavior-setup-rienus (behavior :: <puzzle-behavior] @ No direct slots of: <puzzle-behavior1—| ' Inap|
$pict-rare-i
B $pict id
[+ B behavior-event (behawior @ <puzzle-behaviors, next]
puzzle il = [T

Showing different aspects of objects

You can view each object in Apple Dylan in different ways. The various aspects
available for objects include some basic qualities, such as a source folder’s
contents, or relationships between objects, such as what calls what, class
relationships, families of functions, etc. Aspects are only available for the active
project.

An aspect is displayed in a pane. You can see the list of aspects available by
clicking in a pane and choosing the Aspect command from the Browse menu. A
list of available aspects is displayed. If you do not select any object in the pane
when you click in it, the aspects listed are for the basis of the pane. If you select
an object in the pane, the selected object’s aspects are listed instead.

1. Open the puzzle sample project, and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or using the
alias in it.

42 Using browsers

CHAPTER 1

Learning Apple Dylan

2.

& File Edit Teut Project JEIG

Click in the puzzle project’s root pane, without selecting anything, and
then choose Aspect from the Browse menu.

On the submenu of the Aspect command, the aspects available for a project
are listed. All projects have the same aspects available for them. You could
choose to view an aspect other than Contents of this project, such as Classes
of, but if you do, choose Default (Contents of) again before continuing.

Debug Windows

EREe————— |

contents of =
Y

New Browser
Save Browser...

2=
=

£ puzzle >
& Dylan

[+ B rmac-toolbox

[+ B dylan—framework

AsDe
Grapher Pane

Status Indicators...

1 L]
v Default (Contents of)

|> = Dylan-user
[E puzzle

Duplicate Definitions
List of Browsers
Undefined Dariables
Unsaved Source Records
Warnings

Call Grapher

Class Grapher

Direct Methods

Direct Slots

Function Family

Info for Selected Class
References From
References To

Warnings (For Selection)

Dariable Search...
Show Home

Classes of

Contents of

Duplicate Definitions of
Functions of

Modules of

Resource Files of

Source Folders of

Source Records of

Source Records with Warnings of
Subprojects of

Uncompiled Modules of
Uncompiled Source Folders of
Uncompiled Source Records of
Undefined Dariables of

Unsaved Modules of

Unsaved Source Folders of
Unsaved Source Records of
Warnings for Downloaded Code of
Warnings of

88?'

3. Select the puzzle module in the project’s root pane.
Notice that the pane displaying the contents of the module (the pane on the
lower left) has the aspect “Contents of” in its header. This is the default
aspect for a module. The puzzle module’s name and icon appear in the
header of the pane at the bottom as well.

Lol

Aspect from the Browse menu.
In the following example, notice that the top line of the list of aspects is the
default aspect for modules, Contents of. It is the contents of the puzzle
module that you see in the bottom pane. You can select an aspect from the
list to view a different aspect. For our purposes, continue on without
choosing a different aspect or, if you do, reselect the default before

continuing.

Using browsers

Click in the lower-left pane without selecting anything, and then choose

44

CHAPTER 1

Learning Apple Dylan

ey

Bro M Debug Windows

w File Edit Text Project

i

£ puzzle

contents of

&y Dylan
[+ B mac-toolbox
[+ B dylan-framework
[» E Dylan-user
[+ B puzzle

[E Contants of
+ [E puzzle

[» [puzzle

I
puzzle

5
>

New Browser
$ave Browser...

El
ol

$tatus Indicators...

Aspect 4
Grapher Pane

1 i
v Default (Contents of)

Duplicate Definitions
List of Browsers
Undefined Dariables
Unsaved Source Records
Warnings

Call Grapher

Class Grapher

Direct Methods

Direct Slots

Function Family

Info for Selected Class
References From
References To

Warnings (For Selection)

Classes of

Contents of

Duplicate Definitions of
Functions of

Source Folders of

Source Records of

Source Records with Warnings of
Uncompiled Source Folders of
Uncompiled Source Records of
Undefined Dariables of

Unsaved Source Folders of
Unsaved Source Records of
Warnings for Downloaded Code of
Warnings of

I—

Dariable Search...
Show Home

®Y

5. Select the puzzle source folder in the lower-left pane and then click in the
right-hand pane without selecting anything,.
The right-hand pane now displays the contents of the puzzle source folder.

S

Display the pop-up list of aspects from the header of the right-hand pane.

You can display an object’s list of aspects from the header of the pane its
contents are displayed in. You do this by clicking in the pane without
selecting anything, holding down command-option, and then holding the
mouse down on the object’s name or icon in the header. You will see all the
aspects available just as you would if you had used the Aspect command
from the Browse menu.

In the following example, the aspects available for source folders are

displayed on the pop-up list because the puzzle source folder is the basis for
the pane. For our purposes, don’t select one or, if you do, reselect the default
before continuing.

Using browsers

CHAPTER 1

Learning Apple Dylan

Ccontents of

Ed puzzle

g [wylan
[+ E¥ mac-toolbos
[+ E¥ dylan-framework
[@ Dylan-uzer
[+ B puzzle

[Gontents of

+ E puzzle

[> BB puzzle

« Default (Contents of)

& =

nject: puzzle S c——————r

*Elasses of
Contents of
Duplicate Definitions of
Functions of
Source Records of

Uncompiled Source Records of
Undefined Dariables of
Unsaved Source Records of
Warnings of

Source Records with Warnings of

Warnings for Downloaded Code of

til

[By draw Cview i <puzzle-wiew?, draw-region :: <regio
[+ B left-tile (tile oo <zmall-integer>) = result :; <object]
[+ B right-tile (tile :: <zmall-integer>) = result :; <obje

puzzle |

7. Hold down the Command and Option keys, then click the initialize

source record in the right-hand pane.

The list of aspects for source records is displayed. Notice that its default

aspect is Source Code of +Warnings of.

Project: puzzle

Ccontents of

Ed puzzle

[@ Gontents of

+ [puzzle

g [wylan
[+ E¥ mac-toolbos
[+ EH dylan-framework
[> @ Dylan-user
[> B puzzle

[* 01 Copyright © 1994 by Apple Computer, Inc. ATl right

[r D define-framework-library("puzzle™);

® Default (Source Code of+%Warnings of)

[Contents of

+ E puzzle

#hey)
Funct'i-k Farnily of
References From
References To o
Source Code of) => size
“warnings for Downloaded Code of

h »1=> size
Y'arnings of

[> BB puzzle

7 = Qe Tect Lrew . pneame-riew , tile

draw (view 10 <puzzle—wiew>, draw-tegion

v T v W™
(T T

right-tile (tile

le—view ») =F solved

11 dinteq
o1 <inteq
11 4small-
draw-puzzle-tile (view @@ <puzzle—viewr, source-til
draw-puzzle-tile (view @@ <puzzle—viewr, source-til
1 dregiol
Teft-tile (tile :: <zmall-integer) => result o <object

11 zmall-integer>) =» rezult @ <objed

Using browsers

45

46

CHAPTER 1

Learning Apple Dylan

8. Double-click on the source record initialize.
If you double-click on an object to open a new browser for it, the default
aspect is displayed. The new browser that opens has the object as its basis,
so the object’s icon, its name, and the name of its default aspect appear in the
header of the new browser’s pane. In the following example, the default
aspect Source Code of +Warnings of is named in the header.

E[I=——— initialize (view :: <puzzle-view>, ¥key) ?_%EE
Source Code of + Warnings of

o [_ﬁ initialize (view :: <puzzle-view>, #key)

i
define method initialize (uiew :: <puzzle—view:, #Hhkeyl =
rext-methodd ; [

M4 check for the almost impossible
while Cis-puzzle-solved?Cuiamil

view. puzzle-state = rondom—stated);
end while;

puzzle |

Changing aspects

The easiest way to see a different aspect for an object is to select the object and
choose a built-in browser from the Browse menu. Several browsers have been
built into the development environment for your convenience. They each show
a different aspect, as noted in their names on the Browse menu. When you
choose one, a new browser opens displaying the aspect for the selected object.

However, not all aspects have built-in browsers already made for them. Also,
you might want to change the aspect in a pane you created in a custom
browser or some other existing pane, not open an entirely separate browser. In
that case, you can choose to change the aspect within a pane. Also, if you
change the basis for a pane, the new basis might have a different default aspect,
so that new aspect will consequently be displayed in the pane.

Many aspects are available only for the active project.

If you change the aspects in a browser and want to keep that browser
configuration for use later, you must save it before closing the browser. See the
task “Saving a browser configuration” on page 61 for more information.

1. Open the puzzle sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or using the
alias in it.

Using browsers

CHAPTER 1

Learning Apple Dylan

2. Double-click on a source record, such as initialize.

E[I=——— initialize (view :: <puzzle-view>, ¥key) ?_%EE
Source Code of + Warnings of

[initialize (view : <puzzle-view>, #key) o
define method initialize (uiew :: <puzzle—view:, #Hhkeyl

rext-methodd ;

M4 check for the almost impossible
while Cis-puzzle-solved?Cuiamil

view. puzzle-state = rondom—stated);
end while;

3. Click in the pane but don't select anything, then choose the Aspect
command from the Browse menu.
You will see that the aspects for a source record are listed. Its default, Source
Code of +Warnings of, is the first item on the list. You can choose to see any
of the other aspects on the list and can go back to the default by choosing it
again later.

& File Edit Tent Project g M Debug Windows
| New Browser
Gontents of =l=| Save Browser... 0
£3 puzzie | >
& Dylan = __/ Default (Source Code of+Warnings of)
Grapher Pane

[+ @3 mac-toolbosx

b B dylan—framework Status Indicators... Function Family of |,

b B Dylan-user References From
b B puzzle Duplicate Definitions References To
n) List of Browsers Source Code of

] (e Undefined Dariables Warnings for Downloaded Code of
[@ Gontents of =] Unsaved Source Records Warnings of
» B puzzle » Warnings P

[> @ puzzle H urce-til

Call Grapher

urce-til
Class Grapher

Direct Methods

Direct Slots

Function Family

] | Il Info for Selected Class
puzzle References From
References To

Warnings (For Selection)

*dregio
[<object]

o1 4obje

Uariable Search...
Show Home ®Y

4. Select another aspect from the list, such as Function Family.
You will see the aspect appear in the pane, replacing the previous aspect. No
new pane or browser opens. Notice that the aspect named in the header of

Using browsers 47

CHAPTER 1

Learning Apple Dylan

the pane has changed in the following figure. The pane’s basis, initialize, has
not changed, but its aspect has.

El initialize (view :: <puzzle-view>, ¥key)

Function Family of

Y [}; initialize (view :: <puzzle-view>, #key)

initialize (object @ <statically-typed-painter>, ®¥key painter, sxtra-bytes)
initialize (ztring :: <pazcal-strings, ®key pointer, size, fill)

initialize (ztring :: <c-string>, ¥key pointer, size, fill)

initialize (instance, ®key)

initialize (clazs

i Y T

i1 aclagsy, ®key slats, superclasses, primary 7, subclassable ?,

puzzle |

5. Select an object, such as the source record is-puzzle-solved in the project
browser.

6. Drag the is-puzzle-solved source record to the inbox on the pane’s header
in the new browser.
The inbox, a small arrow on the left of the pane’s header, turns red when the
object is on it.

Project: puzzle
contents of C| @ Gentents of rj
£ puzzie » | » [puzzie s
q& Dylan — [[Copyright ©® 1994 by Apple Computer, Inc. AT rightt—
[* B mac-toolbo [+ O define-framework-libratyC "puzzle™);
[+ @ dylan-frarmework [By puzzle-views (oview?)
[= @ [ylan-uzer [o B initialize (view :: cpuzzle-wisws, ¥ley)
[+ H puzzle [By is-puzzle-solved? (view @ puzzle-view’) =3 solved
T 1 Ir B randnre-state (=3 state - <ventars -
'] 5 B itialize (view :: <puzzle-view>, #key)
[@ ©ontznts of ol Function Family of
+ [E puzzle * q;Q‘--init-ializ-a--(Biaw---:-:--4pu-z-zle~nuiew}-,--g#keg] e
[+ OO puzzle — i S initialize (object :: <statically-typed-pointer =, ®*key pointer, extra-bytes) —
S initialize (string :: <pascal-strings, ®key pointer, size, fill)
&= initialize (string @@ <c-string?, ¥key pointer, size, fill)
= initialize Cinstance, ®¥key)
% initialize (class :: <class>, ¥key slots, superclasses, primary 7, subclassable?, id P=is-=7])
] o
puzzle | puzzle | Drag OK

7. Release the mouse with the cursor still over the inbox.
The is-puzzle-solved source record becomes the new basis for the pane in
the Function Family browser. However, the inbox to the Function Family
browser is not red. This is because you have not created a link by dragging

48 Using browsers

CHAPTER 1

Learning Apple Dylan

in another source record, you have only changed the basis of the pane. The
icon and name of is-puzzle-solved are shown in the pane’s header in that
browser.

Project: puzzle
contents of C| @ sentents of]
£ puzzie + | % []puzzle -
q& Dylan — [* [Copyright ® 1994 by Apple Computer, Inc. ATl rightt—
[+ B0 rac—toolbos [* D define-framework-lbrary(puzzle");
[= B dylan-framework [Bs <puzzle-view: (iview?)
[+ @ Dylan-uzer [e B initialize (wiew @ <puzzle-views, #hey)
[+ H puzzle [r B is-—puzzle-solved? (view @ fpuzzle-wisw?) =3 zolwed
T 1 Ir B randoen-state () =3 state - <verdars -
1] & SCE is-puzzle-solved? (view :: <puzzle-piew?:) => solved :: <boolean> ; EFE
[“entents of T Function Farnily of
+ [E puzzle » = [Is-puzzle-solved? (view : <puzzle-view>) => solved :: <boolean? ;
[> BB puzzle — I B is-puzzle-solved Pepuzzle (view @ cpuzzle-view repuzzle) =3 zolwed @@ <boolean:
] 5
puzzle puzzle |

Ordinarily when you expand an object within a pane, you see its default
aspect. For example, if you expand a source record its Source Code of
+Warnings of aspect is displayed inline. You can change that aspect to
another aspect by selecting the object’s name or icon and then using the
Aspect command to select a different one. The new aspect is revealed inline
with the object; no new pane is created, nor is a new browser opened.

Using the browser References To

You can use browsers to gather information when writing code. The References
To browser displays all the references to a selected class, function or variable in
a project. You can use it to see such things as what makes references to a certain
slot or to use the sample projects and the framework for useful code. For
example, if you wanted to create an Import Picture command in your
application, you might assume that StandardGetFile or some variant was
probably what would help you and that it's probably in the framework. The
active project in the following example of this usage is puzzle.

Using browsers 49

CHAPTER 1

Learning Apple Dylan

1. Open the puzzle sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or by using the
alias in it.

2. Type the name of the class, method or variable in question,
StandardGetFile in this case, into the Listener.
This simply identifies the class or method you want to investigate. You
could type it into a source record in a pane and select it there.

3. Choose the dylan-framework module from the Listener’s Module popup.
You must set the module you want to search in using the Module popup in
the lower-left corner of the Listener window. For more information on using
the Listener, see the section “Running an application in Apple Dylan” on
page 144.

=———— HAEObjectSupportlibrary-etternal-module
Helcome ty Apple-Dylan

* Standay Apple-Dylan-extensions
ASLM-external-module
Creole
Creole-Kludge-Module
Dylan

Module: |« Dylan-User

Junk

Kernel
Memory-manager
Preemption-support
Prefid-support

+Dylan

dylan-framework p dylan-framework
mac-toolbox p| Dylan-User]
puzzle A

4. Select StandardGetFile in the Listener and choose the References To
browser from the Browse menu.
The References To browser opens and shows that StandardGetFile is called
by a framework function called choose-document.

Using browsers

CHAPTER 1

Learning Apple Dylan

Sl References To: StandardGetFile E
References To
= # StandardGetEile &
D S choose-docurnent (file-Tist :: <list:) => result :: <file> 5
o]
kel
|

5. Expand the source record for choose-document and search for
StandardGetFile.
StandardGetFile is not highlighted automatically. You have to search for it.
The arguments to StandardGetFile are displayed in the following example.
You might conclude that it is a bit too raw for your purposes and that you
would be better off using the calling function choose-document since the
framework has provided a wrapper.

References To: StandardGetFile

References To

= & StandardGetFile

= @ choose-docurnent (file-Tizt o <list:) = result oo <file>
define method choose—document (file-list :: <list:) =: result
with-structireply :: <StandardFileReplyx2
let type-list = $null-machine-pointer;
block (2
let type-count =
if Cempty?ofile—lista:
-1 /f qcoept any file
el=se
let type-count = file-list.size;
type-list = MewPtr{type-count * 43;
let i =0;
for (file-type in file-list?
signed-long-atitype-list + i1 = file-type;
=0+ 4
end for;
type-count;
end if;
pre-displag-dialogiconvert-clip: #t3;

StandardGetFiledas(<FileFilterUPF:, 03, type-count, type-lis

dylan-framewn.

Using browsers

51

52

CHAPTER 1

Learning Apple Dylan

6. Select choose-document and use the Browse menu to select the References

To browser again.
We want to see how choose-document is used. We see there is a

behavior-event and a do-event.

EE References To: choose-document (file-list :: <list>) => result

References To

i choose-document (file-list :: <list>) => result :: <file>

[P @ behavior-event Chehavior :: <debugger-behavior >, next-behaviors @ <list, main-h|

=2 !

[P @ do-event (rmain-handler :: <main-handler?, event :: <menu-events, id :: singleton(ol

| EIE]

dylan-framewo...|

7. Click the disclosure triangle for do-event.
Choose-document and its arguments are displayed so you can see how to

make a call to it.

References To: choose-document (file-list :: <listx) => result :: <file>

References To
» iz choose-document (file-list :: <list>) => result :: <file>
[* = behavior-event (behavior :: <debugger—-behawviors, next-behaviors :: <list®, main-handler :: <main-handlers, e
11 <rnain-handlers, event :: <menu-events, id :: zingletonopen)

= @ do-event (main-handler
define method do—ewent (main—handler :: <main-handler:,
event 1 dmenu-event:,
id == #"open”) =: ()
ignoretevent, idl;

/4 this standard file stuff should really be broken out so people con customize |

let file = choose-documentimaplfirst, main-hondler . document—tupe-1istal;

send-event{maked open—event:, direct-object: make—descriptorifilelil;
end method;

dylan-framewo. |

Using browsers

CHAPTER 1

Learning Apple Dylan

Using the browser Info for Selected Class

You use the Info for Selected Class browser to see several aspects of a class. The
top pane is a graph of the class hierarchy for a class and the two other panes in
this browser show a list of its direct methods and a list of its direct slots.

This browser’s root pane is a grapher pane, which means it visually represents
the relationships between the objects on a graph instead of listing objects. Click
the arrows on the graph to expand and collapse it. Other built-in browsers with
grapher panes are the Call Grapher and Class Grapher browsers. You can have
several of each of these browsers open at once. See also the Grapher Pane
command on page 213 for more information.

Only the basis of the browser is fully represented on the graph in a grapher
pane; you have to change the basis of the browser to get full representation for
another object. For classes, that means you can see multiple inheritance and
subclass relationships only for the basis of the browser.

As with other browsers, when you select an object before opening the browser,
you make that object the basis for the browser. Then, to change the browser’s
basis, you can drag any other appropriate object, such as a class, into its inbox
from any browser. However, in grapher panes you can also change the basis of
the browser by doing a control-click on another object within the browser to
make that object the new basis.

1. Open the Streams sample project and make sure it’s the active project.
The sample projects can be found in the Sample Code folder or by using the
alias in it. If you had another project open before opening Streams, you need
to click in the Streams project once you open it, and then use the Activate
Project command from the Project menu. If Streams were not the active
project, the project browser’s name would read “Project: Streams (inactive)”
and the root pane’s name would read “Streams (inactive)”.

2. Select a class in the Streams project, such as <stream> in the stream basics
source folder.

Using browsers 53

54

CHAPTER 1

Learning Apple Dylan

E Project: Streams HE
Contents of C]| = Gentents of s}
@ Streams % | » [7] stream basics &

& [nylan ; [» 0 stream basics ;
[@ Dylan-uzer | [P 01— the abstract stream classes:
[+ B streams-implementor [<strearn [dobjects]
[B streams [By output-buffer-offset (stream oo <streams) =» { offs
|| Ir B output-buffer Cstream @@ <ztreams)
id Ir B output-buffer-setter (new-value, stream @ <strea
- = D rﬁ output-buffer-end [stream :: <stream:) => [x :: <
[T gentents & - ol [P B output-buffer-end-setter (new-value :: <integers, s
- =] streamstimple... & [P B output-buffer-position (strearn :: <stream:) =: [po
P BB stream basics ; [+ B output-buffer-position-setter (new-value :: fintege
P O3 impl protocel I > [Streams like top streams have a seperate input and
I [string streams [+ O, ctwo-buffer-streams (<streams)
[[file streams || public stream protocal:
= [r B initialize (ztream :: <streams, ¥rest rest, ®hey)d
& m
streams-imple...|

3. Choose the browser Info for Selected Class from the Browse menu.
The browser opens, showing the graph for <stream> along with its direct
slots and direct methods.

The graph displays the five subclasses of <stream>. Notice that the class
<object> has no arrow to its left. That means it is the root of this hierarchy.

4. Click the first subclass on the list, <byte-stream>.
Its direct slots and direct methods are listed in the two lower panes, as
shown in the following figure.

Using browsers

CHAPTER 1

Learning Apple Dylan

E[[&—————— Info for Selected Class: <stream> Kob jecb) ==i—F——=H5

@ Grapher
» [3 <stream> (<object>)

& “objectruDylanaDylan S==7F s <stream>«streams—implementor & sbyte-—streamr« streams-[+
& “input-stream e« streams
& “output-streamswstreann:

& <two-buffer-strearn st

& “unicode-strearn »« strea

e

1l <]

[§ Direct slots of oy =
» on <byte-stream>«streams... =

Direct Methods of
o <byte-stream>«streams-impleme...

*

o 5 3

[= buffersstreams-implernentor (object :: <byte-stre

[» # buffersstreamns-implementor
[» = buffer-setter«streams—implementor (value, object

[» = buffer-settersstreams-implementor

i
5]

streams-imple...|

Continue clicking the other subclasses, to see their direct methods and direct
slots, if you want. Resize the browser slightly so you can see the full names

of the five subclasses.

o

of the two subclasses.

Click the arrow to the right of <byte-stream> on the graph.
This further expands the graph. Notice that there are two more subclasses,
but they are not fully visible. Resize the browser more to see the full names

Continue expanding subclasses until there are no more arrows to the right of

any subclass, if you have room on your monitor. You could reveal all the
classes of the hierarchy by continually expanding and resizing the browser,

but you would need a very large monitor.

Using browsers

55

CHAPTER 1

Learning Apple Dylan

Info for Selected Class: <stream> (<object>)

tream>« streams—implementor

& ‘byte-stream >« streams—implementor & <byte-input-strear ¢ streams—implementor & <byte—io-stream >« streams-im
T; <by te-two—way-io-streamrus

& <byte—output-stream e streams-impleme. .. & “byte-io-stream >« streams-imp

T:’ by te-twro—way-io-stream>ash

& <input-strearns«streams-implementor <Lx

= <output-stream>estreams-implernentor <>

[@ Direct Methods of
» ou <byte-stream>«streams-implementor (<stream>«streams-implementor)

[= buffersstreams-implernentor Cobject @@ <byte-stream e streams-implementor]

|> S buffer-setter« streams-implementor (value, abject o <byte-stream s« streams-implernentaor)

6. Select an arrow on a bar separating two classes and click the arrow to
collapse that part of the hierarchy.
The following figure shows the arrow to click to collapse the graph at that
point.

nfo for Selected Class: <stream> (<ob ject>)

+ [0

itor & <byte-stream »« streams-implementor & <byte-input-stream r« streams-implernentor & <byte-io-stream e streams-implernentor (]
T & “byte-two-way-io-stream >« streams-i
& cbyte-output-stream:«streams-implerne... & <byte-io-stream«streams—implementor
T & “byte-two-way-io-stream >« strearms—im.

=& <input-stream:«streams-implernentar <

=& <output-stream?«streams—implementor <>

eam?«streams-implementor (<stream><streams-implementor) s

zams—implementar (object @ <byte-streamr«streams—implementor)

arestreams-implementor (value, object 1o <byte-stream>«streams-implernentar)

The following figure shows the result of clicking the arrow.

56 Using browsers

CHAPTER 1

Learning Apple Dylan

Info for Selected Class: <stream> (<ob ject>)

& ‘byte-stream>«streams—implementor T.’. by te-input-stream b« streams-implementor <
& “byte-output-stream>«streams-implemne... ’T::. <byte-io-stream>« streams-impl tor

& <byte-two-way-io-stream - strearmns—im..

<input-stream»« streams—implementar <>

<output-strearnr« streams-irmplernentar <L

<two-buffer-stream r streams-irnplernen... >

eam>«streams-implementor (<stream®*«streams-implementor)

ams-implementor (object :: <byte-stream r« streams-implermentor)

srecstreams-implementor (value, object :: <byte-stream > streams—implementor)

Collapse the hierarchy back to its original size.

7. Control-click on a class on the graph, such as <byte-stream>.
This changes the basis of the browser to the <byte-stream> class. The
following figure shows the result of making <byte-stream> the new basis for
the browser. The <byte-stream> class has also been selected on the graph to
show its direct slots and direct methods. You will now be able to examine
multiple inheritance and the subclasses of <byte-stream> in depth.

E Info for Selected Class: <byte-streamr«streams-implementor (<stream>« EFIE
@ erapher =il §
. <byte-stream>«streams-implementor (¢<stream>«streams-implementor) & i

<F & stream>astreams-implementor si=—=7 = <byte-stream*«streams—implemen._ T & <bytedi:
& cbyte

Falke]

1){<f

[@ Direct Slots of C]| [pirect Methods of =]

» ou <byte-stream>«streams... = | » 25 <byte-stream>«streams-impleme... =
[» # bufferastrearns-implementor [= buffersstreams-implernentor (object 11 <byte-stre 5
I» = buffer-settersstreams-implementor > = buffer-settersstreams—implementor (value, object

-
B[

streams-imp

Using browsers 57

58

CHAPTER 1

Learning Apple Dylan

8. Click the <stream> class in the grapher pane.
Notice that you can no longer see all the subclasses of <streams> as you
could when it was the basis of this browser.

El Info for Selected Class: <byte-stream>«streams-implementor (<stream><«streams-implementor)
[@ Grapher
au <byte-stream>«streams-implementor (<stream>«streams-implementor)

3

& wbjectreaDylansDylan S==0 & <stream >« streams-implementar =—=" = <byte-stream>« streams—implemen... T & <byte-input
& <byte-outpe

[@ Direct slots of [@ Direct Methods of

* o <stream>«streams-impl... » o5 <stream>«streams-implementor (<object>«Dylan<Dylan)
[» & buffer-end«streamns-implementor [= buffer-endsstreams-implementor (abject :: <streams«streams-implementor)
[» # buffer-end-zetters streamz-impleme] [» @ buffer-end-zetters streams-impl tor (value, object :: <stream >« streams-implernent:
D # buffer-offsetestreams—implementor 5] D T buffer-offset<«streams-implementor (object :: <streamn>«streams—implementor)

streams-imple...|

Customizing browsers

You can customize any browser, either an existing one or a new one you create.
You create a new browser by double-clicking on an object in a pane, which will
open a new, separate browser with that object as its basis. You can also create a
new browser by selecting an object and using the New Browser command on
the Browse menu.

To customize a browser, you can change the links between its panes as
described previously in this section. Furthermore, you can change the aspects
visible in the panes. For more information on aspects, see the tasks “Showing
different aspects of objects” on page 42 and “Changing aspects” on page 46.

You can also add panes or resize existing panes. A new browser has one pane
and its basis is the object selected prior to creating it. The selected object is
specifically the basis for the root pane of the new browser and can, therefore, be
considered the basis of the new browser. The default aspect for the selected
object dictates the type of aspect displayed in the new browser’s pane.

If you want more than one pane in the new browser, you can split the pane in
two. Each of the two new panes can also be split, both horizontally and
vertically. You split a pane with its splitter controls; the horizontal splitter

Using browsers

CHAPTER 1

Learning Apple Dylan

control is a short, horizontal bar just above the scroll bar on the right of a pane.
The vertical splitter control is a short, vertical bar just to the left of the scroll bar
at the bottom on a pane. To split a pane, hold down the mouse on the splitter
control and then drag the dashed line that appears to wherever you want the
pane split. Another way to split a pane is to drag an outbox onto a splitter; the
pane splits in half and a link is created from the original pane to the new pane.

You can resize existing panes to create different relative sizes. The resize control
in the lower-right corner of each pane and each browser can be dragged to
create new sizes. You can also drag a horizontal line up and down and a
vertical line from side to side between panes.

You can close a pane by clicking its close box in the upper left corner of its
header. If you want to save the configuration of a customized browser, do so
before you close it. For more information on saving browsers, see the task
“Saving a browser configuration” on page 61.

In the following task, the browser Info for Selected Class is customized by
adding a pane.

1. Open the sample project Streams, if it’s not already open, and make sure
it’s the active project.
The sample projects can be found in the Sample Code folder or by using the
alias in it.

2. Select the <stream> class in the stream basics source folder, and choose
Info for Selected Class from the Browse menu.
The Info for Selected Class browser opens with <stream> as its basis.

3. Examine the outbox of the lower-right pane.
Notice that it is not linked to anything, so the outbox in the pane’s header is
gray. In addition, the outbox says “Not Linked”, as shown in the following
figure.

Using browsers 59

CHAPTER 1

Learning Apple Dylan

Info for Selected Class: <stream>«streams-implementor (<object>«Dylan<Dylan)

EN=—— =
[E @rapher |
% aw tstream><streams-implementor (<object><Dylan<Dylan) »

= <byte-stream>« streams-implementor <> ||

& <objectreDylansDylan <==7F & <stream>sstreams—implementor
& finput-strearn s streams-implementar <>

& output-strearn e« streams—implementar <L»
& “hwo-buffer-streann *estreams—implemen... <

& ‘unicode-stream s« streams-implementor <>

=]
<] =]
[a Dire<t slots of (=i RE] Direct Metheds of rj

* os <stream>«streams-implementor (<object>«<Dylan<D...

o5 <stream><«streams-impl...

s
[+ = buffer-endsstreams-implementor
[buffer—end—setter«streams—'imp]eme
[* = buffer-offsetsstreamsz-implementar =

streamz—imple..|

4. Drag the outbox of the pane onto its own vertical splitter control.

You can split a pane in one of two ways, by dragging its outbox to one of its

own splitters or by dragging a splitter control to the desired location for the

split.

o the vertical splitter control is a short, vertical bar just to the left of the
scroll bar at the bottom of a pane.

o the horizontal splitter control is a short, horizontal bar just above the
scroll bar on the right of a pane.

The following figure shows the lower-right corner of the browser with the

outbox of the lower-right pane being dragged onto its vertical splitter. The

splitter control turns red when the outbox is on it.

[Direct Methods of r
* ou tstreamr<streams-implementor (<object>«<DylanzD... o

This splits the pane vertically and creates a link to the new pane. Notice the
outbox is now red on the pane you split, which is half its original width, and

60 Using browsers

CHAPTER 1

Learning Apple Dylan

the inbox of the new pane to its right is also red. Nothing has been selected
in the split pane, so the new pane does not display anything yet.

5. Click buffer-end in the middle-lower pane.
You can now click an object in the original pane and it is displayed in the
new pane. The basis for the new pane in this example is buffer-end, as
shown in the following figure. The aspect Source code of is the default
aspect for buffer-end, so that is the aspect displayed in the new pane.

EC] = Info for Selected Class: <stream>«streams-implementor (<object> «Dylan«Dylan) ===HF
@ Grapher (ol
o <stream><«streams-implementor (<object>«<DylanxDylan) »

& <objectraDylancDylan S=—=F z <stream>«streams—implementor & <byte—streamr« streams-implernentor <L 2
& <input-stream e« streams-implementor <Lx
& <output-stream«streams—implementor £
& stwo-buffer-stream s« streams-implemen... <L+
& “unicode-stream ¢ streams-implementor <>
=
il >
[@ Direct Slots of C]| [pirect Methods of C]| @ source code of c]
& o <stream><«streams-impl... = | & 2 <stream><«streams-... » im buffer-end«stream... =
[» & buffer-endsstreams-implementor = I buffer-end« streams-implemer A For simplicity and effici=
) [. #¢ Streams which are ot buf)
[= buffer—end—setter«streams—lmp]eme [» B buffer-end-setters stre sms—ir E
I» = buffer-offzetsstreams-implementor =] [» = buffer-offsetestreams—impler define class <stream> (<ob =
5] 5]
streams-imple...|

6. Leave this browser open as you start the next task, “Saving a browser

configuration.”
To keep a customized browser configuration for use later, you must save it
before closing the browser. See the task “Saving a browser configuration” on

page 61 for more information.

Saving a browser configuration

When you save a browser configuration, you give it a name, which is added to
the list of browsers on the Browse menu. The new browser is also listed on the
List of Browsers browser. Any changed links and aspects within the new
browser are saved. Saving a browser does not save the code within it, nor any
of its external links, only its internal configuration of panes.

The saved browser is saved to disk as a file in the Browsers folder. If you want
to share a saved browser with someone, you can send them the file. You can
delete a browser from the lists of browsers available in the development

Using browsers 61

62

CHAPTER 1

Learning Apple Dylan

environment by moving the browser’s file out of the Browsers folder in Apple
Dylan. You do this by leaving Apple Dylan and dragging the file into another
folder or into the Trash. The browser remains on the development
environment’s lists of browsers until the development environment is restarted.

1.

LTI Debug Windows
New Browser

Select the customized browser from the previous task.

If you don’t have the customized browser from the previous task still open,
open any built-in browser from the Browse menu. You don’t need to
customize it to save it with another name.

Neither do you have to have any particular project open to accomplish this
task, although in this example the Streams project is open and active. You
could even create a new project by choosing New Project from the File
menu. The browsers you save are available in any project you work on in
Apple Dylan.

. Look at the Browse menu to see what browsers are currently listed.

The built-in browsers are in the third and fourth sections of the Browse
menu. Any previously saved browsers are in the fourth section.

Save Browser...

Aspect »
Grapher Pane
Status Indicators...

Duplicate Definitions
List of Browsers
Undefined Uariables
Unsaved Source Records
Warnings

Call Grapher

Class Grapher

Direct Methods

Direct Slots

Function Family

Info for Selected Class
References From
References To

Warnings (For Selection)

lPariable Search...
Show Home ®Y

Using browsers

CHAPTER 1

Learning Apple Dylan

3. Click in the customized browser you created in the previous task and
choose the Save Browser command on the Browse menu.
Because the active browser is saved, be sure to make active the browser you
want to save before choosing the Save Browser command. You don’t have to
customize a browser to save it with a new name, although that is the
common reason for saving a browser.

4. Locate the Browsers folder using the dialog box, enter a name for the new
browser, and click Save.
A browser should be saved into a file in the Browsers folder of Apple Dylan
or one of its two subfolders. You can save any browser, whether an existing,
new, or changed browser, and give it the name you want. If an existing
browser has the same name, it is overwritten. The objects in the browser are
not saved, just the configuration of panes and all links internal to the
browser.

[Call Grapher = 800 HD
Class Grapher —
I EEER
Direct Methods
Direct Slots Desktop

Functiun Family

Save Browser As... l@ Save ;jm

[Modified Class Info | (cancel)

If you save the browser to a file in the main Browsers folder, the browser
appears in the fourth section of the Browse menu. This type of browser
responds to a selection for its basis, such as a class. If you save the browser
to a file in the subfolder _Ignore Selection Browsers, the browser appears in
the third section of the Browse menu. This type of browser does not respond
to a selection, but instead uses the active project as its basis. If you save the
browser to a file in the subfolder _System Browsers, the new browser does
not appear on the Browse menu, but only on the List of Browsers browser.
You might do this if you wanted to create a new configuration for the default
project browser.

You can now copy the file, mail it to others, and handle it in many ways as
any file on the Macintosh. You can open it by double-clicking it in the Finder.

Using browsers 63

CHAPTER 1

Learning Apple Dylan

The new browser is now listed on the Browse menu and probably in List of
Browsers. In addition, the customized browser now shows the new name,
such as Modified Class Info in this example.

= Modified Class Info: <stream> (<object>)
@ Grapher

o |_—:o. <stream> (<object>)

& “objectr == & <stream>«streams-implementor <biy te-streamn r« streams-implementar <L
<input-ztream?:« streams—implementar <
<output-strearnra streams-irnplernentor <0

stwo-buffer-stream r« streams-implemnen... <

P

<unicode-streams«streams—implementor <>

=

il IE=
[@ Direct Slots of C]| [pirect Methods of C]| @ sSource code of o]
s o <stream>«streams-impl... = | & 2% <stream>«streams-implem... | + & buffer-end«streams-implem... =
[» & buffer-endsstreams-implemnentor [» @ buffer-ends«streams—implementor (object 44 For simplicity and efficiency all 5

.) /4 Streams which are ot buffered moy
[= buffer—end—setter«streams—lmp]eme I = buffer—end—setter«streams—1mplementor E
I» = buffer-offzetsstreams-implementor =] I» = buffer-offsetestreams—implementor (objdi] define class <stream> (<object:d =
5]

streams-imp

5. Check the Browse menu to see the new browser is listed.
In the following figure you can see that the new browser was saved to the
main Browse folder as it appears in the fourth section of the Browse menu.

64 Using browsers

CHAPTER 1

Learning Apple Dylan

Dehug Windows
New Browser

Save Browser...

Aspect b
Grapher Pane
Status Indicators...

Duplicate Definitions
List of Browsers
Undefined Variables
Unsaved Source Records
Warnings

Call Grapher

Class Grapher

Direct Methods

Direct Slots

Function Family

Info for Selected Class
Modified Class Info
References From
References To

Warnings (For Selection)

lPariable Search...
Show Home ®Y

Close the saved browser.

3

Click on another class in the project browser and choose Modified Class
Info from the Browse menu.

You see its basis is now the other class, but it has the same configuration of
panes and their links.

Using browsers

CHAPTER 1

Learning Apple Dylan

E[[=————— Modified Class Info: <two-buffer-stream> (<stream>) =
[Grapher i
» [3 <two-buffer-streams (<stream>) »

Tk & <streamiestreams-implementor == & ttwo-buffer-stream>«streams—im. ==k & byte-two-way-io-stream«streams—imn... ||
=
=] B

[@ Direct Slots of C]| [F pirect Methods of C]| [F Seurce code of (sl
» o5 stwro-buffer-streamr<st... = | & 5 <two-buffer-streamz<stre... « | » 2% output-buffer-end<stream... o
i

[+ = output-buffer-ends streams—i define class <two—buffer—-streom:> {

S output-buffer-ends streams-implementor | =
b i " = 27 the output-buffer. subclasses 488

|> = output-huffer-end—setter«streams-imp]e 44 slot output-buffer, tupe: <sequd=
P o= output-buffer -offsetestreams—implement g =lot output-buffer-offsat,

[» & output-buffer-end-setter«streams-i

[+ # output-buffer-offzetzstreams

streams-imple...|

8. In the Finder, go to the Browsers folder in Apple Dylan to see the new file.

Editing in Apple Dylan

In Apple Dylan you edit in place in the browsers. You don’t have to go to a
special editing window. Editing commands are available from the Edit and Text
menus and work in the content area of panes. You can edit the names of
objects, move them in the pane relative to one another, edit their contents, and
more. Apple Dylan provides Copy Special and Insert Special commands that
directly support coding in the Dylan language by creating templates for you
based on existing code. Editing commands are also supported in the Listener
and the New Text Window command on the File Menu.

In most cases, each source record is treated as a buffer with its own separate
editor. To edit a source record, you could expand it inline using its disclosure
triangle or double-click on it to open a new browser for it. You could also
export the source folder it’s in and edit that outside of Apple Dylan in the word
processor of your choice. These files can then be imported back into Apple
Dylan.

Key shortcuts provide not only common Macintosh editing commands, but
also emulate Emacs-style editing commands.

Editing tools discussed in this section include:

66 Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

o Copy, Cut and Paste and related Apple Dylan commands from the Edit
menu

o Clear and Undo and related commands from the Edit menu

o Replace and Find and related commands from the Text menu

o Formatting commands on the Text menu

o Importing and exporting Dylan text files from the File menu

o Macintosh and Emacs-style editing key commands

In combination, these tools allow you to perform complex editing of Dylan
sources while remaining within the structure of your project as displayed by
the development environment.

The best way to learn editing in Apple Dylan is to do it. You can practice using
the sample projects. When you are through practicing, use Revert from the File
menu to bring the sample project back to normal, or simply do not save
changes when you close the sample project.

WARNING

These tools have been assembled from a variety of sources
and may not behave with complete consistency. In
particular, the contents of the Clipboard and the
Emacs-style kill ring are not always synchronized.

Copy, Cut and Paste in Apple Dylan

The Apple Dylan development environment supports the conventional Copy,
Cut and Paste commands on the keys Command-C, Command-X, and
Command-V, respectively. These commands are on the Edit menu and use the
Clipboard in the usual way. These commands operate on text only, not on
objects.

In addition to the conventional Copy command, Copy Title Text appears when
the selected object is a valid title, such as the name of a module or subproject.
Copy Title Text is invoked by Command-C and also uses the Clipboard in the
usual way.

Editing in Apple Dylan 67

68

CHAPTER 1

Learning Apple Dylan

Copy Special and Insert Special commands

Apple Dylan also offers the Copy Special and Insert Special commands, which
are specialized for Dylan programming. These commands are on the Edit menu
and support two different styles of template-based editing.

Copy Special puts a template on the Clipboard and Insert Special puts the
information directly in an editor buffer without affecting the Clipboard.

These commands work only in the active project and require a valid selected
object. This can be either text that names an object, such as a method name, or a
source record icon. Three kinds of information are available, depending on the
nature of the object selected:

o Argument List—provides a prototype argument list for the selected
method

o Class Template—provides a prototype template for a subclass of the class
or classes selected

o Method Template—provides a prototype template for the selected generic
function or method

Copy Special appears on the Edit menu when an object is selected. The action
of the command writes the chosen prototype information to the Clipboard. You
can also use the key shortcut Command-J if you want just the argument list, or
Command-T if you want a template. The available template changes from class
to method depending on what you have selected.

Insert Special does not appear on the Edit menu, but is available by pressing
the option key when you click on Copy Special. Insert Special does not use the
Clipboard, but places the prototype information directly in the current editor
buffer. You can also use the key shortcut Command-Option-J if you want to
insert just the argument list or Command-Option-T if you want a template. The
available template changes from class to method depending on what you have
selected. Insert Special Argument List places the argument list just behind the
insertion point, but deletes no text. Insert Special Template replaces the selected
class or method with the new template.

Use these commands to get the argument list of a method you want to call, or
to create new methods and classes based on existing ones. In general, the Copy
Special commands will be most used, but the Insert Special commands may be
helpful in some situations. Say you wanted to create a method “moo” based on
the existing method “foo”. Type “foo” into the Listener and select it, then press
Command-Option-T and the template for “foo” replaces the name “foo” and

Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

you can proceed with your new method, making sure to change the name of
the method in the first edit.

See the reference documentation for more information on Copy Special and
Insert Special and examples of their use.

Undo and Clear commands

The Undo command is on the Edit menu. Use it to undo your last editing
action. Undo is displayed as Undo Typing or Undo Format, depending on your
last action. Once you have undone an action you are presented with the Redo
command and the Undo More command. Undo More can undo up to the last
20 editing actions.

Undo also works with the Clear command. Clear clears, that is, deletes,
whatever you have selected. If you use Clear to delete an object, folder, library,
or sub-project, you cannot undo it. Undo is supported only if you have used
Clear to delete text. Using Clear and Undo to delete and restore text also
activates the Redo Clear, Undo Clear, and Redo commands, as appropriate in
the context. Clear puts nothing on the Clipboard.

Replace and Find commands

The Replace and Find commands are located on the Text menu. Key shortcuts
are provided for all these commands.

These commands work across contents of the current pane. When the target
text is found, the source record containing it is expanded and the target text is
selected.

Use Find /Replace (Command-F) to find and optionally replace text, using the
Find dialog box. Use Find Again (Command-G) to find another instance of the
target text specified in a previous Find command. Use Replace & Find
(Command-]) to replace target text with replacement text and then search for
the next instance of the target text.

All these actions can be performed from the Replace/Find dialog box, which
also allows you to search in a single selected browser pane or throughout the
entire project. The search includes any text you can display by expanding all
source records. Searching the entire project is equivalent to searching the upper

Editing in Apple Dylan 69

70

CHAPTER 1

Learning Apple Dylan

left pane of the default project browser. This means that if the source code of
subprojects is available, it will be searched.

Note
Most editing in Apple Dylan operates on one source record
at a time, not the entire project as in this case.

In addition to the conventional Find and Replace commands, the Text menu
also provides Find Selection, which searches the current pane for the selected
text. Find Selection is independent of the other Find /Replace commands; it
performs no replacing and does not change what Find Again searches for.

Formatting commands

In addition to the Find /Replace commands, the Text menu permits you to
change the Font, Size, Style, and Color of any text to which you have write
access. Changing any of these items marks the source record for recompilation,
but otherwise has no semantic effect. There are no established guidelines on
text markup, but it is common to use bold for the name of the object being
defined. Use text markup to highlight whatever distinctions are convenient for
you and your project, such as assigning colors to individual code, or particular
type sizes or styles to different functions. Autostyling is not available.

Text markup from Apple Dylan is exported and imported in .dylan text files.
Text markup imported from other editors is ignored.

Importing and exporting Dylan text files

Apple Dylan supports the exporting and importing of Dylan text files. Dylan
text files have the suffix “.dylan” and are a text version of a source folder (not a
source record). Dylan text files can be mailed or edited outside of Apple Dylan.
Dylan text files can be created in a number of ways:

o Select the source folder to export and use the Export command from the
File menu

o Use the New Text Window command from the File menu

o Use most text editors or word processors outside Apple Dylan and save
the file with the .dylan suffix. Import the file into Apple Dylan.

Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

The Export command performs only limited code checking. Export breaks a
single source record with more than one top-level form or comment into an
individual source record for each top-level form or comment when exported.

You can bring Dylan text files into the Apple Dylan development environment
using the Import command.

You can export a project with partial source records, but you will not be able to
reimport it. If any exported code within a source folder has the incorrect
number of begins or ends, or is any other way seriously malformed, the source
folder cannot be imported.

Importing or exporting has no effect on objects marked for exclusion or
inclusion.

Macintosh and Emacs-style editing commands

Apple Dylan supports editing using both standard Macintosh key commands
and Emacs-style key commands. In most cases you can intermix these
commands, keeping in mind that the contents of Clipboard and the
Emacs-style kill ring may be inconsistent when using both.

Macintosh-style key commands

The Macintosh-style scrolling commands (Page Up, Page Down, etc.) do not
move the insertion point. Once you get where you're going, you must click to
move the insertion point. The Emacs-style cursor-movement commands move
the insertion point.

The following table summarizes the Macintosh-style editing commands. In all
cases, a source record is a buffer and vice versa.

cursor motion within a buffer forward back
character - o
word Option - Option

down & up line

end & beginning of line

Editing in Apple Dylan

1

Command -

1

Command

71

CHAPTER 1

Learning Apple Dylan

cursor motion within a buffer
down & up page

last & first line of source record
end & beginning of source record
motion across buffers

next & previous open definition, move line by
line through contiguous expanded records

expand & enter source record below & above.

expand & enter source record below & above
while closing current.

buffer -> object

select enclosing object

select enclosing object & collapse
motion object -> buffer,

expand and edit selected source record
motion at object level

select source record

select last or first source record

expand & collapse source record

page forward or back

bottom or top

select 1st at new level (expanding if needed)

end or Beginning of buffer, if already there,
expand next

select 1st at new level and expand or collapse

beginning or end of buffer, if already there,
expand next and collapse previous

Emacs-style key commands

forward

Command |
Command-Option!

Command-Option -

forward

Option |

Command !

Command-Option!

Control 1
Control-Option?

Command |
forward

!

Option |
Command
page down
end

Control |

Command !

Control-Option!

Command-Option!

back

Command 1
Command-Optiont
Command-Option —
back

Option 1

Command 1t

Command-Optiont

back

1

Option 1
Command -
page up
home
Control 1

Command 1

Control-Option?

Command-Optiont

The Emacs-style support is provided by a partial implementation of the Fred
editor (Fred Resembles Emacs Deliberately), which originated in Macintosh

72 Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

Common Lisp. Fred is included for the convenience of those who already know
Emacs.

Assigning meta to the option key, which you can do using the Preferences
command, may conflict with some of the Macintosh key commands using the
option key. In such cases, use Control-Q followed by the option key to insert a
literal option key.

Meta-X commands are not implemented. The meta key must be pressed and
released for each use, not held down like the Control or Command keys. Where
the meta key is used in combination with other modifying keys, it works best
to press the meta key and release it before pressing the rest of the key
combination.

The Fred kill ring contents may sometimes overwrite the Clipboard. Clipboard
contents are not available from the Fred kill ring.

In addition to the usual use of the mouse to select text by dragging across it,
two clicks selects a word, three clicks selects a line, and four clicks (tricky)
selects the entire buffer, that is, the entire source record.

You may discover other Emacs-style commands in Fred, but their employment
is not supported as they may produce ambiguous or erroneous results.

The table summarizes Emacs-style editing commands. This table is not
intended as documentation of these commands, but as a checklist of those Fred
commands that should work in Apple Dylan.

The meta key is assigned to escape by default. You can choose to use the option
key as the meta key through the Editing Category on the Preferences dialog.
This setting of the meta key conflicts with using the option key for
Macintosh-style editing commands. In this case use Control-Q to quote the
option key as itself.

Editing in Apple Dylan 73

74

CHAPTER 1

Learning Apple Dylan

cursor motion

e Control-B, «

e Control-F, -

e Meta-B, Meta
® Meta-F, Meta —
¢ Control-A

¢ Control-E

e Control-P, 1

e Control-N, |

* Meta-V

e Control-V

* Meta-<

* Meta->

¢ Meta-M

e Shift

*Shift —

* Meta-Shift —

¢ Meta-Shift

¢ Control-Shift-A
¢ Control-Shift-E
¢Control-X H

e Shift 1

¢ Control-Shift-P

Editing in Apple Dylan

Emacs-style Keys

Move the insertion point back one character.

Move the insertion point forward one character.
Move the insertion point back one word.

Move the insertion point forward one word.

Move the insertion point to the beginning of the line.
Move the insertion point to the end of the line.
Move the insertion point up one line.

Move the insertion point down one line.

Scroll upward.

Scroll downward.

Move the insertion point to the first line of the source
record.

Moves the insertion point to the last line of the
source record.

Moves the insertion point to the first
non-white-space character in its current line.

Selection

Move insertion point one character to the left and
select.

Move insertion point one character to the right and
select.

Move insertion point one word to the left and select.
Move insertion point one word to the right and select.
Move insertion point to beginning of line and select.
Move insertion point to end of line and select.

Select entire buffer and move to beginning.

Select to same point on previous line and move
insertion point.

CHAPTER 1

Learning Apple Dylan

oShift |

¢ Control-Shift-N
*Control-Shift Space

¢Control-O

¢ Control-Meta-O
¢Control-Y
*Meta-Y
eControl-Q

eMeta “
eMeta-U

eMeta-L
eMeta-C
eControl-T

eMeta-T

e Command-click

eDelete
*Meta-delete
¢Control-D
*Meta-D
¢Control-K

Editing in Apple Dylan

Emacs-style Keys
Select to same point on next line and move insertion
point.
Set mark.

Insertion

Insert new line but don’t move insertion point.
Split line and indent.
Yank current kill ring. Replace selected text if any.
Rotating yank.

Insert next keystroke quoted—use if Meta key
assigned to Option and you need Option.

Insert pair of double quotes around insertion point.

Make rest of word uppercase and move insertion
point to end.

Make rest of word lowercase and move insertion
point to end.

Capitalize first letter of rest of current word or
selection and move insertion point.

Transpose two characters surrounding insertion
point.

Transpose two words surrounding insertion point.

Replace the selected text with the Dylan expression
you command-click on. Especially useful for
replacing one name with another, less useful for
other Dylan expressions; Dylan syntax is not well
understood by the Fred editor.

Deletion
Delete character to left of insertion point.
Delete word to left of insertion point.
Delete character to right of insertion point.
Delete word to right of insertion point.

Delete remainder of line.

75

76

CHAPTER 1

Learning Apple Dylan

eControl-W
eMeta-W

*Control-X
*Control-Space

*Meta-Space

eMeta-\

eControl-_
¢Control-Meta-_

¢Control-U

¢ Control-n. Meta-n

¢Control-S
¢Control-R
eDelete

¢Control-G

Editing code

Emacs-style Keys
Delete current selection and add to kill ring.
Copy current selection and add to kill ring.

Delete all spaces and tabs from insertion point to
next character.

Replace all spaces and tabs surrounding insertion
point with a single space.

Delete all whitespace characters to left and right of
insertion point.

Undo
Undo previous command.
Display Undo history.
Numeric arguments
Repeat next keystroke 4 times.

Repeat next command » times.

Incremental search
Initiate forward incremental search.
Initiate reverse incremental search.
Delete last character typed from search string.

Clear search string.

You can edit code and rearrange objects in a browser. You can drag objects
between projects to copy them or copy code from individual source records
between browsers or projects. You can also copy code to and from the Listener

or a text file.

Several sample projects have been included with Apple Dylan. You can use
code from them by copying it into your project. In addition you can use code
from the framework, whose source code has been included in Apple Dylan.

Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

You can edit code in any project, it does not have to be the active project.
However, you cannot compile code in anything but the active project.

1. Open the sample project Streams, if it’s not already open, and make it the
active project.
The sample projects can be found in the Sample Code folder or by using the
alias in it.

2. Create a new project using the New Project command on the File menu.
The following figure shows the default new project browser. Notice that the
Dylan-user module is automatically selected, an untitled source folder
automatically created within it and an empty source record within that. You
could type or copy code into the source record, but for now click in the
Streams project so you can work in it first.

ED% Prnject: Untitled [inactiue] = =
Contents of C]| [Gentents of s}
@ Untitled (inactive) & | & [Untitled s

& [nylan — = 0| —

ki ki

[+ B Dylan-uzer . .
7]
5]
[Contents of =l
+ [E Dylan-user *
[» BB Untitled é

2] 2]

B B

Dylan- user |

3. Select a location for a new source record in the Streams project and choose
New Source Record from the File menu.
Select an object in the pane you want the new object in. This is how you add
modules, source folders, and source records to an existing project. In the
following example the class <two-buffer-stream> has been selected in the
Streams project browser and New Source Record chosen from the File menu.

Editing in Apple Dylan 77

78

CHAPTER 1

Learning Apple Dylan

Add To Project...
Open... #0
Close EAll

Edit Text Project Browse Debug Windows

Project
Module

Source Folder
Source Record

sics

\=
| the abstract stream clazses:

Save S . .
5 Al Teut Window <objects)
auve I» Iy output-buffer-offzet (stream ::
Revert Ip B output-buffer (stream @ <streams)
d t B bw
W— mport... D rﬁ output-buffer—end (stream :: <stream>) =>{ x 12 <
= EHport... o] bR
=1 N ra
Page Setup... bR
Print... ®P [* 01 Streamns like top streams have a seperate input and
[+ B <two-buffer-streams (<stream:)
#0 || public stream protocal:
[r B initialize (ztream @
I

«stream>) =r (offz

output-buffer-setter (new-value, stream :: <stream

autput-buffer-end-setter (new-value :: dinteger>, s
output-buffer-position (stream :: <stream>) => [po

output-buffer-position-setter (new-value :: <intege

dstrearny, ¥rest rest, ®hey)

streams-imple...|

The new source record appears after <two-buffer-stream, as shown in the

following figure.

Project: Streams

Gontents of = T]| @ contents of
@ Streams % | » [7] stream basics
g [wylan ; [» 0 stream basics
[@ Dylan-uzer | @ the abstract stream classes:
= [+ E streams-implementor [+ B <streamns C<objects)
[B streams [By output-buffer-offset (stresm oo <streams) =3 (offsq
| [+ [output-buffer (stream o <stream:)
i [By output-buffer-setter (new-value, stream @ <stresm
Z [» By output-buffer-end Cstreann oo <streams) =» (3 oo <n
= ':I:‘mtents of _ = [By output-buffer-end-zetter (new-walue @@ <integer:, s
* strenns-lnple.. [r B output-buffer-pozition (ztream @ <streamns) = { pog
= [BB stream basies ; [+ B output-buffer-position-setter (new-value :: fintege
[r O imp! protocal | [* @ Streams like top streams have a seperate input and o
[03 string streams [p B <two-buffer-stream? (<streamns)
[+ [file streams - [y
3 @ public stream protocol:
= o

streamzs-imple...|

Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

You could type or copy code into the new source record. To copy code,
simply highlight the code you want to copy, whether it’s in another source
record, even in another project, or in the Listener and then use the Copy

command.

Select the icon of the source record output-buffer-position and drag it

above output-buffer-offset.

This is how you can rearrange objects in Apple Dylan. You can also drag
objects between panes, between browsers, and between projects. Dragging
between projects copies the object, dragging within a project moves it.

Select the module streams-implementor and its source folder stream basics,
if the source record output-buffer-position is not visible. In the following
figure, notice the heavy black marker that indicates where the dragged
source record will be inserted when the mouse is released.

EC] Project: Streams HIE
contents of C]| [E centents af |
@ Streams % | » []stream basics I

q&h Cylan 5 I @ stream basics ;
[> @ Dylan-user | [P @ the abstract stream classes:
= [[@ streams-implementor [» %, <stream: (<object:)
[> @ streams ikm.tput--t.u'.‘ﬁer--o*.‘ﬁse{'{sh'e-an'.--mr-@tn-arn-s}oa-{--a.‘fg
|| [» B output-buffer (stream :: <stream>)
i [+ By output-buffer-setter (new-value, stream :: <stream
Z [+ By output-buffer-end Cstream @ <streams) =3 (x o dn
[Cantentz of _ = [By output-buffer-end-zetter (new-value @ <integer:, s
» streams-imple... & .
[+ B output-buffer-position (strearn @ <stream3) =3 { pog
* [B stream basics 5 [r B output-buffer-position-setter (new-wvalue ©: tintege
[» 3 impl protocal || [* 0 Streams like tep streams have a zeperate input and o
[+ 03 string streams [p B <two-buffer-streams (<strearns)
[» B3 file streams - [y
public stream protocol:

&[]

streams-imple...| Drag 0K

Ed

When you release the mouse, the source record appears at the position of the

heavy black line. In the following figure the drag has been completed and
the source record output-buffer-position is above output-buffer-offset.

iting in Apple Dylan

79

80

CHAPTER 1

Learning Apple Dylan

Project: Streams HE

Contents of = C]| @ centents of |
[l Streams % | % []stream basics »
q&h Cylan ® I @ stream basics &

the abstract stream classes:

[> @ Dylan-user
I» B streams-implementor

D @ streams

<stream? [<object?)
output-buffer-pasition (stream :: <stream>) =: [pog
output-buffer-offset [stream :: <stream>) => [offse
output-buffer (stream :: <stream>)

output-buffer-setter (new-value, stream :: <stream

5
>

Ccontents of

. output-buffer-end [stream :: <stream>) => [x :: <in
® streams-imple...

autput-buffer-end-setter (new-value :: dinteger:, s

[» B stream basics
[* B3 impl protocel
[» B3 string streams
[» B3 file streams

output-buffer-position-setter (new-value :: <integel

e[l & o &)l

Streamns like top streams have a seperate input and o

<two-buffer-stream® [<stream:)

OePFPOPPRPFFeFyO

public stream protocol:

Ev(]vvvvvvvvvvv

&[]

streams-imple...|

5.

6.

7.

8.

Ed

Expand the source record <two-buffer-stream> so you can see its source
code.
You can edit its source code inline using the Edit and Text menu commands.

Select text within the expanded source record to delete and choose Clear
from the Edit menu.
The text is deleted with the Clear command.

Choose Undo Clear from the Edit menu.

To reinstate the text, use Undo Clear. Notice that the exact wording of the
Clear and Undo Clear commands change appropriately to match the type of
action you can perform. You can undo up to 20 editing commands.

Double-click on the source record initialize.

Although you could edit an expanded source record inline in the project
browser, you will probably want to edit the code in a separate browser. You
can edit this code using the Edit and Text menu commands. The following
figure shows the new browser that opens with initialize as its basis.

iting in Apple Dylan

CHAPTER 1

Learning Apple Dylan

S[[=——— initialize (stream :: <stream>, #rest rest, ¥key) =——D=
Source Code of + Warnings of

[initialize (stream :: <stream>, #rest rest, #key) o
define method initialize (stream :: <stream:, #rest rest, #hkeyd

rext-methodd ;
applutimpl-initial ize, stream. implementor, stream, restl;
open—streamistream;

end;

N

streams-imple... |

9. Select the name of the initialize method in the new browser to use it as a
template for a new method.
The Copy Special and Insert Special commands use the language databases
within Apple Dylan to retrieve code templates.

In the following example, initialize has been selected and will be used as the
basis of the template.

(=== initialize (stream :: <stream>, #¥rest rest, ¥key)
Source Code of + Warnings of
» [oh initialize (stream :: <stream>, #rest rest, #key) s
dafine method [initialize (stream :: <stream:, #rest rest, #keyl
res t—me thod L ;

applycimpl-initialize, stream.implementor, streom, restl;
open—=s treamt s tream) ;

streams-imple...|

10. Choose the Copy Special command Method Template from the Edit menu.
The Method Template (Copy Special) command copies the template to the
Clipboard. The following figure shows initialize selected and Method
Template being chosen from the Edit menu.

Editing in Apple Dylan 81

CHAPTER 1

Learning Apple Dylan

mTth Project Browse Debug Windows
~| Undo #2 Project: Streams
#{ Undo More [contents of O
tri [stream basics o
E Cut #H [* @ stream basics —
Dy Copy #C o the abstract stream classes:
=t Paste &L I+ Bs <stream> (<objects)
B Clear [B output-buffer-offset (stream :: <stream) =3 [offse

Select Al =R [By output-buffer (stream @ <streams) E initialize (stream :: <stream>, #rest rest, #key)
] b B etk o [nauwewalia shraam trea Zource Gode of + Warnings of

Copy Special b opy . 4 = | initialize (stream :: <stream>, #rest rest, #key)
s Paste Special » -opy | hor > define method initialize (stream :: <stream:, #rest rest, #key
Ar " ! hext-method?);
= I B butput-buffer-position (stream @ <streams) =» (p applylimpl-initialize, stream. implementor, stream, rest);
14 Enpand [B output-buffer-position-setter (new-value :: <integy open-streanistrean’;
11 Collapse [» [Streams like top streams hawe a seperate input and end;
1 B Be stwo-tuffer-stream? (<streams)
1 1__Preferences... @ public stream protocel:

| > B initialize (stream :: <stream>, #rest rest, #key)

streams-imple...|

)

T
]

11. Go to the source record where you want to use the template, click where
you want the code placed, and choose the Paste command.

In this example, go to the newl
click in the new source record.

y created source record in the new project and
In the following figure the code template for

initialize has been pasted into the new source record in the new project. You
can see both the new project browser with the new code in its right-hand

pane and the separate browser
Click in the new source record

in front of it with initialize still selected in it.
to edit the template and create your own

version of initialize by specializing at least one of the parameters.

Project: Untitled (inactive)

0 £

contents of = C]| @ contents of cj
@@ Untitled (inactive) | s [Untitled 2 >
&b Dy lan FHll* = B define method initializedinstance :: <objectralylanciylan, #keyl ;
b [Dylan-uzer end method initialize;
= [+ [B Untitled
El tialize (stream :: <stream>, #rest rest, #key)
Source Gode of + Warnings of
] = » [25 initialize (stream :: <stream>, #rest rest, #key)
[& Gontents of K define method initialize (stream :: <stream:, #rest rest, #keyl
+ [E Untitled > next-mathod(d; _
applutimpl-initial ize, stream. implementor, stream, rest;
= [@ Untitled 2 — open—streamtstreany;
streams-imple...|
1 I
] & | &
Untitled
82 Editing in Apple Dylan

CHAPTER 1

Learning Apple Dylan

The Insert Special commands work in a similar way to the Copy Special
commands, but they do not use the Clipboard.

12. Choose Close from the Project menu to close the Streams project.
You can also use the close box on the project browser to close the project.
Don't save the changes to the Streams project. Close your new project,
saving it if you wish.
There is no need to have any projects open for the next section because you
set the preferences for the development environment as a whole, not for
individual projects.

Customizing the development environment

You can customize your projects in several ways, such as through the
subprojects you choose to incorporate. In the development environment, you
can also customize how you view and interact with all your projects. You can
choose various settings through the selections you make in the Preferences
sheets. You don’t need to have any projects open to complete the tasks in this
section as the preferences you set apply to all projects.

Several categories of preferences can be set, including the font size of the
environment itself, text editing conventions within each pane, interaction
between the compiler and your code, and interaction between the runtime
while you are debugging your code. You make these choices using the
Preferences command on the Edit menu.

The Preferences command presents four dialog boxes, or sheets, for
customizing the interface of the Application Nub, Environment, Editing, and
the Listener. Choosing the Default button resets the defaults for all fields on all
four sheets.

Customizing the development environment 83

84

CHAPTER 1

Learning Apple Dylan

Preferences

Application Nubh
Category:
R O

Listener

BrowserFont: | Leneoa v| EE'
Browser lcon Size:

[J Inspect Stack on Error

Ceancer) (k)

Setting development environment preferences

You can customize your development environment so that you can work with
every project in the same way. By setting fields in the Environment sheet, you
can choose the font for browsers, the font size and icon size for browsers,
whether to automatically open the Stack window if you get an error, whether
you automatically launch the application nub whenever the active project is
opened, and whether you want to automatically update the active project
whenever the application nub is launched.

1. Choose the Preferences command from the Edit menu.
The Environment sheet opens. The following figure shows the default values
for the Environment sheet. Choosing the Default button resets the defaults
for all fields on all three sheets.

Customizing the development environment

CHAPTER 1

Learning Apple Dylan

Preferences

Category:| Environment

Browser Font:| Geneva | E“El
Browser Icon Size:

O Inspect Stack on Error

2. Choose the type of font you want used for display in the browsers.

3. Choose the size for icons.
The icons in the development environment are clearer if you choose an icon
size of 16 in the Browser Icon Size field.

4. Click Inspect Stack on Error if you want to open the Stack window on any
error that occurs while compiling your code.
See the chapter “Using Apple Dylan” on page 95 for more information on
the implications of this choice.

5. Click Launch Application Nub when Active Project is Opened if you want
to launch the application nub whenever you open a project.
See the chapter “Using Apple Dylan” on page 95 for more information on
the implications of this choice.

6. Click Update when Application Nub is Launched if you want to update
the active project whenever you launch the application nub.
See the chapter “Using Apple Dylan” on page 95 for more information on
the implications of this choice.

Setting editing defaults

You can customize your development environment so that your editing
environment is the same whenever you edit code. By setting fields in the

Customizing the development environment 85

86

CHAPTER 1

Learning Apple Dylan

Editing sheet, you can choose the font to use when editing code, the meta key
you want to use, if any, how to automatically indent code, and whether you
want to display warnings with the source code.

The following figure shows the default values for the Editing sheet. Choosing
the Default button resets the defaults for all fields on all three sheets.

1. Choose the Editing sheet from the Category popup.
The following default sheet appears.

Preferences
Category: | Editing]
Default Editor Font: | Monaco | E”Zl

Assign Meta To:) Option (@ Escape

Indent Current Line on: 5] Return [Tab [£] Space
[Indent New Line on Return

[J Auto Display Argument List
[Display Warnings with Source

Cancel 0K

2. Choose the font family and size you want to use while editing code.
Changes you make in these fields apply only to edits you make after
changing this.

3. Change the meta key for editing with the Emacs-style key commands, if

you want.

4. Click in the boxes for the type of indentation you want applied to your
code.

5. Click Auto Display Argument List if you want to automatically display
the argument list.

6. Click Display Warnings with Source if you want to automatically display
any warnings within source records.

Customizing the development environment

CHAPTER 1

Learning Apple Dylan

Setting Listener interaction defaults

You can customize the way the Apple Dylan Listener acts. By setting fields in
the Listener sheet, you can choose the font for the Listener, what truncation of
lines, elements or levels you want, and whether you want to detect circularities.

The following figure shows the default settings for the Listener sheet. Choosing
the Default button resets the defaults for all fields on all three sheets.

1.

Choose the Listener sheet from the Category popup.
The following default sheet appears.

Preferences

Category:| Listener]

Font: [Monaco - | EIEI

Display Truncation Options:
Lines:) Magimum Number: |:| ® unlimited

Elements: O Madimum Number: |:| ® unlimited
Levels:) Magimum Number: I:I ® unlimited

[J Detect Circularities

Cancel I 114 I

. Choose the font family and size you want to use while editing code in the

Listener.

. Choose a maximum number of lines you want printed in the Listener, if

you want to limit them.

. Choose a maximum number of elements of a list you want printed in the

Listener, if you want to limit them.

. Choose a maximum number of break levels you want displayed in the

Listener, if you want to limit them.

. Click Detect Circularities if you want to stop printing after the first time

around a code circularity.

Customizing the development environment 87

CHAPTER 1

Learning Apple Dylan

Using icons in Apple Dylan

Every object depicted in the Apple Dylan development environment has an
icon associated with it. Icons are also used to convey other kinds of information
in Apple Dylan.

For each object, there can be three kinds of icons:

s First, there is the basic icon of a definition entity, in this case the definition
entity of a class that is the compiled representation of a class:

s Next there is the icon of a source record for a class, the basic icon
superimposed on a standard document icon. This is the most commonly
encountered form:

[3

=

= Finally, there is the icon of an excluded source record, the basic icon
superimposed on a standard comment icon:

3l

c

= The ball icon indicates a generic object:

2

= Thus, the following is a generic source record:

[&

88 Using icons in Apple Dylan

CHAPTER 1

Learning Apple Dylan

= A?, signifying a problem of some sort with the object: this may be
superimposed on other icons.

i

2

You control the display size of icons through the Environment sheet of the
Preferences command. See “Setting development environment preferences” on
page 84.

= default size, 12 points
lo
= 16 points

[&

= 32 points

(G

Following is a summary of the most commonly encountered Apple Dylan icons, displayed in their most
commonly encountered forms:

= Project

[

Using icons in Apple Dylan 89

CHAPTER 1

Learning Apple Dylan

Subproject, the same as project

[

= Project File, document with .1tsuffix, seen in Finder

(&

» Generic source record

[&

= Application seen in Finder. The Application Nub and Apple Dylan have this
icon.

@

s Comment

» Variable source record

(3

» Constant source record

[a

Using icons in Apple Dylan

CHAPTER 1

Learning Apple Dylan

Macro source record

[#4

» Database source file

O

= Note icon, usually no match. Usually accompanied by an explanation of
what has not been matched, such as “Inapplicable aspect”.

(=

» Unrecoverable Error

Fioy

= Saved Browser

s Top level form

[&

= Warning, recovery may be possible.

Iy

Using icons in Apple Dylan

91

CHAPTER 1

Learning Apple Dylan

Source folder

(3

= Source module

s Class source record

(3

= Library file, .dl suffix.

T

s Bare method source record

[»

s Generic function method source record

£

» Generic Function source record

=

92 Using icons in Apple Dylan

CHAPTER 1

Learning Apple Dylan
= Source database in Finder

-EI_E?

s Compiler results database in Finder

-NEI__HéT

= Resource file

Close any open projects when you are done with this chapter. Don’t save the
changes to the sample projects.

Using icons in Apple Dylan

93

94

CHAPTER 1

Learning Apple Dylan

Using icons in Apple Dylan

CHAPTER 2

Using Apple Dylan

The Apple Dylan development environment is powerful and easy to use. You
can create applications quickly because the environment is organized around
objects, just as the Dylan language is. You will see that the various types of
code elements appear in the environment with different icons so you can tell
them apart. These objects can be manipulated by dragging and dropping, just
as you would suppose.

Apple Dylan User Model

The Apple Dylan development environment is built around a number of
assumptions, procedures, and expectations about how programming is done in
Apple Dylan. These ideas and requirements are known collectively as the
Apple Dylan user model. The user model is a description of the process you
use to create applications and libraries in Apple Dylan, not a description of the
internal implementation of Apple Dylan.

This section introduces the user model by means of a walkthrough of the
programming process, starting with organizing and writing source code and
continuing all the way through to building a stand-alone application or library.
Detailed descriptions of how to complete various tasks follow this overview.

The Project

The project is the central concept in Apple Dylan. A project is a set of
documents that encompass all the elements of your programming effort:

o libraries

o subprojects

Apple Dylan User Model 95

96

CHAPTER 2

Using Apple Dylan

O

O

O

O

modules (sometimes called source modules)
source code
resource files

text files associated with the project

The Apple Dylan development environment allows you to examine and change
all of these program elements.

The container hierarchy in Apple Dylan is as follows, top-down:

O

O

O

O

Projects contain modules
modules contain source folders
source folders contain source records

source records hold source code.

ﬁ project

W [E [E modules

T

D D D sourze folders

T

E;-.II E:g‘ |__h"l source recards

In essence, a project is made from source records, individual definitions
represented as individual objects that can be directly manipulated by the
development environment or edited as text. Most of the other objects in Apple
Dylan are means of organizing the source records. For instance, a module is the
place where all your definitions are kept, usually within source folders. The
source folders are simply a convenience for grouping and ordering the source
records.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

You can add libraries to a project, just as you can add any project to another.
When you add them to a project, the added libraries and projects are
represented as subprojects in it. These subprojects, along with any resource files
you add, appear in the project at the same level in the hierarchy as modules.

Alibrary is a namespace for module names. They allow you to use other
people’s libraries without causing name collisions between modules. Libraries
are created with the “define library” statement. A module is a namespace for
variables, so you can similarly avoid name collisions between variables when
using other people’s libraries. Modules are created with the “define module”
statement.

The end result of your work on a project is either an application or a library. An
application runs when you double-click it. A library is a building block used by
an application, allowing for sharing of reusable code.

A number of sample projects are included in the Apple Dylan distribution.
These sample projects are used for all examples in this document as well as
being available for independent learning.

What goes into a project?

When you start Apple Dylan, the first thing you see is the Listener. You can’t do
much with the Listener without an active project open, so open a sample
project, such as “paint-app”, using the Open command. Open the file in the
Apple Dylan folder with the path Sample Code: More Samples: paint-app:
paint-app.Tt.(The Ttis the suffix that identifies the document as a Dylan project.)

You should see the default project browser open. The Dylan-user module is
selected in the root pane in this example:

Apple Dylan User Model 97

98

CHAPTER 2

Using Apple Dylan

Project: paint-app

b B8 1ibrary & moduls

Contents of F]| @ contents of =l
ﬁ paint-app % | % []library & module o
'@' Dylan - b B Copyright @ 1994 by Apple Computer,[—|
B ﬁ mac-toolbax b r% paint-app
B ﬁ dylan-framewar| b rli! paint-app
b B pyran-user
| E
[@ ©contents of =]
+ E Dylan-user -

Duylan- user |

The root pane of the project browser (upper-lefthand pane) displays the major
elements of the project. Each project contains one or more subprojects, which
contain the libraries that the project’s library needs. Every library needs the
“Dylan” library, one language library, one or more modules contained by the
library (each library contains an implicitly defined “Dylan-user” module), and

any text or resource files, if needed.

Here is what you see in the root pane of a typical project’s project browser (you

might have to scroll or zoom the pane to see all its contents):

o Dylan library—a subproject that contains the Dylan language itself. This

subproject looks different from other subprojects because it has no source
code. All projects include this library.

mac-toolbox—a subproject that contains a set of import statements in
Dylan that give access to the (non-Apple Dylan) routines in the Macintosh
Toolbox.

dylan-framework—a subproject that contains an object-oriented class
library that implements (in Apple Dylan) a common set of features found
in Macintosh applications.

Dylan-user—a module defined for each project. The module is intended
primarily for setting up other modules and libraries, but is useful in small
or experimental projects as a single module.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

o paint-app—an additional module containing the code specific to this
application. There can be any number of additional modules, or none at
all.

o paint-app.rsrc—a resource file used by the application. This file is
optional. You may have several resource files and they need not be kept in
the same folder as the project.

o For some projects, you will also see other subprojects listed in the root
pane. A subproject is a project or library that has been included in another
project. Any project whose project type is “library” (see the Set Project
Type command) can be included in another project.

o For some projects, you may also see text files. It may be convenient to
store these files—perhaps a README, notes or lists—with the rest of the
project, but the development environment does little or nothing with
these files.

Good practice requires that every project have a library definition. The library
definition makes modules available for use. This is done with a define-1ibrary
statement in the Dylan-user module.

That a module or library / subproject name is displayed in a browser means that
it is included in the compiler results database, but it does not mean that it is
available to the application. Only clauses in a project’s define library statement
makes modules from other libraries accessible to the project’s modules. The use
clause must be typed in. It does not appear automatically.

Each variable within a module is visible to all the code contained in that
module, but variables must be explicitly exported (and then imported) to be
visible to code in other modules.

When you make a new module using New Module from the File menu, you are
informing the development environment of the module. When you add a use
or export statement to your source code, you are informing the compiler of the
module. You must do both because the integration of environment and
language are not seamless in this release. This is one of the seams.

There must be a single library definition including a use statement for each
library and an explicit statement exporting the module that contains the startup
function for an application.

There must also be one or more module definitions, showing which modules
are accessible from that module and thus allowing access to all exported
variables.

Apple Dylan User Model 99

CHAPTER 2

Using Apple Dylan

To see these definitions, move to the righthand pane of the project browser and
expand the two paint-app objects by clicking on their disclosure triangles:

[Gontents of

% [library & module
F O Copyright @ 1994 by Apple Computer,

o ‘ define |ibrary paint—app
use Oylan;
use mac—too | boc;
use dylan—framemork, ;

[5 =

expart
paint—app;
end | ibrary;
= define module paint—app
use HApple-DOylan;
use mac—boo | b ;
use dylan—framework ;
end module;

]

It is here that the scope of the project is defined, that is, which libraries and
modules form part of the project.

Note

In this example, the module definition includes a use
statement for Apple-Dylan. If you were writing portable
code for use in non-Apple environments, the use statement
would name Dylan, not Apple-Dylan so the compiler
would catch any use of Apple extensions.

Note

The Dylan-user module is in each project, but you must
define for each project a unique version of the Dylan-user
module. It is possible to write a program without defining
a library or any other modules by simply using Dylan-user
for everything. With the exception of the tiniest
experiments, this practice is not recommended as it
circumvents the design of the language and the
development environment. When you create a new project,
you should create a new module or modules to hold all
your code.

100 Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

What's really in a project?

Use the Finder to examine the directory for the paint-app sample project. You'll
find the following on your hard disk:

o paint-app.Te—the project file, which actually consists of pointers into other
files. This is the file to open when you want to use a project in the
development environment.

o _Source Database—all source records for the project, in database rather
than text form.

o paint-app.rsrc—an optional resource file. Use ResEdit or another resource
editor to change its contents. There may be no resource file, or many; they
need not be in the project folder.

o paint-app.dl—the project library file.
o _Compiler Results Database—all compiled objects for the project.

o _Library Model—equivalent to the compiler results database, but for
libraries. Created by Create Library.

o paint-app (the executable file)}—the standalone application itself, which
can be double-clicked in the Finder to run paint-app.

Under normal circumstances you never do anything directly with any of these
documents. The main reason to mention them is to point out that you have the
option, in the case of a severe need for disk space, of deleting _Compiler
Results Database and _Library Model. These documents are created when you
compile your project and thus can be replaced. The document _Source
Database cannot be replaced.

Note that these two files, _Compiler Results Database and _Library Model,
grow along with your project but do not shrink along with it. As you
repeatedly compile, old compiler results are not eliminated, but simply cut off
from access. You may find it valuable from time to time to issue the command
Compact Project to perform a garbage collection on these files.

What happens when you open a project?

You open a project using the Open command on the File menu. When you do,
you see an Open Project dialog box like this, giving you status as the project is
being opened:

Apple Dylan User Model 101

102

CHAPTER 2

Using Apple Dylan

Open Project

Open Project...

Opening the source database

I [Stop |

Here is what happens:
o All files in the project are locked against other access and opened.
o A project browser is created.

o The development environment checks for an active project and if there is
none, makes this the active project. Otherwise, this project is opened but
is not the active project.

o The source database index is loaded.

o The compiler results database is loaded (as the dialog box mentions
loading of caches and definitions).

o If you have selected “Launch Application Nub when Active Project is
Opened” on the Preferences Environment sheet, the Application Nub is
launched.

o If you have selected “Update when Application Nub is Launched” on the
Preferences Environment sheet, the Update Project command is issued.

The active project

Only the active project can be browsed completely. Only one project, the root
project, can be active at one time, although all subprojects contained within
that project are also active. No other project, open or closed, is active. The first
project you open is the active project, but you can change active projects with
the Activate Project command from the Project menu. If you close an active
project, the project opened next becomes the active project.

Other open projects are inactive. You can browse the text portions of these
projects, but you cannot browse any relationships that depend on compiler
results. The source records of an inactive project can be edited and saved. You
can also cut and paste between active and inactive projects. Changed text in an
inactive project is marked as uncompiled when it is changed, but you cannot
compile it until you make it the active project.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

Only the active project and its subprojects can be fully browsed. You could
think of the development environment as an interface to the compiler results
database. In other words, all information displayed by a browser depicts what
has actually been compiled. For instance, the call graphers and class graphers
depict calling or class structures that have been successfully compiled, not
what has been incorrectly written in the code and won’t compile. The same
goes for all cross-references, debug information, or other relationships in the
project. Keep in mind, you are working directly on your application or library,
not a representation of it.

Because each source record is a definition, individual definitions can be edited,
and compiled without disturbing the rest of the program. Thus, in compilation,
only modified definitions are compiled. This incremental compilation means
that you can interactively change the active project with a very short compile
time.

Note

The changes you make in the active project are not
reflected in the compiler results database until you compile
them. Therefore, many browsers do not reflect the changes
until you compile.

WARNING

Since the compiler does not lock files, you are not
prevented from editing while compiling. However, you
absolutely should not do this. You should also not browse
while compiling.

Targeting 68K and PowerPC Platforms

You can target your final application or library to run on the Macintosh 68K or
PowerPC platforms. You set an individual target architecture while you are
developing a project. To do this, you make your project active and choose the
preferred platform using the Target Architecture command. Then, when you
build your final application or library, you can choose which architecture you
want it to run on. If you want a single application to run on both architectures,
you would choose to create a fat application. A fat application should run
equally well on both platforms as it contains native code for both. You can also

Apple Dylan User Model 103

104

CHAPTER 2

Using Apple Dylan

choose to create a skinny application. A skinny application is one that runs
native on the 68K architecture but is emulated on the PowerPC.

Although you can switch back and forth between the two targets for any active
project as often as you wish, you must issue an Update Project command every
time you do so, which can slow development time. Therefore, if you want to
develop for both platforms, you can decrease the number of times you have to
switch between the two platforms by getting your project fairly solid for one
before compiling it for the other. The common methodology is to target one of
the platforms, develop your application or library through the debugging
stage, then choose the other platform and recompile. You don't have to
recompile your project with the other architecture targeted. You can instead
create a fat application and test that.

The reason you must use the Update Project command every time you switch
between platforms is that there is a separate compiler results database file and
library model file for both platforms. These files are updated only for the
current target; the other set of files are left as they were when you switched
away from them. Therefore, an update is needed to refresh the contents of these
files when you switch back to them.

Application or library?

Every project must have certain characteristics established, depending on
whether it is an application or a library. This is done through the Set Project
Type command from the Project menu. You can also use this command to
examine the characteristics of any project.

Internally, applications and libraries are identical, with the single exception that
an application includes a startup function. This means that an application can
be started and achieve some end result. A library does nothing by itself and
must be used as a building block of an application

For the sample project paint-app, you see the following dialog box when you
choose Set Project Type from the Project menu:

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

Set Active Project Type

Project Type: @ Application O Library

Creator Type:

Startup Function: |start |

Module: | paint-app -]

Memory: K Minimum

K Suggested

[Use Separately Loaded Libraries
[JCreate Fat Binary
Application Names:

68K: |paint-app68K |

PowerPC: |paint—appPPl: |

Fat: ||Jaint—a|J|JFat |

Cancel 0K

This information is needed by the development environment to manipulate,
load and run the application. You can see the paint-app project is an
application. The startup function (similar to Main in a C program) is identified
by name and location (i.e., which module it’s in). The file creator type is given,
as are the suggested and minimum memory needs of the application. The box
“Use separately loaded libraries” is checked.

If you check “Library” in the “Project Type” field, the dialog box changes,
reflecting the differences between applications and libraries:

Apple Dylan User Model 105

106

CHAPTER 2

Using Apple Dylan

Set Active Project Type

Project Type: O Application @ Library

Creator Type:

Library Dersion:

Minimum Dersion:

I

Library Names:
68K: |paint-app68K.dl |

PowerPC: ||Jaint—ap|JPPI3.dI |

Cancel 0K

There is no startup function in a library, nor does a library have memory
requirements. Also, libraries do not vary according to whether they are
separately loaded or not. However, libraries do require versioning.

Library version numbers

Set Project Type allows you to specify a version and a minimum compatible
version for each library.

Setting the version of a library controls which version is recorded in the
compiler results database. When a library file is created from a project, the
library versions of all of its subprojects are recorded in the library file header.
Then at runtime, when the library is loaded, it will only accept those versions
of the sublibraries that are compatible with the version of the sublibrary used
at library creation time.

The minimum compatible version is the lowest version that a library is
backward compatible with. The Min Version field is checked during runtime
library search.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

For example, suppose library A uses library B, and at the time the library file
for A is built, library B was at version 17. Later, at runtime, when library A is
being loaded, it will look for library B, version 17.

o Ifit finds an instance of library B that has version 17, that version is used.

o If it finds an instance of library B that has version 16, that version is not
used.

o Ifit finds an instance of library B that has version 19, and the minimum
version is 17 or less, that version is used, because even though that library
has a later version, it claims to be backward compatible with version 17.

o If it finds an instance of library B that has version 19 and a minimum
version of 18 or more, that version is not used, because that library is not
compatible with version 17.

o If it finds more than one instance of library B which is compatible with
version 17, it picks one at random.

If library B version 17 had a minimum version of 16 at the time Library A was
built, it might seem that version 16 of Library B could be used, but it doesn’t
work that way. If library B has version 17 and minimum version 16, that means
only that version 17 is backward compatible with version 16. Thus, version 17
could be used where version 16 was expected. However, it doesn't mean that
version 16 is compatible with version 17. Library A could be using some new
features of library B version 17 that weren't in B version 16. Thus, version 16
cannot be used for libraries built on version 17, even if the minimum version is
16 or less.

Note

In other words, there is no way to specify that a library is
backward compatible.

The Application Nub

The Application Nub is a minimal application that communicates with the
development environment. A project under development can be loaded into
the Application Nub and run under the control of the development
environment.

The Application Nub also permits you to debug a standalone application (one
that has already been built and runs outside of Apple Dylan).

Apple Dylan User Model 107

108

CHAPTER 2

Using Apple Dylan

Your application cannot execute unless the development environment is
tethered to either a standalone application or the Application Nub. The
development environment can communicate either with a project loaded into
the Application Nub or with any standalone application that has been built
using Apple Dylan, providing you have the compiler results database for the
standalone application. If so, you can run the application from outside of Apple
Dylan, then return to Apple Dylan and download code to the application,
insert breakpoints, insert print statements, use inspector windows, and test the
project or portions of it using the Apple Dylan Listener. You have full access to
such a standalone application, just as if it were still a project being run from
within Apple Dylan.

In either case, tethered means tethered to the runtime, which is the actual
running state of your project or application, and connected to the Apple Dylan
Listener, which informs you of all values returned and permits direct
interaction with the running application.

Tethering the development environment to the Application Nub or a
standalone application adds no overhead. All debugging information is
included in the compiler results database and the source database, not in the
standalone application or the Application Nub. All projects and shipped
applications are fully debuggable, simply by tethering them to the
development environment.

Keep in mind that any development activity that is supported for a project
loaded into the Application Nub while it is tethered to the development
environment is also supported for any Apple Dylan application for which you
have the compiler results database. That means that an important part of
preparing an application for distribution is saving a copy of the compiler
results database for the standalone applications you build.

Anything compiled while tethered to the development environment is
automatically downloaded to the runtime. The compiler results database is
always synchronized with the runtime while tethered.

Two closely related commands support tethering to the development
environment:

o Launch Application Nub from the Project menu launches the Application
Nub, loads your project into it, and tethers it to the development
environment.

o Tether to Application assumes that a standalone application is already
running and tethers the development environment to it.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

Neither Launch Application Nub nor Tether to Application downloads any
code to the Application Nub. Compiling code with a compilation command,
such as Compile Selection or Update Project, does that.

Launch Application Nub has these effects:
o Starts the Application Nub running.

o Establishes communication between the development environment and
the Application Nub.

o Initializes the runtime.
o Loads the Dylan library.

Note
Launch Application Nub does not run the project!

Tether to Application has only a single effect:

o Establishes communication between the development environment and a
running standalone application or the Application Nub.

Note

The standalone application must already be running when
you issue this command! You also must have the compiler
results database for the standalone application.

You have the option on the Environment page of the Preferences dialog box
from the Edit menu, to automatically launch the Application Nub when you
make a project active. You also have the option of performing an Update
Project whenever a project is launched. These options are off by default and
independent of each other.

You are not limited to using the Application Nub supplied with Apple Dylan.
You may also add to it to create a custom Application Nub of your own. This
enables you to include object libraries from other languages or other resources
from outside the domain of the Dylan language, such as Creole files.

Keeping your project synchronized

There are three sets of information for your project that must be kept in
synchronization through your own actions. They are:

Apple Dylan User Model 109

110

CHAPTER 2

Using Apple Dylan

o source database—source records in text form as presented by the
development environment, which can be changed by means of editing a
source record and saving it.

o compiler results database—all code that has been compiled and related
debugging information.

o runtime—all code that has been downloaded to the Application Nub.

Ordinarily, Apple Dylan allows you to switch smoothly from the runtime to the
databases. A typical scenario would be to observe a problem in the running
application that is attached to the Application Nub, use a browser to find the
problem, and then use the editor to change the source and correct the problem.
If you follow this activity with an Update Project command, your databases
will be synchronized.

However, there are many opportunities for your information to get out of
synchronization. Moving or deleting Apple Dylan files while not in Apple
Dylan can have bad consequences, as does renaming any folders. The
development environment will not be able to find the object and report it as
missing. Missing files need to be found and identified when the development
environment is running or they will just be ignored during compilations. When
they have been identified, the project must be recompiled and saved. While the
development environment is not running you can move the entire Apple Dylan
folder or a project’s entire folder and it will be OK.

Sometimes you may face an even more confusing situation, such as when you
have coded an object and compiled it, then deleted the source. Then, when you
use a browser, you might find the object is still there. This is because the
browser is working off the compiler results database, not the database of source
records. The running application attached to the Application Nub can show yet
a third behavior because you may have downloaded a compiled definition that
is no longer active. Further, if there are warnings or if there has been a
downloading error, your code may have been compiled without being
downloaded. While the Update Project command usually corrects
desynchronization, it is up to you to keep in mind that you are working across
three databases and that they do not necessarily reflect the same objects.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

Note

Keep in mind that compiler results are saved to the
compiler results database each time you compile anything,
but the source database only changes when a source record
or the active project is explicitly saved with the Save or
Save All command, respectively.

Orphan definitions in the runtime

One form of desynchronization may be particularly confusing, objects that exist
in the runtime, but have no apparent source. These are called orphan
definitions and come from three causes:

o the source of the definition has been deleted or renamed

o the object was defined in the Listener and compiled, downloaded and
executed from there

o the definition is in a library, and is consequently downloaded with the
library when you launch the Application Nub.

In all cases, the result is a definition entity in the runtime that has no
corresponding source record. The best means of eliminating these objects is to
untether from the development environment, retether, and then issue an
Update Project command.

Note

You can also eliminate an orphan definition by using an
Inspector to inspect the function and using the Inspector’s
remove command. However, this can lead to the reverse
situation, also confusing, where you have an object defined
in the source and compiler results databases that is not
present in the runtime.

Status indicators and synchronization

The best information on whether your databases are synchronized comes from
the status indicators. At the left edge of each pane you can see a vertical gray
stripe, sometimes with tiny squares in it. This is the status indicator bar. You
can choose which kinds of status the bar shows for each pane, or whether it
shows anything at all.

Apple Dylan User Model 111

112

CHAPTER 2

Using Apple Dylan

Choose which status indicators you want active for each pane by selecting the
pane and then choosing Status Indicators from the Browse menu or by
double-clicking on the status indicator bar. The Status Indicators dialog box
opens. The more status indicators you choose from it, the wider the status
indicator bar in the pane. The status indicators you can choose are:

o Unsaved—blue square: the object or its contents have changed since the
last time it was saved or it has never been saved. You clear the indicator
by saving.

o Uncompiled—green square: the object or its contents include source code
that has changed since the last compilation or has never been compiled.
You clear the indicator by compiling.

o Warnings—orange square: when the object or its contents were compiled,
the compilation resulted in warnings. You clear the indicator by fixing the
problem and recompiling, if it's a compilation warning.

o Read Only—red square: the object or its contents cannot be changed. You
cannot turn the read-only attribute off or on from within the development
environment; it is set by other applications.

o Other—dark gray square: the composite category of unchosen indicators.
If Other is the only status indicator chosen for the pane, then any object
that is unsaved, uncompiled, has warnings, or is read-only will be flagged
with the Other indicator. If Other is chosen along with one or more other
status indicators, then Other stands for the unchosen indicators. If all
other indicators are chosen, Other is not listed on the Status Indicators
dialog box.

The status indicators appear in the order named, with Unsaved farthest to the
left and Other farthest to the right. The status indicators are color coded as
noted. If you click on a status indicator in a pane, the Prompt Area at the
bottom of the browser identifies it. If the indicator is Other, the Prompt area
shows the current definition of Other.

You can also see the squares representing status indicators in the header of a
pane, if you choose. These show the status of the basis of the pane.

Restoring synchronization

The status indicators show what is out of synchronization. It is easy to bring
your project back into synchronization, but there is no single command that
saves your changed sources, compiles everything that needs compiling and

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

downloads everything to the runtime. Saving sources is always a separate
activity.

Save sources with Save or Save All from the File menu. Save is available only
when you have explicitly changed the source in a selected object. Save All is
always available. Revert from the File menu returns you to the sources as they
existed when you last saved the project.

Update Project compiles all uncompiled or changed sources. If the project is
loaded into the Application Nub while it is tethered to the development
environment, the newly compiled sources are downloaded to the running
application.
The Run command combines several functions:

o tethers to the development environment, if needed

o performs an update, compiling all sources marked as uncompiled and
downloading them to the Application Nub, if needed

o runs the project’s startup function.

The actions performed by Run may vary according to the state of your project
and can’t necessarily be determined in advance.

The Recompile command recompiles all sources, whether marked as
uncompiled or not.

Apple Dylan Listener

The Apple Dylan Listener is a window into a running application. Type a
function call in the Listener and its results are printed in the Listener. This is
the fundamental Listener interaction. The Listener is not an interpreter or a
command-line window. In the Listener you are tethered to the runtime, not the
development environment. You are compiling code for the actual application,
downloading to it, and inspecting the actual results.

The Listener is similar to the MPW shell except:
o The Listener executes Apple Dylan code, not shell scripts.
o The Listener distinguishes what you have typed by displaying it in bold.

o The Listener is sequential and historical in that it supports interaction
primarily at the last prompt position and always prints results at the last
position, while the MPW shell allows interaction anywhere in the shell
and prints at that spot.

Apple Dylan User Model 113

114

CHAPTER 2

Using Apple Dylan

While browsers allow you to look at the compiler results database and the
source database, the Listener allows you to interact directly with the runtime.
Inspector windows allow you to look at objects in the runtime. See the section
“Inspector windows” on page 116 for more information.

The Listener title bar includes “(Unconnected)” when the development
environment is not tethered to the Application Nub. Once you have launched
the Application Nub (or tethered to a running standalone application), the
Apple Dylan Listener is connected to the Application Nub and is, therefore,
available. The Listener allows you to interact with the application as it runs. In
fact, you can run an application by executing its startup function in the Listener.

Note

If the Listener prints no returned values, or prints only
warnings for syntax errors, you are not tethered to the
runtime.

By having the Listener open as you program, its feedback from listening to
your actions helps you monitor your progress. You can enter any Dylan
expressions into the Listener for immediate execution. For example, you can
call functions in the Listener (including your application’s startup function),
and you can define functions, variables, and classes in the Listener.

The Listener is useful for quickly testing expressions without creating
containers to hold them. In addition, the Listener provides access to parts of
your application that you cannot access any other way, such as data stored in a
database or off a hash table. The Listener is inherently temporary, similar to a
scratch pad. If you wish to make permanent changes in your project, you
should do so in a browser, saving, compiling, and downloading the changes
from there.

The form typed into the Listener and then compiled, results in zero or more
values when executed. These values are printed in the Listener, one per line.
For example, executing values () results in no values, so none are printed.
Executing 1 + 2 results in 3, which is printed on the next line. Executing
values (“first” “second”) results in two values that are printed on the next
two lines.

All values returned or any other results are printed to the Listener window for
any code executed by the application or anywhere in the development
environment, even in the browsers. The results of macro expansion are also
printed in the Listener.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

You should launch the Application Nub before compiling code from the
Listener. You can do this by using the Launch Application Nub command on
the Project menu. Although you can compile without being tethered to the
runtime, all the compiler does in that case is check the code’s syntax.

Code typed into the Listener is compiled and downloaded to the application
under development. The objects created appear in browsers and behave in
most ways as if they were a permanent part of the project, but they are not.
When you compile and download to the Application Nub from the Listener,
you are creating a definition entity for the object, but you are not creating an
associated source record. Although every object has one or more associated
definition entities, definition entities created in this way are temporary, lasting
only as long as you remain tethered to the runtime. They disappear when you
untether. The Listener listens, but does not remember. The Listener is not a
browser. When you code in the Listener, you must use the editing tools to
move useful source text into a source record in a browser to make it permanent.
See the section “Orphan definitions in the runtime” on page 111 for more
information.

WARNING

Nothing created in the Listener is saved. You should not
create methods and classes in the Listener even though it is
possible to do so. Use the browsers instead; they are
designed for that purpose.

The Listener is a place to test and compile code without permanently
modifying the project. It is useful for ephemeral code testing, for running of
individual functions to see what they do, and for inspecting and changing the
state of the runtime.

Before you type an expression into the Listener, choose the module the
expression is in from the popup list in the lower-left corner of the Listener
window.

WARNING

Failing to choose the proper module in the Listener is
perhaps the single most common and confusing mistake
Apple Dylan users make. Remember, each module is a
namespace and all code is executed in the context of a
module. If you are not in the proper module, you are not
in the proper namespace and the Listener will literally not
know what your are talking about.

Apple Dylan User Model 115

116

CHAPTER 2

Using Apple Dylan

You can execute code from the Listener while you are in a break loop, allowing
you to investigate various results. When in a break loop, the Listener’s prompt
changes to the number of the break level on the stack, starting with the first
break loop as number one.

When the Application Nub is not executing code, it is in the Listener loop,
waiting for code to be sent from the development environment. This can be
from compiling something in the development environment by means of one
of the compilation commands or by means of typing code into the Listener. The
effect is the same; the code is executed and the result values are sent back to the
Listener. A break loop is the same as the Listener loop, except that there is code
waiting to be executed that was stopped by an error or Break and is waiting to
be aborted, inspected or resumed. The Listener loop can be thought of as break
level 0 or the null break level. For more information on break loops, see the
section “Debugging a project” on page 146.

The Listener supports three forms of interacting with your project or
application.

o If you observe behavior in your application that you wish to change, you
can enter a Break command to suspend the application while you make
your changes. All state is preserved, including the stack.

o If your application returns an error, it will be suspended and a backtrace
supplied that allows you to determine the exact source of the error.

o If you press command-option-. (command-option-period), the application
is suspended exactly as it is at that moment, without losing any state or
stack information. You are still in the middle of the application and can
see exactly what it is doing.

Inspector windows

While browsers allow you to look at the source database and the compiler
results database, and the Listener allows you to interact with the runtime,
inspector windows allow you to look directly at objects in the runtime. To use
inspector windows, you must be tethered to the application and the application
must be suspended.

The inspector windows offer your only opportunity to look directly at objects
in the runtime. In fact, objects only exist in the runtime, and furthermore many
objects in the runtime are created by the running application.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

Several commands that open inspector windows are included in Apple Dylan:

O

The most common use of inspector windows is through the Listener,
where you can compile, download and execute code, look at the results as
printed in the Listener, and then use the Inspect Listener Result command
to determine exactly what happened.

After an error, the stack is presented in the form of a backtrace. Use the
Inspect Stack command to inspect the state of the program at the point of
the error.

You can list all the modules in the Application Nub and select one from

the list to open an inspector window on it using the Inspect Module
Variables command.

o You can also look at your memory allocations and contents using the
Inspect Heaps command.

o Finally, you can select any object and inspect it using the Inspect Selection

command.

You can use inspector windows on any object in the runtime. To do so, you
must know where the object is located, such as a list or vector or other data
structure.

Note

You can open another inspector window from any
inspector window by double-clicking on an object in it.
This can lead to having numerous inspector windows
open at once. If you hold down the Option key while
closing one inspector window;, all of them close.

Bailing out of Apple Dylan

Sometimes you might have an error or other problem that locks up Apple
Dylan to the point where you cannot proceed. You might need to quit the

application or the development environment, but you cannot. In that case, you

need a way to forcefully exit, or bail out.

The common method of stopping an application is by making it the frontmost
and typing command-option-period. If this stops the application, you can often

continue to issue other commands, such as Quit Application to officially quit
the application and the Application Nub, or the Quit Application Nub
command, as needed.

Apple Dylan User Model

118

CHAPTER 2

Using Apple Dylan

Sometimes you need to forcefully stop the Application Nub itself. If you have
tried the commands Quit Application and Quit Application Nub, yet the
Application Nub's status indicates it is still running, you might need to run the
Quit Application Nub program from the Finder. You can do this by leaving the
development environment and launching the executable file Quit Application
Nub, which is in the Application Nub folder. The Quit Application Nub
executable’s purpose is to seek out and destroy any Application Nubs that are
running, but it doesn't affect Apple Dylan.

When you cannot quit Apple Dylan itself, using command-period or
command-option-period should stop Apple Dylan so you can use the Quit
command. Usually, using command-shift-escape also lets you exit safely.
However, sometimes this might hang your machine. In case these don’t work,
it might be useful to create an AppleScript program that tells Apple Dylan to
quit. The script is:

tell application “Apple Dylan” to quit

Building standalone applications

When you have completed coding and testing your project, you can turn it into
a standalone application or library. This is the final stage of the Apple Dylan
user model. Only applications created in Apple Dylan can be maintained,
revised, or supported using Apple Dylan. The standalone application you
create is identical to the project loaded into the Application Nub, except that it
is no longer connected to the development environment. If you need to change
the standalone application in any way, however, you can tether to it, return to
the use of all the facilities of the development environment, and then recreate it
as a new application. To do this, you must have retained the project’s compiler
results database file. See “What's really in a project?” on page 101 for more
information.

You create an application using the Create Application command. This
command first untethers the Application Nub—prompting for confirmation—
and then takes the information in the compiler results database (and associated
libraries) and packages your project as an application that is then written out to
a specified location on the disk. At that point, the project is no longer in the
Apple Dylan environment. The Application Nub has been included in the
application.

Apple Dylan User Model

CHAPTER 2

Using Apple Dylan

You create a library using the Create Library command. This command first
untethers the Application Nub—prompting for confirmation—and then takes
the information in the compiler results database (and associated libraries) and
packages your project as a library that is then written out to a specified location
on the disk.

This completes our walkthrough of the Apple Dylan user model. The rest of
this chapter describes some detailed tasks and examples using the
development environment.

Starting a project

When you want to write your own application or library, you create a new
project using the New Project command. The new project will consist of
numerous other objects, most of which you will create. Your project can also
contain subprojects, which are other projects or libraries you include in your
project.

Projects consist of modules which contain source folders. The source folders
contain source records. A source record contains the source code, each source
record being one method, class, variable, constant, macro, generic function,
comment, or top level form. For more information about creating a user
interface for your application, see the book Creating a User Interface in Apple
Dylan.

You can create and open as many projects as you want, but only the active
project can be compiled or browsed. You can designate any open project as the
active project using the Activate Project command. Also, closing the active
project with other projects open makes the next frontmost of the open projects
the active project. It also closes all the active project’s subprojects, if they aren’t
also subprojects in another project that’s still open.

You also use the New Project command to create a new subproject. If the
project you want to use as a subproject already exists, you simply add it to
your project with the Add to Project command on the File menu. When the
project it is included in is not open, the subproject is simply a project again, so
it is best to think of a subproject as a type of project.

Starting a project 119

120

CHAPTER 2

Using Apple Dylan

Creating a new project

You create a new project using the New Project command on the File menu.
When you create a new project, you must decide how you want its code
organized in its modules, source folders, and source records. You must decide
if it is going to be an application or a library, if you want to develop your
project with the runtime on a separate machine, and what Macintosh
architecture you want your final standalone application to run on. You must
also decide what C libraries you want to include in it and which subprojects or
libraries you want to add to it. Also consider if you want to use it as a
subproject in another project.

Each new project automatically has certain objects in it. The Dylan subproject
contains everything defined in the Dylan language and the Apple Dylan
extensions. The Dylan-user module is created for each project, but its contents
must be defined by you. The Dylan-user module will contain the module
definition and library definition used to structure the rest of your project. You
must write your own module definition and library definition in this module.
These two language definitions are described in Programming in Apple Dylan,
Apple Dylan Extensions and Framework Reference, and the Dylan Reference Manual,
which are shipped with Apple Dylan.

In the development environment you can create your modules using the New
Module command from the File menu. You can have as many modules as you
want, although one module is sufficient in a project. Modules hold source
folders. New modules are placed at the end of the list of modules. You can
reorder the modules by dragging them. Changing the module order changes
the load order. In the Dylan language, forward declarations do not create load
order restrictions. However, load order dependencies, such as calculations that
are performed in one module based on a variable previously defined in another
module, must be accounted for in the module order you establish. For more
information on load order, see the Dylan Reference Manual.

Source folders are for organizing your code. Source folders hold the individual
source records. You can have as many source folders as you want and most
projects have several.

A source record is an individual method, class, variable, constant, macro,
generic function, comment, and top level form. You can have as many source
records as you want.

Starting a project

CHAPTER 2

Using Apple Dylan

When you create modules, source folders, and source records, each will
automatically get its own type of icon. A generic icon is assigned to each object
as you are creating it. When you have completed enough of the object for the
development environment to determine what it is, the appropriate icon for it
appears automatically.

In addition to these objects that are in every project, you can add several others,
if you want, using the Add to Project command on the File menu. The
mac-toolbox subproject is a library containing the Macintosh toolbox calls that
you can add to your project. It is up to you to include any or all of the
individual Macintosh toolbox calls you want to use in your project.

The dylan-framework subproject is a library containing the Apple Dylan
application framework. You must add the framework to your project if you
want to use it. Since the source code for the framework is included in its
subproject, you could modify it if you want. However, this is not a common
practice, nor is it recommended.

Another type of file you can add to your project is a resource file. You must
create whatever resource files you need outside of Apple Dylan using your
favorite resource file editor. The resource file you add to your project will have
the suffix ”.rsrc” and be in the root pane of your project.

If you want to investigate Macintosh toolbox calls, you select a call and choose
the Look Up in Online Reference command. The Macintosh Programmer’s
Toolbox Assistant is launched, if you have purchased it and it is present on
your system. The reference entry for the call is displayed. You can also display
reference entries for the Dylan language and the Apple Dylan extensions to it,
including the framework, by selecting the function and choosing the Look Up
in Online Reference command.

1. Choose New Project from the File menu.
When you enter a name for your new project, you see a new project open
with a three-paned, project browser. The name of the project appears in the
browser’s title bar. Untitled is the default name until you save it with a name.

You do not have to close any open projects when you create a new project.
However, if there are other projects open already, be sure you set the active
project to the project you want to compile. Any open, inactive projects can be
edited, but not compiled or fully browsed. Use the Activate Project
command on the Project menu to make this the active project.

In the root (upper-left) pane are the two default objects, Dylan and
Dylan-user. The Dylan-user module contains an empty source folder and

Starting a project 121

122

CHAPTER 2

Using Apple Dylan

source record. In the following example, the Dylan-user module has been
selected in the root pane so you can see its default contents.

S(=———— FProject: Untitled s |
Contents of C]| F Gentents of =l
ﬁ Untitled % | & [7]Untitled [

g [ylan ot - R i
[+ B Dylan-uzer]
hd
(=11
[@ ©contents of =l
+ [E Dylan-user *
[» BB Untitled 5
= 7]
B E
Duylan- user |

Name the new project using the Save All command on the File menu.

2. Select the Dylan-user module in the root pane and choose New Module
from the File menu.
Name the module by typing its name into the dialog box. The new module
appears in the root pane below Dylan-user because you selected Dylan-user.
You can create as many modules as you want, but often a single module is
sufficient.

3. Select the new module and then choose New Source Folder from the File
menu.
An empty source folder appears, for which you can type in a name. You can
create as many source folders as you want.

The new source folder has an empty source record in it. When it is newly
created, you can type the name of the new source record next to its icon at
the prompt. When you enter code, the name of the source record is derived
from the text of the code. If you want to rename the source record later, you
must expand it using its disclosure triangle and edit the code.

Starting a project

CHAPTER 2

Using Apple Dylan

4. Select the new source folder and then choose New Source Record from the
File menu.
The new source record appears at the end of any existing source records
unless you select a source record prior to creating a new one, then it appears
after the selected source record. You can create as many source records as
you want.

The following figure shows a new source record that has been created in the
“new proj” source folder of the “newproj” module. The new source record is
still unnamed in this example. Because no code has been entered yet, the
new source record is represented by the generic icon.

|[E0IE=—————= Project: A newproj (inactive) EE|
Contents of C]| F Gentents of |
@ A newproj (inac... | = [jnew proj folder o
% Dylan - |__E| 5

[= Dnylan- user

b B newproj module

[@ Gontents of =l

+ [E newproj module o
[BE new proj folder

| =

newproj module |

5. Type or copy source code into a new source record.
There are several types of source records, including methods, generic
functions, comments, and constants. Each has a different icon, which
appears when enough code has been entered for the development
environment to decide what it is. You edit the name of a source record,
which is based upon the text of its code, by expanding it with its disclosure
triangle and editing the code.

The following figure shows a new source record named random-state. It still
has the generic icon because only its name has been entered. Notice that the
source record random-state has been expanded to show that no source code
has been written.

Starting a project 123

124

CHAPTER 2

Using Apple Dylan

Project: A newproj (inactive)
contents of = T]| @ contents of

@ Anewproj (inac... & |« [jnew proj folder
% Dylan - Ea random-state (2

]
b ® pyan-user
s b B newproi module
=
i
|

|¢1.§.DIE

[F GCentents of
+ E pewproj module 4

= |» @ new proj folder

|&@]4]

newproj module |

The following figure shows the source record random-state with its code
partially entered. It has the icon that represents a source record of an
unknown type because not enough code has been entered for the
development environment to decide what it is.

|E=—— Project: A newproj (inactive)
Contents of = C]| @ centents of

@ A newproj (inac... | = [jnew proj folder

% Dlan

=
[= Dnylan- user
= b B rnewproj module
]
(=11
|

|¢1.§.DE

LR l:"; define methrandom—state 3

[F GCentents of
+ E pewproj module 4

= |» @ new proj folder

| =

newproj module |

The following figure shows the source record random-state with its method
icon. Notice that the entire contents of the method are not needed for the
development environment to recognize it as a method.

Starting a project

CHAPTER 2

Using Apple Dylan

|E=—— Project: A newproj (inactive)

Contents of = M

£l A newproj (inac... »

[F Centents of

% [new proj folder

% Dylan
b ® pyan-user

s b B newproi module

[@ Gontents of =l
+ [E newproj module o

= [» [new proj folder

== E}. define method pondom—state OO

|¢1.§.DE

|&@]4]

newproj module |

6. Click Dylan-user in the root pane.
It is empty because you must define its contents. Usually you use one source

record to define the library for your project, and another to define your

module. Check the Programming in Apple Dylan, Apple Dylan Extensions and
Framework Reference, and the Dylan Reference Manual, along with the sample
projects, for specifics on how to write this code.

The following figure shows the definitions in the Dylan-user module for the

sample project puzzle.

Starting a project

125

126

CHAPTER 2

Using Apple Dylan

EsF=—— Project: puzzle =]
contents of C]| = contents af =l
Ed puzzle » | » [library & module -

% Dylan [+ B3 Copyright @ 1994 by Apple Computer, Inc. A1l 5
i a mac - tool box ~ Fi define |ibrary puzzle
use Oylan;
i a dylan-framework uze mac—toolbox;
use dylan—framemork;
export puzzle;
end | ibrary;
[@ Contents of o] = |__|i| define module puzzle
_ use Apple-Oylan;
* Ii‘ I.'lglan sy * use mac—toolbos;
2 use dylan—framemork;
I+ [ibrary & module end modalon
=
&
Duylan- user |

7. Reorder your source folders and source records to reflect the load order
you want.

You can drag the objects around in a pane, just as you would in the Finder.
You can delete objects that you don’t want using the Delete key or the Clear
command on the Edit menu.

8. Before you save your project for the first time, see one of the following
tasks on setting your project type as an application or a library.

Setting the project type for an application

If you want your project to be an application, you must specify it as an
application using the Set Project Type command on the Project menu. This
information is used when you build your final standalone application from
your project. If you have not yet written all the code needed to complete this

dialog box, complete what you can and come back to this task when you have
written the code.

If you want to use a project as a subproject, you should select Library in the
“Project Type” field.

1. Make your new project the active project, if it’s not already.
You can use the Activate Project command on the Project menu.

Starting a project

CHAPTER 2

Using Apple Dylan

2. Choose Set Project Type from the Project menu.
3. Click Application in the “Project Type” field.

Set Active Project Type

Project Type: (iﬂpplicatiun) Library

Creator Type:

Startup Function: |start |

Module: |__puzzle v]

Memory: K Minimum

K Suggested

[Use Separately Loaded Libraries
[JCreate Fat Binary
Application Names:
68K: [puzzle68K |

PowerPC: |puzzIePPl: |

Fat: ||Ju22|eFat |

Cancel 0K

4. Enter a file creator in the “Creator Type” field.
The “Creator Type” field holds the creator ID you want your new
application to have.

5. Name your project’s startup function in the “Startup Function” field.
This is a function you write to run your application.

6. Select your startup function’s module in the “Module” field.
7. Enter the memory requirements your application will have.

8. Check the box for separately loaded libraries, if your project requires
them.
If this box is checked, the libraries used by the application are not bundled
with the application file. They are left separate on disk. When the
application is launched, it looks for the libraries it needs, first in its own
folder, then in the extensions folder.

Starting a project 127

128

CHAPTER 2

Using Apple Dylan

Separately loaded libraries save space because you only need one copy of
the common libraries, dylan-framework and mac-toolbox.

Note that Dylan libraries are not shared in RAM, so selecting “Use
separately loaded libraries” doesn’t save RAM. Libraries are loaded when
the application runs, if you check this box. They are also loaded whenever
you issue a Launch Application Nub command in the active project.

The library of the application being written is always bundled with the
application. Only the libraries of subprojects are kept separate.

9. Click Create Fat Binary, if you wish.
A Fat binary includes both native 68K and native PowerPC code. It runs
efficiently on both architectures, but is larger than an application created for
only one architecture. The Fat binary is created when you use the Create
Application command to build your standalone application.

10. Edit the Application Names fields, if you wish.

Change these fields to the name you want your final application to have,
according to the architecture you build it for.

11. Click OK.

Setting the project type for a library

If your project will be a library, you must specify it as a library using the Set
Project Type command on the Project menu. This information is used when you
build your library from your project. If you have not yet written all the code
needed to complete this dialog box, complete what you can and come back to
this task when you have written the code.

Different fields appear in this dialog box when you select Library in the
“Project Type” field rather than Application. That is because there is no startup
function in a library and a library does not have memory requirements. Also,
libraries do not vary according to whether they are separately loaded or not.

However, the versioning fields appear for Library. You should increment the
version number of a library whenever you release a new version of a library.
You also should increment the minimum version number whenever you make
incompatible changes.

1. Make your new project the active project, if it’s not already.
You can use the Activate Project command on the Project menu.

Starting a project

CHAPTER 2

Using Apple Dylan

2. Choose Set Project Type from the Project menu.
3. Click Library in the “Project Type” field.

Set Active Project Type

Project Type: O Application @ Library

Creator Type:

Library Dersion:

Minimum Dersion:

Il

Library Names:
68K: [puzzle68K.di |

PowerPC: ||Ju22|ePPI3.dI |

Cancel 0K

4. Give your project a version number and minimum version number.
You should increment the version number in the “Library Version” field
whenever you release a new version of the library. You should increment the
minimum version number in the “Minimum Version” field whenever you
make incompatible changes, such as removing an export, changing the
number of arguments of a function, changing the value of an exported
constant, changing export or sealing information, changing the body of an
accessible inlined method, changing the position of a slot in a primary class,
or changing the behavior of some functions in a semantically
non-upward-compatible way. In general, you should increment the
minimum version number unless you very explicitly made only
upward-compatible changes, such as adding an export, or adding optional
arguments to a function.

Starting a project 129

130

CHAPTER 2

Using Apple Dylan

5. Select a file creator in the Creator Type field.
The Creator Type field holds the creator ID you want your new library to
have.

6. Edit the Library Names fields, if you wish.
7. Click OK.

Saving a project

You save an entire project with the Save All command on the File menu. All the
content in all open projects are saved. If you want to save only parts of a
project, use the Save command.

The Save All command cannot be undone.
1. Bring the project browser to the front, if it’s not already there.
2. Choose Save All from the File menu.

3. If this is the first time you have saved it, give it a name and location.
The suffix “.7" is automatically appended to the name of your project when
it is written to its folder in the Finder. Leave the development environment,
if you wish, and check that its file was created in the proper folder.

Saving the objects in a pane

You can save the contents of a pane by clicking in the pane and then choosing
the Save command from the File menu. The Save command cannot be undone.

You cannot save the contents of a single source record without saving the
contents of every other source record in the pane with it.

1. Click in the pane you want to save.

2. Choose Save from the File menu.

Adding a subproject or resource file

You can add a subproject to a project with the Add to Project command on the
File menu. Libraries are represented as subprojects in the development

Starting a project

CHAPTER 2

Using Apple Dylan

environment. Use the Import command on the File menu to add a Dylan text
file to a project. The framework is treated as a subproject by the development
environment.

Not all projects can automatically be used as subprojects, only those whose
project type has been set to “Library” using the Set Project Type command.

1. Make active the project you want to add a subproject to.
You can use the Activate Project command on the Project menu.

2. Make the root pane of the project browser active.

3. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the
Quit Application Nub command will be issued before you can proceed any
further.

4. Choose the file containing the subproject or resource file you want to add.
A dialog box allows you to find the file’s location and choose the file to add.
To add a project as a subproject, choose the project’s file with the “.1t" suffix.
An alias to the subproject or resource file is also acceptable.

5. Choose Update Project from the Project menu.

Adding the framework

Although it is possible to write code without using the Apple Dylan
framework, you probably will want to use it. The framework is a subproject
that enables you to write less code. Source code for the framework is included
in its project, so you can also use the framework to help you learn to write
Apple Dylan code. See Programming in Apple Dylan, Apple Dylan Extensions and
Framework Reference, and the Dylan Reference Manual in the Apple Dylan
documentation set for more information on the framework.

1. Make active the project you want to add the framework to.
You can use the Activate Project command on the Project menu.

2. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the
Quit Application Nub command will be issued before you can proceed any
further.

Starting a project 131

132

CHAPTER 2

Using Apple Dylan

3. Choose the framework’s project file in the framework folder of Apple

Dylan.

An alias to the framework is also acceptable.

4. Choose Update Project from the Project menu.

5. Choose Launch Application Nub from the Project menu.
In this example, the framework has been added to this project and has been
selected. The project browser has also had a fourth pane added to it.

Project: puzzle

Contents of (ol

i puzzle »

[§ Contents of

» [misc-utils

f&h Dylan
|> ' mac-toolbos
[+ B dylan—framework
[[Dylan-user
[@ puzzle

[§ Gontents of I
+ [dylan-framework »
d5h Dylan
[» B mac-toolbox
[» [Dylan-user
= [@ dylan-framework

[* @ Copyright © 1994 by Apple Computer, Inc. Al Fights reserved.

[» B assert = method (object :: <objects, message :: <ztring®)

[Z inzert (1 :: <listy, i o <objects, ®key last: last, before: before, after: after, test: test-function
&, first-that (f :: <function®, ¢ :: <collection®]

r;kcopg—handle = method (handle :: <basic-machine-pointer:)

[beep = method ()

[string-to-handle = method (str @ <byte-string, handle :: <machine-painter)

[% handle—to-string = methad Chandle @@ <machine-pointer:)
B

key-down? (key-code :: <integer>) =» is-down :: <boolean ;

ch]e)i

framework-rnacre:

Carnrmon
nurnerig-utilities
mizc-utils
external-referenc
qd-utils
debug-utils
dependencizs
idling

paint

P T YT YTV VY VW
noooooopCDR

if (flobjectix
object;
end if;
end method;

any?itester, ol
end method;

o]
Aex|
[@ Source Code of + Warnings of |
» [5 first-that (f :: <function?, c :: <collection>) o
define method first—that of :: <function:, =
c 1 <eaollection:) =2 first-or—false :: <objects; [{F]

local tester (object :: <object:)

=[]

dylan-framewo...|

Including C code

A Clibrary can be included in a project by adding it using the Add to Project
command on the File menu. You must add an entire C library, you cannot add
individual snippets of C code.

If you want to investigate toolbox calls, select a call and choose the Look Up in
Online Reference command on the Browse menu. The Macintosh

Starting a project

CHAPTER 2

Using Apple Dylan

Programmer’s Toolbox Assistant is launched, if you have purchased it and it is
present on your system, and displays the reference entry for the call.

1. Make active the project you want to add a C library to.
You can use the Activate Project command on the Project menu.

2. Choose Add to Project from the File menu.
If you are connected to the Application Nub, Apple Dylan alerts you that the
Quit Application Nub command will be issued before you can proceed any
further.

3. Choose the C library you want to add.
An alias to the C library is also acceptable.

4. Choose Update Project from the Project menu.
5. Choose Launch Application Nub from the Project menu.

6. Select a toolbox call in a pane and choose the command Look Up in
Online Reference from the Browse menu.
The Macintosh Programmer’s Toolbox Assistant application is launched, if
you have purchased it and it is loaded on your system. The entry for the
command is displayed, but you can then navigate to other entries, including
those for Apple Dylan.

Compiling your project

Now that you have created a new project, you can work on compiling code.
The steps in creating an application in Apple Dylan are similar to what you are
used to: you write code, compile it, debug it, build your application, and run it.
However, the Apple Dylan development environment has a few features that
might be new to you, such as incremental compilation. In the Apple Dylan
development environment incremental compilation works on projects,
modules, source folders, source records, and individual expressions in the
code. You can even compile and execute code that has been commented out.

As you go through the following tasks you will notice that some menu items
change to reflect the different compilation choices you make. For instance, if
you select a source record in a pane and look at the Project menu, you see the
command Compile Selection. If instead you open the source record, select just a
portion of it, and then look at the Project menu, you see the command has

Compiling your project 133

134

CHAPTER 2

Using Apple Dylan

changed to Compile Region. If you have launched the Application Nub, the
Compile Selection command becomes Compile and Download Selection on the
menu.

Besides choosing to compile individual objects, you can choose to compile all
the code changed since your last compilation with the Update Project
command. Using the Recompile command, you can compile your entire
project, regardless of when it was last changed. If you have added subprojects
to your project, you can choose to update and compile them as well.

All these compilation commands compile the selected code and download it to
the Application Nub, if it is tethered to the development environment. The
Application Nub is the small (hence “nub”) essence of an application that
Apple Dylan provides. The Application Nub gives you a jump start on creating
your own application in a project. As you write code in your project and
compile it, it is being added into the Application Nub. When you build your
final application, the Application Nub and your project, which have now
merged, are bundled together and comprise your standalone application or
library.

If you want to exclude some code from being compiled, you can use the
Exclude Source Records command. All comment source records and
commented out code are automatically excluded.

You can use the Apple Dylan Listener for investigating runtime objects. The
Listener is a window with an interface that allows you to receive the results of
your programming efforts or type in expressions to execute. The Listener
reports all return values you get from executing code, even if the code is all in
browsers, not in the Listener.

You can execute an individual expression by typing it in at the Listener prompt.
This allows you to try out ideas without the overhead of creating a source
record in a browser to hold the code. The code executed in the Listener is
downloaded to the Application Nub.

To help you track each object in its development cycle, you can check its status
indicators using the Status Indicators command on the Browse menu. The
status indicators show whether an object has been compiled, saved, has
generated any warnings, or is read-only. Status indicators propagate upward in
the hierarchy of a project, if you set them in each pane of the project browser.

Compiling your project

CHAPTER 2

Using Apple Dylan

Launching the runtime

You do not need to launch the runtime (tether the development environment to
the Application Nub or a standalone application) before compiling code from a
browser. Your code will be compiled and stored in the compiler results
database, then downloaded to the Application Nub the next time you launch it
and tether to the development environment. However, when you want to use
the Listener, you should launch the runtime because the results of any code
you compile from there are lost the next time you tether the development
environment to the Application Nub.

When you tether the Application Nub to the development environment, you
can see that it is running by checking its status with the Application Nub Info
command. You can also leave the development environment and check the list
of running applications in the Finder. If you launched the Application Nub
without also running an application or updating a project, and then switch to
the Application Nub from the Finder list, you see that no windows or menus
appear. That is because the Application Nub has no user interface. If you have
opened a project and updated it or have an application running and switch to
the Application Nub, you see the menu bar and user interface for the
application replace the Apple Dylan menu bar. You can return to Apple Dylan
by clicking in one of its windows.

You can launch the Application Nub automatically every time you open a
project by setting the project’s Listener preferences using the Preferences
command.

1. Open a sample project, if one is not already open.
You can also open one of your own projects.

2. Choose Application Nub Info from the Project menu.
Notice the status is “Disconnected.”

3. Choose Launch Application Nub from the Project menu.
The notation “(Unconnected)” disappears from the Listener when the
Application Nub is tethered to the development environment. You can now
use the browsers or Listener to compile code, run the active project, or
debug it. When you close the active project, the Application Nub
automatically quits. When you reset the active projects to another open
project, the Application Nub automatically quits and relaunches,
downloading the compiled code from the new active project.

Compiling your project 135

136

CHAPTER 2

Using Apple Dylan

4. Choose Application Nub Info from the Project menu.
Notice the status is “Connected.”

5. Go to the Finder list and choose Application Nub.
The Apple Dylan menu bar disappears if you opened a complete project that
includes a menu bar, such as the samples. The menu bar won’t disappear if
you open a new, empty project.

6. Click on an Apple Dylan window.
The Apple Dylan menu bar reappears and Apple Dylan is active.

Untethering from the runtime

You can quit the Application Nub using the Quit Application Nub command
on the Project menu. If an application is running, you can also choose the Quit
Application command to quit the Application Nub, which simultaneously
quits your application.

If some problem occurs while programming and the Quit Application Nub
command does not quit the Application Nub, you can leave Apple Dylan and
use the program “Quit Application Nub” in the Application Nub folder.

1. Bring the active project to the front.
2. Choose Quit Application Nub from the Project menu.

Checking code status

Status indicators show you the state of your unfinished code. For instance, you
can tell which source records have not been saved by observing the Unsaved
indicators in the status indicator bar in a pane.

The status indicators can propagate upward in the source containers so you can
see if a module or a source folder has an unsaved or uncompiled source record
in it even if the source record is not visible. You set the status indicators for
each pane by making the pane active and then opening the Status Indicators
dialog box.

You can also choose not to see any status indicators or to see them in the
header of a pane.

Compiling your project

CHAPTER 2

Using Apple Dylan

1. Choose the Status Indicators command from the Browse menu.
You can also double-click in the vertical status indicator bar in a pane to
open the Status Indicator dialog box. Drag it off the project browser so you
can see both. Notice that unsaved source records and those with warnings
are indicated by default in many panes.

Status Indicators

Show:

v Unsaved
Uncompiled

+ Wlarnings
Read only
Other

Location: | Body

Cancel 0K

2. Choose Body as the location for your status indicators to be reported, if it’s
not chosen already.
You can choose to have the indicators appear in both the vertical status
indicator bar in the pane (Body), in the pane’s header (Header), or in both
places. Click OK if you changed the location.

Compiling your project 137

138

CHAPTER 2

Using Apple Dylan

Status Indicators

Show:

+ Unsaved
Uncompiled

+ Wlarnings
Read only
Other

Header
Location: B od

Header & Body

[Cancel][[0K]]

3. Edit a source record in the project browser, but don’t save it or compile it.

The Unsaved indicator appears. Notice that the Uncompiled indicator is not
in the pane, even though you haven’t compiled the source record yet. That is
because that status indicator has not been chosen on the Status Indicators
dialog box.

You choose the type of status you want reported from the Show list. To
choose a status indicator, click to its left until a check mark appears. If you
choose all the indicators except Other, an indicator for each appears in your
pane when that status applies.

. Choose Uncompiled from the Status Indicators dialog box.

The Uncompiled status indicator now appears in the row of indicators in the
pane.

. Click on the second indicator in the pane and read its type in the prompt

area at the bottom of the browser.

In the following figure, the cursor has been clicked on the Uncompiled
indicator. The name of the indicator appears at the bottom of the browser in
the prompt area. The first indicator in the row is the Unsaved indicator.

The order of indicators is always the same, as is their placement in the
vertical status indicator bar.

Compiling your project

CHAPTER 2

Using Apple Dylan

Project: puzzle E=VFc————— g
Gontents of = T]| @ contents of =l
Ed puzzle » | » [7jpuzzle -

g, [uylan
[> B mac-toolbos
[> @ dylan-framewaork
[> @ Dylan-user

[* 0 Copyright @ 1234 by Apple Computer, Ine. ATl Fig
[define-framework-libraryl "puzzle");
e <puzzle-wiew s [dview?)

"* s define method initialize cuiewwm

= [+ B puzzle rnext-methods;
J¢ check for the almost impossible
while Cis—puzzle—soluvad?(viewi)
@ Contents of = view. puzzle-state = rondom—stoated
|:| puzzie end while;
- - end method;
= @ puzzle [By is-puzzle-solved? (view @ tpuzzle-view:) =3 solw
[+ [randorn-state () => state o svectors
[By tile-zize-h Cwiew 1o <puzzle-wiew:) =3 size 11 tint,
[By tile-size-v (view 11 tpuzzle-view:) =: size ©: «int
Ir B aet-tile-rect (view :: <puzzle-view?, tile :: <smal

puzzle | Uncompiled indicator.

6. Select only the Other status indicator in the Status Indicators dialog box,
deselecting all those with check marks.
Notice that the three status indicators have been replaced by Other in the
pane. Click it in the pane and the prompt area at the bottom of the browser
shows you what indicators Other currently represents.
The status indicator Other consolidates any of the unchecked indicators into
a single indicator. By checking only the specific indicators you want to see,
and also checking Other, you can see the specific indicators you want, but
still be informed that other status changes have occurred.

Compiling a selection

You can compile a source record by selecting its icon and then choosing
Compile Selection from the Project menu. You can also select one or more
expressions, even commented out code, within a source record and then choose
Compile Region to compile just the selected code. If you have launched the
Application Nub, the commands on the menu are Compile and Download
Selection or Compile and Download Region.

As you edit code, the source database grows. You should use the Compact
Project command to reduce its size when it gets too big. As you compile and
recompile your code using Compile Selection, the compiler results database

Compiling your project 139

140

CHAPTER 2

Using Apple Dylan

also grows; however, it cannot be compacted, so the only way to reduce its size
is to use the Recompile command to build a new compiler results database
from scratch.

You can choose to open the Warnings browser while you are compiling code.
This can be helpful when you want to quickly examine objects that generate
warnings. You can edit the code in the Warnings browser or in the original
pane you were working in.

1. Write or edit a source record in a pane so that it has a syntax error and
won’t compile.

2. Select the icon for the source record.

3. Choose Compile Selection from the Project menu.
You'll get a warning about the problem.

4. Choose Undo from the Edit menu.

5. Select the revised code within the source record and choose Compile
Region from the Project menu.
When you select code within a source record in a pane, either all of it or
portions of it, the command on the menu is Compile Region.

If you had opened the Warnings browser and edited the code in it, you
could also compile it from there. The original source record in the original
browser would also show the changes made in the Warnings browser.

Compiling all uncompiled code

You can compile any code changed in the active project and its subprojects
since the last compilation using the Update Project command from the Project
menu. The name of the project being updated follows “Update Project” on the
menu. The Update Project command also downloads the compiled code to the
runtime, if you are tethered to the development environment.

You can recompile all the code in a project and download it to the Application
Nub by choosing the Recompile command from the Project menu. This is
usually a lengthy process that you might not want to perform often, probably
only when building your final standalone application or library, or in the event
that the compiler results database grows too large.

When you mark a source record as included, it is included in all recompiles.

Compiling your project

CHAPTER 2

Using Apple Dylan

1. Open the project you want to compile.
2. Choose Launch Application Nub, if you haven't already.
3. Include or exclude any source records, if needed.

4. Choose Update Project from the Project menu.
Notice that all uncompiled status indicators disappear from the project.

Compiling code from the Listener

You can compile code from the Listener rather than from a browser. You type
or copy the code into the Listener at its prompt and hit the Enter key. You
might do this to see if something yields the results you want before you save
the code as part of your project or if some code in your project is not behaving
as you want. You should launch the Application Nub before you use the
Listener.

In the Listener you can execute an individual expression without creating a
module, source folder, or source record to hold it. Any return values from the
expression are printed into the Listener window. The Listener also prints the
return values of expressions you execute anywhere in the development
environment.

The expressions executed in the Listener are not saved when you quit the
development environment as they are when they are in source records.
However, you can print the contents of the Listener or copy code from it into a
source record to save it.

1. Make your project the active project, if it isn’t, and launch the Application
Nub.

2. Choose Apple Dylan Listener from the Windows menu to bring the
Listener to the front.
If you can see the Listener window, you can also click in it to bring it to the
front.

3. Choose your project’s module from the Module popup, which is in the
lower-left corner of the Listener.
Be sure to choose the module that contains the code you want to compile,
not the Dylan-user module. In the following example, the puzzle module
has been selected.

Compiling your project 141

142

CHAPTER 2

Using Apple Dylan

=———— MfApple Dylan Listener: 68K
Hellcome to Apple DOylan!
1

m 2

Module: |~ Dylan-User

puzzle

Dylan »

dylan-framework }

mac-toolbox »
v puzzle

4. At the Listener prompt, type in an expression that yields a return value,
such as 3 + 4, leaving the cursor somewhere in the expression or at its end.
You can also copy in code from a browser or another project.

5. Press the Enter key.
The result is printed on the next line in the Listener. You can also choose
Compile Expression from the Project menu to compile from the Listener. If
you select text within an expression, the Compile Selection command
appears on the menu and only the selected text is compiled.

—————— HApple Dylan Listener: 68K EEE'
Helcome ta Apple Dylan!

>3+ 4

2

: |

puzz |l e vl [in puzzle |ibraryl |¢I| 111}

You can now enter other expressions at the next prompt or you can run any
of them again without recopying them to the prompt by simply clicking the
cursor in the expression and hitting the Enter key.

6. Place the cursor into the expression again and hit the Enter key again.
You can recompile an expression by simply placing the cursor in it and
hitting Enter, you don’t have to copy the code to a new prompt.

Compiling your project

CHAPTER 2

Using Apple Dylan

7. Place the cursor into the expression again and hit the Return key.
Any expression at a Listener prompt is printed at the next prompt by simply
placing the cursor in the expression and hitting Return. You can then edit it
before hitting the Enter key to compile the revised code.

8. Edit the copied expression and hit the Enter key.
The edited expression is compiled with the return value printed below its
prompt.

Excluding code from compilation

When you mark a source record, or part of a source record, as excluded, it is
only compiled if you specifically select it before compilation. Otherwise, the
excluded code will not be downloaded when the Application Nub is tethered
to the development environment. You mark code as excluded by selecting it in
a pane and choosing the Exclude Source Records command from the Project
menu.

Excluded code is not built into your final application or library when you build
it. Test code, unfinished code, unused alternate code, and example code should
all be stored as excluded code.

1. Select the icon for the source record or select the code within the source
record to be excluded.

2. Choose Exclude Source Records from the Project menu.

Including code in compilation

Source records are automatically marked as included when they are created.
However, if you have previously excluded certain code, you might want to
include it in future compilations. You mark code as included using the Include
Source Records command from the Project menu.

When you mark a source record as included, it will be included in all
recompiles and updates. All included code is built into your final application or
library when you build it.

1. Select the icon for the source record or select the code within the source
record to be included.

2. Choose Include Source Records from the Project menu.

Compiling your project 143

CHAPTER 2

Using Apple Dylan

Running an application in Apple Dylan

You can run an application using the Run command on the Project menu. You
can only run one application at a time from within Apple Dylan. Run launches
the application after tethering it to the development environment and
performing the Update Project command. The startup function for the
application must be specified using the Set Project Type command before using
the Run command.

1. Open and make active a sample application, such as puzzle, or create your
own.
To run your own application, you must write whatever basic code is needed,
such as defining its library and module, writing its startup function, adding
other subprojects as needed, etc., and successfully compile it. See the books
Programming in Apple Dylan, Apple Dylan Extensions and Framework Reference,
and the Dylan Reference Manual, which are included with Apple Dylan, for
more information.

N

Enter the startup function for the active project into the Set Project Type
dialog box, if it’s not already there.

w

Choose Run from the Project menu.
Notice that the menu bar for puzzle replaces the Apple Dylan menu bar and
that the puzzle appears.

Project: puzzle
s C]| m oentents of] O]
Close #W » | » [7]puzzie L
— [* @ Copyright @ 1994 bg Apple Comnputer, Inc. A1 rights reserved. —
i Ouit 30 b Oy _
D , dylan-frramewaork D E:,
[» E ylan-user I B i —view >, ®hey)
= [@ puzzle I By i - <puzzle-view:) =3 solved 11 <booleans ;
f| N L & D E‘ 0 — .. o tvectory
[By ti | Te-view?) = size @ dintegers ;
= E‘“ms of =l i ‘-. Te-wiew) =» size :: dintegers ;
hd DUZZIB b D E‘ get-tile—rect Lview :: dpuzzle-view:, tile o <srall-integer) => tile—
= | BB puzzle = [+ B draw-puzzle-tile (view :: {puzzle-view:, source-tile :: <zmall-intege
[B draw-puzzle-tile (view :: <puzzle-wiew:, source-tile == 15, dest-tile|
I B draw (view :: <puzzle-wiews, draw-region :: <regions) =» ()
[+ B teft-tile (tile :: <small-integer:) = result :: <objects ;
| Y ek dil il 2l ind C i
] m] =
H]e | Killed region saved

You can also run an application by typing its startup function into the
Listener, if you choose the module it’s in from the Listener’s module popup.

144 Compiling your project

CHAPTER 2

Using Apple Dylan

To find the startup function for a sample application or other project not
your own, use the Set Project Type command.

4. Click on an Apple Dylan window.
Notice that the cursor is now the watch cursor. This is because puzzle is still
running, although you can’t currently see it. To quit the application from
within Apple Dylan, choose the Quit Application command from the Project
menu. This also quits the Application Nub. To quit just the application, you
must get back to it by choosing Application Nub from the Finder list.

5. Choose Application Nub from the Finder list.
You can now quit the application by choosing its Quit command from its
File menu.

Note

You cannot use Apple Dylan again until you interrupt
your running application. Use Quit within your
application to do this.

Tethering to a running application

You can run an application from the Finder if a standalone version of it has
been built. Then, you can tether it to the development environment if its
compiler results database file was saved and is present.

To debug the standalone application, you run it, encounter a break, and then
tether it to the development environment using the Tether to Application
command on the Project menu. Your standalone application must be halted
before you can tether it. You can cause it to halt by setting the event-check
variable to be your own method for detecting a break request. For more
information on event-check, see the book Apple Dylan Extensions and Framework
Reference.

To change the standalone version, you must tether it, alter the code and then
rebuild it as a new standalone application.

Standalone versions for all the sample applications appear in each sample’s
folder.

1. Run an application from the Finder by double-clicking its executable file.
2. Halt the application.

Compiling your project 145

CHAPTER 2

Using Apple Dylan

3. Return to the development environment and open the standalone’s project
file using the Open command.

4. Make it the active project.

5. Choose Tether to Application from the Project menu.
You are now able to debug the application from within Apple Dylan.

You quit the application by choosing Quit Application in Apple Dylan or using
its own Quit command.

Debugging a project

146

You can use the commands on the Debug menu to help you debug your
application while it is running. Many of these commands work in concert with
the Listener and inspector windows, allowing you to inspect runtime objects
and work on performance problems.

You can run code from the Listener even when you have already made an
error. This allows you to try out different ideas that might help you figure out
how to fix the error. Any result printed to the Listener can be investigated
further using the inspector window.

The commands that start with “Inspect” open inspector windows of some kind.
There are several kinds of inspector windows, most of which are accessible
from the Debug menu. Others you open by double-clicking on an object in
another inspector window. For example, in the Listener when code results are
returned, you can inspect those results in an inspector window using the
Inspect Listener Results command. You could then double-click on an object in
the inspector window and open another inspector window with that object as
its basis. You can also select any expression in the Listener and choose Inspect
Selection to inspect it in an inspector window.

The Reset Stack command discards the stack all the way to the top level
without running any of the clean-up code. Because it does not run any clean-up
code, this command is very risky; try the Abort command first. Severe side
effects can result from not running the clean-up code. For example, a file can be
left open with no way to close it or a data structure, such as the Dylan
subproject itself, can be left in a corrupted state.

Debugging a project

CHAPTER 2

Using Apple Dylan

If your code has errors in it or if you issue several Break commands, the stack
consists of as a series of break loops growing downward from the top level of
the stack. The top level loop is the first loop executed and consists of function
calls growing downward with each new command until an error or break is
encountered. At the break point, you can either resolve the error, execute the
cleanup code, or continue executing new commands, but any new commands
executed are in another break loop, not the top level loop. Within the second
loop another error or break might be encountered, in which case a third break
loop is created. The Reset Stack command discards this entire set of loops and
does not run the cleanup code, while the Abort command discards only the
break loop you are in, executes the cleanup code, and returns you to the next
break loop upward. The following figure shows the relative actions of Abort
and Reset, as well as the Listener prompts that correspond to the break levels.

Debugging a project 147

CHAPTER 2

Using Apple Dylan

Apple Dylan stack layout
Listener numbers
at prompt
Top level loop —
starts here vin o 4 A4
(top of stack)
tfoo t i
Nothin Abort here unwinds
g t bar t one break level
Reset here jumps
tetc.t r Eer or brealk directly to top
First —»
break loop A
starts here tfee t
tfi t)
1 Abort here unwinds
tfo ¢ one break level
Reset here jumps
tfum ¢ V. Error or break directly to top
Second —»
break loop A
starts here tdo t
tret .
2 Abort here unwinds
tm ot one break level
Reset here jumps
tfat s Error or break directly to top
Third —»
break loop
starts here
t | Functions being called in the stack
Clean-up code being run by
abort command

Inspecting the stack

When an error or a break is signalled, you can inspect the stack using the
Inspect Stack command on the Debug menu.

148 Debugging a project

CHAPTER 2

Using Apple Dylan

You can execute code from the Listener while you are in a break loop. When
you want to stop debugging and abort the operation, you can use the Abort
command on the Debug menu.

1.

Open a project, make it active, and choose Launch Application Nub, if
you haven’t already.

. Choose the correct module from the Listener module popup.

. Enter an incorrect expression, such as 3 divided by 0.

Notice that the Listener prompt has changed to the number 1 to indicate that
you are in the first break level.

Apple Dylan Listener: 68K =——

Error: Divide by zero: 3 /7 0
1

Helcome ta Apple Dylan!
>3 F 0

puzzle v| [in puzzle |ibraryl |<h|uu

e

4.

Choose Inspect Stack from the Debug menu.
The Dylan Stack window appears, where you can examine the stack.

. Select a stack frame in the top pane.

When you select a stack frame in the top pane, the objects in it appear in the
bottom pane. You can double-click on a frame in the top pane to open an
editor for it where you can edit its source code.

The bottom pane displays the active parameters and local variables for the
frame selected in the top pane, as well as other information. You can inspect
an object further by double-clicking on it in the bottom pane. This opens an
inspector window on the object.

In the following figure, the second stack frame in the top pane has been
selected. In the bottom pane the function is named, its offset is given, and its
arguments and local variables appear. You can change the type of
information shown in the top pane by choosing one of the Dylan Stack
commands on the Commands pulldown list in the center bar of the window.
The commands include computing more frames, copying the stack as text,
showing home (which displays the source code in a browser) and hiding
internal frames.

Debugging a project 149

CHAPTER 2

Using Apple Dylan

S[IE=———————— Stack

errar Cdcondition:, #restl

anongmous #1 inside error) k

errar Ciztringr, #rast)

J Cdsmal l-integer:, <small-integer:)

pascal—funcal | C&) E;
|

Divide by zera: 3/ 0

5 Frames Commands w

Function: #{the method error (<condition:, #rest) at: #*?570BA: 4

Offset: 102

Args and Locals:

condition: #<<simple-errorr id: O
]
o

6. Choose a command from the Commands pulldown list, if you want.
These commands affect the top pane.

S(IE=—————————— Stack
errar (fcondition:, #restl

anongmous #1 inside error O3

errar (istringy, #restl

J (<smal l-integer:, <small-integer:>
poscal—funcal | (43

Divide by zero: 3 /0

> Frames Show Home
Function: #{the method error (<condition:, #restl at: Inspect Method
Offset: 102 Copy Stack as Text

Args and Locals:
condition: #:<simple—error: id: O

Compute More Frames
Compute All Frames
Show Internal Frames

7. Double-click on an object in the lower pane to open an inspector window
on it.
The following figure shows the first stack frame of the Dylan Stack window
has been selected, which displays its contents in its bottom pane. An object
in the lower pane has also been double-clicked, which displays an inspector
window for that object.

You can double-click any of the objects in the bottom pane to open an
inspector window for it. If you have several inspector windows open at

once, you can hold down the Option key while closing one and all of them
close.

150 Debugging a project

CHAPTER 2

Using Apple Dylan

[e———————— Stttk === ——7r—==——"—""]
erraor Cdcondition:, #restl <
anohymous #1 inside error O3

artar Ciztringr, #rast)

/ C¢small-integer:, <small-integer:>
pascal—funcal | Cé)

i

[rivide by zera: 3/ 0

5 Frames Commands w

Function: #{the method error (<condition:, #rest) at: #®x7?570BA> <
Offset: 102]
Args and Locals:
condition: #<<simple-error: id: O
ik
&

#<simple-error> id: 0>

[Resample| [Edit]i Inspect E

#iczimple-error: id: O

Class: #{the class <simple-error::

Slots: 2

condition—format—stringebDylancDylan: "Oivide by zero: 8= / ="
condition—format—argueentsclylancDylan: #{3, 03

8. Choose the Abort command from the Debug menu.

Inspecting Listener results

You can inspect any results printed to the Listener using the Inspect Listener
Result command. The following example uses the paint-app sample project,
but you could use your new project if you want.

You can open another inspector window from any inspector window by
double-clicking on an object in it. This can lead to having numerous inspector
windows open at once. If you hold down the Option key while closing one
inspector window, all of them close.

1. Open the paint-app project, make it the active project, and issue Launch
Application Nub to tether to the development environment.

2. Choose Update Project from the Project menu.

It is best that the project be synchronized to eliminate possible sources of
confusion.

Debugging a project 151

152

CHAPTER 2

Using Apple Dylan

. Run the application.
You can either use the Run command from the Project menu or execute the
startup function in the Listener. For a sample application, you can find the
startup function using the Set Project Type command, which displays its
name and location.

. Select the Application Nub icon from the Finder list to make it the front
application and click on New on paint-app’s File menu.
This opens a window in which you can create simple drawings. This step is
necessary so the project will have some state that can be examined.

. Suspend the application.
You can do this by pressing Command-Option-Period while the application
is running.

. Set the module you want to work with using the Listener’s Module popup.

. Return to the Listener and type in the name of a function you'd like to
inspect.
In this case, 23 was entered. The Listener printed its value and then entered
front-window (), the name of one of the functions in paint-app.

Apple Dylan Listener

23

#odwindow: id: O

1>
> 23

* front-window()}

E

paint-opp « | Idle [

8. Choose Inspect Listener Result in the Debug menu.

An inspector window opens, showing all information about the current state
of the variable front-window, including its name and class, plus all its slots
and their contents.

Debugging a project

CHAPTER 2

Using Apple Dylan

#o<window> id: 0>

(Fosampie) (<

#odwindow: id: O

Class: #<the class <window: >

Slots: 20

location: {point 100,100}

extent: {point 315,315}

translation: {point 0,0}

identifier: #'null-identifier”

behavior—list: #)

enabled?: #i

next—handler: #{<paint-document: id: 7*

children: #0)

last—command: #f

target—view: #<:ipaint-uview: id: &

window—ptr: #:<indowRecord: at: #=01AZBZCO>
window—-kind: &

resizable?udyl an—frameworkody l an—framework @ #t
closable?: #t

zoomab le?: #t

active?: #{

modal?: #f

S floats?: #f

Jlopen—initial ly?: #t

qdispose—on—close?: #t -
Jmain—-window?: #i

Inspecting heaps

You can inspect heaps with the Inspect Heaps command when you want to
monitor how your application is using memory. The heaps shown in the Heaps
window are a snapshot of all the heaps in the runtime, which are downloaded
with a project or created by it. Macintosh heaps are not reflected in this
window. Those heaps, such as for windows and menus, are created by the
toolbox and are not monitored by the development environment.

There are several types of heaps in Apple Dylan, each for a different type of
object. The heaps are calculated for you. When you select a heap in the top
pane, its contents are displayed in the bottom pane. The top pane is a snapshot
of the heaps taken when the Inspect Heaps command was issued. The bottom
pane is a snapshot of the heap at the time you select the heap from the top
pane. You can issue several Inspect Heaps commands to take snapshots at
different times.

1. Open a project, make it active, and choose Launch Application Nub, if
you haven’t already.

2. Choose Inspect Heaps from the Debug menu.
The Heaps inspector window opens.

Debugging a project 153

154

CHAPTER 2

Using Apple Dylan

3. Select a heap you want more details on from the top pane.
Details about the heap appear at the bottom, including the classes in it, the
number of instances of each class, and their total sizes. You can order the
listing in the bottom pane by clicking the heading you want the list ordered
by. In the following example, the list of classes is ordered by the number of
instances, as is evident by Instances being underlined.

SIlI=———— Heaps FE |
Marne Size
1 Mac free g29K] it
Tibrary zo4+: I
Tibrary zzsk I
free 1eak [
Mac used 96K-
vertar 44kl
pair 1kl
string 16kl
method 12kl
W apper ET|
=
Class Instances Total Size
Ly an®Cy lane <zimple-rnethod > 41 ﬁ
Loy lanebylane<slot-acceszar—.. 22 264
0 Tanebylan® <code-vector > 14
]

4. Double-click on a heap in the top pane.
A window opens listing of all the classes in that heap.

5. Double-click on a class from the list.
An inspector window on that class opens.

6. In the Heaps window, double-click on a class in the bottom pane.
An inspector window on that class opens.

Inspecting modules

You inspect modules when you want to see all the module’s variables in the
Application Nub. You use the Inspect Module Variables command on the

Debugging a project

CHAPTER 2

Using Apple Dylan

Debug menu and choose a module from the list, which opens an inspector
window for it.

1. Open a project, make it active, and choose Launch Application Nub, if
you haven’t already.

2. Choose Inspect Module Variables from the Debug menu.
From the list, choose the module whose variables you want to inspect.

The following figure shows an example of the modules in a project’s
Application Nub.

urse EIELTE Windows

Inspect Stack ®
Inspect Selection

Inspect Listener Result 1
Inspect Module Dariables b
Inspect Heaps

AEDDb jectSupportlibrary-external-module<Dylan
Apple-Dylan«Dylan
Apple-Dylan-extensions«Dylan

Meter Expression... ASLM-enternal-module<Dylan

Call Recording... Creole«Dylan

Creole-Kludge-Module«Dylan

Expand Macro #M| Dylan<Dylan

Pattern Match Macro dylan-framework «<dylan-framework
Dylan-User«dylan-framework

Break *®, Dylan-User«<mac-toolbou

Continue #/| Dylan-User«Dylan

Restarts... Dylan-User

Abort 3 hello-module

Reset Stack Junk-«Dylan

KernelzDylan
mac-toolbod«mac-toolbox
Memory-manager«Dylan
Preemption-support<Dylan

Prefit-support<Dylan

The module inspector window displays the names, values, and kinds of
variables that are defined in a module, as well as their read / write status. A
menu item in the Commands popup menu toggles between “Show All
Variables” and “Show Exported Variables.”

Debugging a project 155

CHAPTER 2

Using Apple Dylan

#<DYNAMO-MODULE-MODEL Memory-manager #11F445.

[Resample| [Edit |3 Inspect |

d: "Memory-manager"

ersion:

xternal Variables: 22

ind Mame

#by tes-per—chunk®

#by tes-per—chunk-expans i ont

#bytes-per-L0S—c|uster+

*bytes-per-L0S-c |luster—expans i onk

| obber-o | dspace®

*apab le—automat ic—termination®

#anab | e—compact ing-garbage-co | lection®

#anob |e—garbage—col lect ion®

#go—back trace®

*#memory—shor taget

#memory—shor tage— lawe | #

#minimum-free—bytes®

#report-garbage—cal lect ionst

<memory-exhaus ted> clazs <memory-exhausteds >

<memory—-shor tager clazs <memory-shortoger

capture—back trace code vector copture-backtrace at: #::1142002>

col lect—garbage method col lect—garbage (®*key generation:, report:, compact:) at: #*=1124B32>
drain—termination-quaues method drain-termination—gueus ©) at: #112072R:

make-back trace-buf fer method moke-backtrace-buffer (<small-integer:) at: #=11427B2:
object-generation—rnumber method object-generation—rumber C<object>l at: #=211Z1B4A%
terminate gereric-function terminate ¢<object: i
terminate—when-unreachab e method terminate—when-unreachable C<object>) at: #®x1120642>

L
L
L
L
L
L
L
L
M
H
L
L
L
R
R
R
R
R
R
R
R
3}

The module inspector window shows only variables that are actually
created in that module. It does not show variables imported from other
modules, even if they are re-exported from the module being inspected. This
is why, for instance, the inspector doesn’t show any variables in the
Dylan-user module.

Metering expressions

You can use the Meter Expression command on the Debug menu when you
want to meter an expression in the runtime. When you type an expression into
the top pane and run it, the generic functions called and classes allocated
during the execution of the expression appear in the panes below. You can open
an inspector window for an object in either of the lower panes by
double-clicking on the object.

You must select the module the expression is in before metering it. You must be
tethered to the development environment for Meter Expression to work.

The total time used and bytes allocated are also calculated in the Meter
Expression window. The first time you call a function it sometimes runs more
slowly than it will normally. If the generic function Dylan.Dylan.finalize
appears on the list, this is the first time an instance of this class has been
created. You should run the expression again for accurate timing.

156 Debugging a project

CHAPTER 2

Using Apple Dylan

If the generic function Dylan.Dylan.set-generic-function-dispatch appears on
the list, it indicates that this is the first time one of the generic functions has
been called. Sometimes if you add a method to a generic function, it needs to
be treated as if it is being called for the first time. You should run the
expression again to get more accurate timing results.

Use the Call Recording command to trace or meter an individual function.

1. Make your project active and launch the Application Nub, if you haven't
already.

2. Choose Meter Expression from the Debug menu.

3. Choose the module the expression is in from the Module field.

E[[=———-= Meter Expressi =——————————
Dylan-User
Enter Expression: Module:
! Dylan b
dylan-framework }
mac-toolbox b
v puzzle
User-Library »
RO
Data: EI Time: Allocated:
Generic Function Tirnes Called
ik
=]
Clas= Instances
ik
@_

4. Choose the type of information you want to see for the expression in the
Data field.
Generic function calls that have been inlined are not displayed in the
Generic Function pane. Some built-in classes, such as <list> and
<byte-string>, are not displayed in the Class pane but are counted in the
Allocated bytes field.

Debugging a project 157

CHAPTER 2

Using Apple Dylan

S[I==——=— Meter Expression ==—

Enter Expression: Module: [puzzle

Allocated:

Data: .. GF Call Counts |,
+Class Allocations

Generic Times Called

[

Class Inztances

o] [

<

(@

5. Type in the expression and choose Run.
You can also copy and paste an expression into the top pane. The metering
information is printed into the Time and Allocated fields and in the panes at
the bottom of the window. You can order the listing in the bottom panes by
clicking the heading you want the list ordered by.

158 Debugging a project

CHAPTER 2

Using Apple Dylan

ED% mMeter Edpression §|
Enter Expression: Module: [puzzle |
draw-puzzle-tile Ein

B
Data: EI Time: 30ps. Allocated: 0 byteq
Generic Function Tirnes Called
[
2]
Class Instances
ki
2]
[=l

Monitoring an individual function

You can trace the behavior of an individual function, such as a method or
generic function, in the runtime using the Call Recording command on the
Debug menu. The function is printed to the Listener on entry. You must be
tethered to the development environment for Call Recording to work.

1. Make your project active and launch the Application Nub, if you haven't
already.

2. Choose Call Recording from the Debug menu.
The Call Recording window opens.

Debugging a project 159

CHAPTER 2

Using Apple Dylan

E[==————=— Call Recording
Functions Being Recorded
ﬁ
Remouve
| Remove All
W
Try "Metering...” for another uzeful tool. "

3. Choose Add to select the function to record.
The Start Recording Calls for Function window opens.

. Choose the module the function is in from the Module field.
. Choose the function to record from the Function field.

. Choose the specializer to trace from the Specializer field.

NS U1

. Choose whether you want to print the function on entry and then exit, or
to meter the function.
In the following example, the greater than symbol in the Dylan subproject
has been selected.

Start Recording Calls for Function

Hodule - Module: [Dylan |
Function: |> ||z|
Specializer: [None -1
Dptions: @ Print Entry and Exit

(:) Meter

D Break on Entry
D Record Call Tres

[Cancel]

[Record]]

160 Debugging a project

CHAPTER 2

Using Apple Dylan

8. Click Record when you have made your choices.
The recorded function appears in the Call Recording window. You can
remove functions from the list with the Remove and Remove All buttons.
Select the functions you want removed and click the appropriate button.

EDE Call HBCDI’UiI’Ig EI
Functions Being Recorded
> G
Remove
— Remove RII
I
Try "Metering..." for anather useful toal. @

9. The results are printed to the Listener.

[E=—= npple nylan Listener
Helcome to Apple Dylan!

>3 » 4

=+ Call ":" with arguments (3 42

<= Exit ":" with walues (#f}

#f

> |

puzzle » | Idle

Creating a user interface

You can create a user interface for your application through the Apple Dylan
user-interface builder. Although it is possible to create a user interface without
using the user-interface builder, this is not the suggested practice. The
user-interface builder is a graphical utility that helps you visualize your user
interface before writing any code for it, thus saving time as you refine your
design. See the book Creating a User Interface in Apple Dylan for more
information.

Creating a user interface 161

162

CHAPTER 2

Using Apple Dylan

To activate the user-interface builder, use the Load UI Builder command on the
Project menu. This loads the builder’s library into the Application Nub and
makes the command Show Interface Builder appear on the Apple menu. Make
sure you have have launched the Application Nub before using the Load Ul
Builder command.

You then choose Show Interface Builder from the Apple menu to launch the
builder. This does not quit the development environment, but simply hides it
while you run the builder.

As you create your user interface using the builder, the high-level elements of
your interface, such as windows and menus, are saved by the builder to a
project file. This project file contains the user interface elements as resources,
although it is not a typical resource file. You then add the builder project file to
the development environment project it belongs to.

If you want to use a custom icon for your application, you must create the icon
using an icon editor outside of Apple Dylan. You then simply add the resource
file it is in to your project. If you don’t use a custom icon, the default Macintosh
icon for applications is used.

Adding the Apple Dylan interface builder

You run the builder from the development environment project you want to
create a user interface for. Note that you can run the builder as a standalone
application from the Finder by double-clicking its standalone version.
However, some of the capabilities of the builder are not available if you run the
standalone version.

1. Make active the project you want to add a user interface to.

2. Launch the Application Nub, if it isn’t running already.
You should also add the framework to your project, if you haven’t already.

3. Choose Load UI Builder from the Project menu.

4. Choose Show Interface Builder from the Apple menu.
You can return to the development environment, without quitting the
builder, by choosing the Hide Interface Builder command from the Apple
menu. In this way you can quickly move back and forth between the
development environment and the builder without quitting either. It's a
good idea to save your builder project before hiding it. When you do quit

Creating a user interface

CHAPTER 2

Using Apple Dylan

the builder, the Application Nub in the development environment and your
running application are also quit.

5. Choose Launch Application Nub from the Project menu.

6. Launch the user-interface builder using the Show Interface Builder
command from the Apple menu.
See the book Creating a User Interface in Apple Dylan for information on using
the interface builder.

Adding the new user interface

When you have run the user-interface builder and created the user interface for
your application, your user interface’s data is saved in a project file. You can
then add this project file to the development environment project it belongs
with. The project file with your user interface in it appears in your
development environment project as a resource file.

You must also write code to attach the user interface elements to your project as
described in the book Creating a User Interface in Apple Dylan.

You can then run your application to see its user interface.

1. Create the user interface and write the code needed to attach the user
interface elements to your project.

2. Choose Add to Project from the Project menu in the development
environment.
If you are connected to the Application Nub, Apple Dylan alerts you that the
Quit Application Nub command will be issued before you can proceed any
further.

3. Locate and choose the project file containing the user interface.
The file will have the name you gave it, plus the suffix “rsrc”.

4. Choose Launch Application Nub from the Project menu.
5. Choose Update Project from the Project menu.

6. Run your application using the Run command on the Project menu.

Creating a user interface 163

CHAPTER 2

Using Apple Dylan

Sharing your user interface

You can share your user interface with others by sending them your builder
project file. Then, they can add it to their projects and can also alter it by
running the user-interface builder.

1. In the user-interface builder, save your user interface.

2. In the Finder, send the project file to someone.
They can open your project file with their version of Apple Dylan, add it to a
project, and alter it in the builder.

Building your application or library

164

When you have written your code, compiled, and debugged it, you can build
your final standalone application or library. To build an application or library
from your project, you choose the Create Application command or Create
Library command on the Project menu.

Be sure to recheck the accuracy of the project settings with the Set Project Type
command before building your final application or library.

You should probably recompile all the code in your project before building
your final standalone application or library by choosing the Recompile
command from the Project menu. This can be a lengthy process.

Building your standalone application

You build your final standalone application from your project using the Create
Application command on the Project menu. The Create Application command
appears on the Project menu when you set the project type as an application
using the Set Project Type command.

Before you build a standalone application, you should quit the Application
Nub; you will be prompted to do so in the Set Project Type dialog box. You
must also check that the information about your project is all correct in the Set
Project Type dialog box.

Building your application or library

CHAPTER 2

Using Apple Dylan

If you need to debug the standalone application in the future, you can tether to
it and return to the use of all the facilities of the development environment. To
do this, you must have retained the project’s compiler results database file.

1. Make your project the active project, if it’s not.
The Activate Project command from the Project menu allows you to
designate the active project.

2. Choose the Set Project Type command from the Project menu.
You should have set these values already, but you should make sure the
fields are all correct.

Set Active Project Type

Project Type: (iﬂpplicatiun) Library

Creator Type:

Startup Function: |start |

Module: |__puzzle v]

Memory: K Minimum

K Suggested

[Use Separately Loaded Libraries
[JCreate Fat Binary
Application Names:
68K: [puzzle68K |

PowerPC: |puzzIePPl: |

Fat: ||Ju22|eFat |

Cancel 0K

3. Click OK.
4. Choose the Create Application command from the Project menu.

5. Click the destination platform for your application.

Building your application or library 165

166

CHAPTER 2

Using Apple Dylan

6. Keep the database files for your project.
To alter your standalone application in the future, you can tether to it, edit
the code in the development environment, and rebuild it as a new
application only if you have at least kept the compiler results database file.

7. Leave Apple Dylan to make sure the file was created and runs.

Building a library

You build your final library from your project using the Create Library
command on the Project menu. The Create Library command appears on the
Project menu when you set the project type as a library using the Set Project
Type command.

Before you build a standalone library, you should quit the Application Nub;
you will be prompted to do so in the Set Project Type dialog box. You must also
check that the information about your project is all correct in the Set Project
Type dialog box.

If you need to debug the library in the future, you can tether to it and return to
the use of all the facilities of the development environment. To do this, you
must have retained the project’s compiler results database file.

1. Make your project the active project, if it’s not.
The Activate Project command from the Project menu allows you to
designate the active project.

2. Choose the Set Project Type command from the Project menu.
You should have set these values already, but you should make sure the
fields are all correct.

Building your application or library

CHAPTER 2

Using Apple Dylan

Set Active Project Type

Project Type: O Application @ Library

Creator Type:

Library Dersion:

Minimum Dersion:

I

Library Names:
68K: [puzzle68K.di |

PowerPC: ||Ju22|ePPI3.dI |

Cancel 0K

3. Click OK.
4. Choose the Create Library command from the Project menu.

5. Keep the database files for your project.
To alter your library in the future, you can tether to it, edit the code in the
development environment, and rebuild it as a new application only if you
have at least kept the compiler results database file.

6. Leave Apple Dylan to make sure the file was created.

Sharing code

You can share code containers, either source folders or modules, with other
programmers by exporting them as text files, but you cannot share source
records individually. You can save your personal browsers and send other

Sharing code 167

168

CHAPTER 2

Using Apple Dylan

programmers the browser file. You can also share a user interface by sending
others its resource file, which was generated by the user interface builder.

Remember, you should copy the files you want to share; moving or deleting
Apple Dylan files while not in Apple Dylan can have bad consequences, as
does renaming any folders. The development environment will not be able to
find the object and report it as missing. Missing files need to be found and
identified when the development environment is running or they will just be
ignored during compilations. When they have been identified, the project must
be recompiled and saved. While the development environment is not running,
you can move the entire Apple Dylan folder or a project’s entire folder and it
will be OK.

Sharing projects

You can share an entire project with someone by sending them a project’s
folder. You can send them a subproject by sending its project folder. You don’t
have to send them the sources when sending them the project. To use the
project or subproject, they add it to the project they want it in.

1. Save a project if you haven't.
You send the file it’s saved into.

2. Leave the development environment.

3. Send the project’s file.
Send the entire folder, including the project’s databases, if you want the
other person to be able to alter your project.

Sharing code by exporting

You can share source code by exporting it. You export a container object from
the development environment with the Export command on the File menu.
Everything within the container is exported automatically. You cannot export
individual source records. The exported code is written to a file, called a
“Dylan text file”, with the suffix “.dylan”.

The Dylan text file has a header on it to identify its contents. These files can be
mailed electronically or edited outside of the development environment. An
exported object can be brought back into the development environment by
importing the file it is in.

Sharing code

CHAPTER 2

Using Apple Dylan

However, not every object can be exported and imported without changes.

o A single source record with more than one top-level form or comment is
broken into an individual source record for each top level form or
comment when exported.

o In addition, if any code within a source folder has the incorrect number of
begins or ends, or is any other way seriously malformed, the source
folder can be exported, but the resulting Dylan text file cannot be
imported.

Importing or exporting has no effect on objects marked for exclusion or
inclusion.

1. Select the object you want to export.

2. Choose Export from the File menu.
Dylan text files have the suffix “.dylan”.

3. Choose the location for the Dylan text file.
The following figure shows a portion of a Dylan text file.

Sharing code 169

170

CHAPTER 2

Using Apple Dylan

language: infix-dlan
radule: tect-app

define dess <text-app-library= (< librarg=)

erud clags;
defire conetant $tm{t-&pp-1ibre.tj,r— rrakal- text-app-library=, name: "tect-apprenc')

define cdese <texl-app-beheasior= (<beheairicr=}

erud clags;

define mathod behawiersstup-mernues (heharier i < textapp-behasiors,
next-bahesriore @ «<list=,
raain-hendler i <mein-handler=) ==}
ignere(nect-beha viore, mein-handler);
rext-rmethod ()

erwhbla-itern (" new");
end method;

define methoed behawior-ewent hehewior i < text-app-bahavior=,
next-behawion & «list=,
mein-hendler & <mein-hendlar=,
ewent i <rmera-eswent -,
id == e "=)
igneralbehevicr, next-behaviers, main-handler, ewent, id):

cpen{makel«tent-decurnant=)
end mathod;

define methoed behawior-ewent hehewior i < text-app-bahavior=,
next-behawion & «list=,
mein-hendler & <mein-hendlar=,
evEnt & <open-applicalicn-ewent=,
id 11 cobject=) == {}
igneralbehevicr, next-behaviers, main-handler, ewent, id):

cpen{makel-tent-decurnant=)
end riathad;

defitie conatant $ile-menu-id - 12%;
define conetant fedi-rmeru-id - 1249;

define conetant ffent-menu-id - 131;

Sharing code

CHAPTER 2

Using Apple Dylan

Retrieving code by importing

You retrieve the contents of a Dylan text file to the development environment
by importing it. You import Dylan text files with the Import command on the
File menu.

You create Dylan text files by exporting objects from Dylan. Exported files can
be edited in other word processors and mailed electronically.
However, not every object can be exported and imported without changes.

o A single source record with more than one top-level form or comment is
broken into an individual source record for each top level form or
comment when exported.

o In addition, if any code within a source folder has the incorrect number of
begins or ends, or is any other way seriously malformed, the source
folder can be exported, but the resulting Dylan text file cannot be
imported.

Importing or exporting has no effect on objects marked for exclusion or
inclusion.

1. Choose Import from the File menu.

2. Find the Dylan text file you want to import.
Dylan text files have the suffix “.dylan”.

3. Choose Import from the dialog box.

Sharing code 171

CHAPTER 2

Using Apple Dylan

172 Sharing code

CHAPTER 3

Apple Dylan Reference

This is the reference chapter for the Apple Dylan development environment.

It includes:

o List of command shortcuts

o Alphabetical list of all commands

Key Command Shortcuts

Not all commands have keyboard equivalent shortcuts. Those that do are listed

below and also appear in the full descriptions of the commands under the

subheading “Key shortcut”.

File Menu

New Source Record—Command-N
Open—Command-O
Close—Command-W

Save— Command-S

Print— Command-P

Quit—Command-Q

Edit Menu

Undo (Clear, Typing)—Command-Z
Redo—Command-Z

Key Command Shortcuts

173

174

CHAPTER 3

Apple Dylan Reference

Cut—Command-X
Copy—Command-C
Paste—Command-V

Select all—Command-A

Copy Special

o Argument List—Command-’

o Define Method Template—Command-T
o Class Template—Command-T

Insert Special

o Method Template—Command-Option-T
o Class Template—Command-Option-T

o Argument List—Command-Option-

Text Menu

Style

o Plain—Command-Shift-T

o Bold—Command-Shift-B

o Italic—Command-Shift-I

o Underline— Command-Shift-U

o Outline—Command-Shift-O

o Shadow—Command-Shift-S

o Condense—Command-Shift-Option-C
o Extend—Command-Shift-E

Find and Replace—Command-F
Find Again—Command-G
Find Selection—Command-H

Replace and Find—Command-]

Project Menu

Run—Command-R

Key Command Shortcuts

CHAPTER 3

Apple Dylan Reference

= Compile Region, Expression, Selection—Command-E

Launch Application Nub—Command-K

Update Project—Command-U

Browse Menu

Aspect—Command-Option-click on object
Show Home—Command-Y

Look Up in Online Reference—Command-=

Debug Menu

Inspect Stack—Command-B

Inspect Listener Result—Command-I

Expand Macro—Command-M

Expand Macro one level—Command-Option-M
Break—Command-,

Continue—Command-/

Abort—Command-;

Command Reference

The following list is alphabetized with the commands on the left margin. The

right margin shows the menu the command is on. Menus are altered
dynamically. Not all commands are available in all contexts. For instance,

Launch Application Nub and Quit Application Nub replace each other on the
Project menu.

Command Reference

175

CHA

PTER 3

Apple Dylan Reference

Abort Debug
Discards the stack in a break level loop to the next break level upward in the
stack after executing the clean-up code. Because it runs clean-up code, Abort is
usually preferable to Reset Stack, which does not.

See “Debugging a project” on page 146 for a comparison of using Abort and
Reset Stack.

Related command: Reset Stack.

Key shortcut: Command-;

About Apple Dylan ... Apple
Displays information about Apple Dylan, including copyrights, credits,
memory usage, and version information.

Activate Project Project

176

Makes the selected open project into the active project.

Activate Project does the following:

O

Makes the currently active project inactive, leaving its browsers,
databases, and project files open.

Untethers the Application Nub containing the currently active project
from the development environment, closing the compiler results database
and removing it from memory.

Makes the selected project active, connecting to its compiler results
database, making it available for browsing.

If Update on Open is set (in Preferences) the project is updated.

If Connect on Open is set (in Preferences) the project is loaded into the
Application Nub.

See “Apple Dylan User Model” on page 95.

Abort

CHAPTER 3

Apple Dylan Reference

Add to Project File

Adds a subproject, C header file, text file, library, or resource file to a project.
Aliases are supported. Before you can use the added subproject or file, you
must use the Update Project command. This command disconnects you from
the Application Nub if you are connected to it.

You can drag and drop objects between projects to achieve the same end.

Use Add to Project to include the framework, mac-toolbox, or the user-interface
builder in a project.

All Methods of (Aspect) Browse

Operates on a selected class, displaying the inherited and direct methods of the
class in a pane.

Related command: Direct Methods of (Aspect).

All Methods of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display all its methods inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more
information.

All Slots of (Aspect) Browse

Operates on a selected class, displaying the inherited and direct slots for the
class in a pane.

Related command: Direct Slots of (Aspect).

All Slots of (Aspect) is commonly used to customize a browser pane displaying
that aspect of a class. You can also select a single class in a pane and display all
its slots inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more
information.

Add to Project 177

CHAPTER 3

Apple Dylan Reference

All Subclasses of (Aspect) Browse

Operates on a selected class. Displays inline the inherited and direct subclasses
for the class in a pane.

Related command: Direct Subclass of (Aspect).

All Subclasses of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display all its subclasses inline. See “Aspect” on page 183 and “Customizing
browsers” on page 58 for more information.

All Superclasses of (Aspect) Browse

Operates on a selected class. Displays inline the inherited and direct
superclasses for the class.

Related command: Direct Superclasses of (Aspect).

All Superclasses of (Aspect) is commonly used to add a custom browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display all its superclasses inline.

See “Aspect” on page 183 and “Customizing browsers” on page 58 for more
information.

Apple Dylan Listener Windows

178

Selects the Apple Dylan Listener. Once the development environment has been
tethered to the Application Nub, the Apple Dylan Listener window opens and
stays open unless you untether from the Application Nub, when the name
changes to “Apple Dylan Listener (Unconnected) :68K”. The type of target
machine chosen using the Target Architecture command is also shown in the
Listener’s title.

The Apple Dylan Listener allows you to execute code in a running application.
The Listener prints all returned values executed in the development
environment, even when the expression was not executed in the Listener.

Use the Listener by typing in Dylan language constructs at the prompt, and
then pressing the Enter or Return key. When the module the code resides in

All Subclasses of (Aspect)

CHAPTER 3

Apple Dylan Reference

and the module the Listener is set to are different, the module appears at the
prompt. This is also true if the libraries differ.

Apple Dylan Listener: 68K

= EE|
Helcome ta Apple Dylan! <
» 3+ 4 =
2 =
*

ik
puzzle v| [in puzzle |ibraryl |<::I| [} %1}
Note

Before you type an expression into the Listener, choose the
proper module from the popup list in the lower left corner
of the Listener window.

The current library is shown at the bottom of the Listener window to the right
of the Module popup. When you hold down the mouse on the Module popup,
as shown in the following figure, the modules in the current library appear in
the list above the separator line. When you choose one of these modules, it
becomes the module the Listener uses. The current module and library are
check marked in the popup. Below the separator line are other libraries you can
choose from. If you choose one of the libraries below the separator line, it
becomes the current library and, when you release the mouse, is shown at the
bottom of the Listener window. That library’s modules appear above the
separator line the next time you access the Module popup.

Apple Dylan Listener 179

180

CHAPTER 3

Apple Dylan Reference

Apple Dylan Listener: 68K =————pi-|
4

Hﬁlcome to Apple Dylan!
H

Module: |~ Dylan-User

Dylan [4
dylan-framework }
mac-toolbox »
v puzzle

You can also select expressions in the Listener and choose commands from the
Apple Dylan menus. The expression is compiled, linked to the Application
Nub, and executed immediately. The Listener responds by printing its result or
return values on the line following the prompt. The Listener does not save any
code; you must copy the code into a source record to save it.

You can only use the Listener when it is connected to the Application Nub and
your application is running. You can, however, execute code from the Listener
while you are in a break loop, allowing you to investigate various results.
When in a break loop, the Listener’s prompt changes to the number of the
break level on the stack, starting with the first break loop as number one.

Apple Dylan Listener: 6BK §E§|
Helcome to Apple Dyglan! 45
>3 F 0

Error: Divide by zera: 3 / 0
1

puzz |l e vl [in puzzle |ibraryl |¢I| 111}

The Listener is also useful for quickly testing expressions without creating all
the scaffolding to hold them. In addition, the Listener provides access to parts
of your application that you cannot access any other way, such as data stored in
a database or off a hash table.

Apple Dylan Listener

CHAPTER 3

Apple Dylan Reference

Related command: Inspect Listener Result.

Note

To suspend a running application, make it the front
application and type command-option-period. When the
application has stopped you can issue Quit Application
Nub.

Application Nub Info Project

Displays information on whether the active project is loaded into the
Application Nub.

The following figure shows the status of an untethered Application Nub.

Application Nub Info

Name : Application Mub
Location: HC:CCL :Leibniz :Application Mub :

Status: [vizconnected. Application nub will be launched

autornatically on Connect.

L3

The following figure shows the status of an Application Nub that is tethered
and running locally. If the Application Nub were on a second machine, its
status would be Running remotely.

Application Nub Info

Name : Application Mub
Location: HD:CCL :Leibniz:Application Mub:

Status: Connected. Running locally .

Application Nub Info 181

CHAPTER 3

Apple Dylan Reference

Argument List (Copy Special) Edit

Copies the prototype argument list for the selected method into the Clipboard.
To paste the argument list into text, use Paste. Argument List retrieves the
prototype argument list from the compiler results database.

Key shortcut: Command-’.

If you want to call a method and you don’t know its arguments, this is a way to
get them. Search through the active project until you find the method you are
looking for, select text naming the method’s or the source record icon, and then
issue Argument List. You can then paste the prototype argument list for that
method into text, where you can modify it to your needs.

For example, if you want to call the remove function, you can highlight remove
in text and then choose Argument List to copy its argument list into the
Clipboard. The following prototype argument list is copied to the Clipboard for

remove:

(sequence, value, test: test, count: count)

You can then paste these arguments into place in a source record, in a text file,
or in the Listener.

Related commands: Copy Special, Argument List (Insert Special).

See “Editing in Apple Dylan” on page 66.

Argument List (Insert Special) Edit

182

Inserts the prototype argument list for the function named by the selected text
right after that function. Argument List retrieves the prototype argument list
from the compiler results database. Argument List (Insert Special) is only
available in the active project when you select text that names a compiled
function or its source record icon.

Argument List (Insert Special) is accessible by pressing the Option key when
clicking on Copy Special from the Edit menu.

Key shortcut: Command-Option-

For example, if you select the function draw, Argument List (Insert Special)
inserts the following prototype argument list directly after it:

Argument List (Copy Special)

Aspect

CHAPTER 3

Apple Dylan Reference

(view, r)

Argument List (Insert Special) is handy when you are creating a new source
record and you already know the name of the method you want to call. Simply
type its name, select it, and then initiate Argument List (Insert Special).

This command does not replace the selection as the other Insert Special
commands do.

Related commands: Insert Special, Argument List (Copy Special).
See “Editing in Apple Dylan” on page 66.

Browse

Displays a list of aspects for an object (or objects). You can change the aspect for
the basis of a pane, thus changing what is displayed in the pane, or simply
display the aspect inline for a selected object.

WARNING
Aspect only works on the active project.

Every object in Apple Dylan has applicable aspects. Aspects express the
relationships between objects in Apple Dylan, such as what calls what, class
relationships, methods, or families of functions. A source record’s aspects, for
example, include its source code and also any warnings that it has generated.
An inheritance tree is an aspect of a class. Many objects, including all the
variables in the active project, have the aspects References To and References
From, and so on.

Key shortcut: Command-option-click on an object or in a pane without
selecting anything.

You can configure the panes in browsers to display various aspects of objects,
either by changing existing browsers or creating new ones. However, Apple
Dylan includes a number of built-in browsers that display many different
aspects. They are on the Browse menu. If you don’t see a built-in browser for
the aspect you are interested in, use this command to change the aspect to what
you want.

When no object in a pane is selected and this command is used, the aspects for
the basis of the pane are displayed. Each browser pane displays the aspect that
is the default aspect of the pane’s basis. If you change the basis of the pane, you
might see another aspect displayed since the new basis might have a different

Aspect 183

184

CHAPTER 3

Apple Dylan Reference

default aspect, but you can also change the aspect by overriding the default
aspect. You do that by choosing another aspect from the list that is displayed
when you use this command.

The name of the default aspect assigned to the object appears on the first line
on the list in parentheses. You cannot change the list of aspects available for an
object or its default aspect. The default aspect also dictates the aspect that is
displayed in a new browser opened after an object is selected.

In the following example, a source record, output-buffer-offset, has been
double-clicked to open a new browser with it as the basis. The source record’s
default aspect, Source Code of +Warnings of, is the aspect on view in the pane,
as is noted in the pane’s header (there are no warnings at the moment, so none
appear, only source code).

E[1E output-buffer-offset (stream :: <stream>) =» [offset :: <integer>) =0l
Zource Code of + Warninas of

o I}'}. output-buffer-offset (stream : <stream>) => [offset :: <integer> J =
define method output-buffer-offset (stream :: <stream>? =: toffset :: <{inte {';

buffer-of fzetistream:;
&nd;

] M

streamsz-imple...|

3 [E

The following figure shows the list of aspects available for source records. This
list can be generated by selecting a source record, such as output-buffer-offset,
and then using the Aspect command.

Aspect

CHAPTER 3

Apple Dylan Reference

Gl Debug Windows

New Browser
Save Browser...
MLl -~ Default (Source Code of+Warnings of)

Grapher Pane
Status Indicators... All Methods of

All Slots of
Duplicate Definitions All Subclasses of
List of Browsers All Superclasses of
Undefined Variables Direct Methods of
Unsaved Source Records Direct Slots of
Warnings Direct Subclasses of

Direct Superclasses of
Call Grapher References From
Class Grapher References To
Direct Methods Source Code of
Direct Slots Warnings for Downloaded Code of
Function Family Warnings of

From the list of aspects, you can choose another aspect, such as Function
Family. The pane now displays this aspect, as is shown in the following figure.
The basis of the pane remains the same, but the name of the aspect in the
header is changed to Function Family and the function family is shown within
the pane.

]
H
M

|EmE output-buffer-offset (stream :: <stream>) => [offset :: <integer>)

Function Farnily of

" E; output-buffer-offset (stream :: <stream>) => (offset :: <integer>) =

[= output-buffer-offsete streams-implementor (streamn :: <stream s« streams-implernentor) => o

[» @ output-buffer-offsete streams-implementor (object @@ <two-buffer-streann >« streams-impls

streams-imple..

If you select an object in a pane and use this command, the aspects for that
object are listed rather than those for the basis of the pane. The list of aspects
displayed is all those aspects that apply to the selected object and only those
aspects. If you select multiple objects, you see the union of aspects for all the
objects. In this case, if an aspect does not apply to one of the multiple objects
selected, you receive a message saying that the aspect is unavailable for that
object.

Aspect 185

186

CHAPTER 3

Apple Dylan Reference

When you expand an object by clicking its disclosure triangle, one aspect of the
object is displayed inline below the name of the object. For instance, source
records expand to reveal their source code right below the name of the source
record. No new pane or browser opens. The aspect revealed is the default
aspect, unless you select another using this command.

For example, in the following figure the source record output-buffer-offset is
expanded inline to show its default aspect, Source Code+Warnings.

Project: Streams |

[§ Gontents of =
[stream basics -

[* @ stream basics

B m the abstract stream classes:

I» B <streams (<objects)

= B define method output-buffer-of fzet (stream :: <stream:) = (offset :: <integer:)

k buffer-of fzet{stream;

end;

[» B output-buffer (stream :: <streamn?)

[» B output-buffer-setter (new-value, stream @@ <stream:)

[B output-buffer—end (stream :: <stream:) =» [% @ <integer:)

[By output-buffer-end-setter (new-wvalue @@ <ntegers, stream @ <stream:)

I B output-buffer-position (stream :: <stream>) => pos :: <integers)

[» B output-buffer-position-setter (new-value i@ <integers, stream :: <stream>)

m

In the following figure, the Aspect command has been used to show the
References From aspect for output-buffer-offset inline. Notice that the aspect
listed on the pane’s header is still Contents Of because the basis of the pane, the
source folder stream basics, has not changed.

Project: Streams ggg'
[@ Ccontents of il
» [] stream basics

[> @ stream basics

o the abstract stream clazses:

[O <stream? (<objects)

= B output-buffer-offset (stream :: <stream») = (offset @ <integer>)

[+ = buffer-offsets streams-implementor

[> Pﬁ output-buffer (stream :: <stream>)

[» B output-buffer-setter (new—value, stream :: <stream?)

[B output-buffer-end Cstream :: <streamn:) =: (% @ <integers)

[» B output-buffer-end-zetter (new-value @1 <integers, streann @ <stream?)

[» B3 output-buffer-position (stream :: <streams) => { pos :: <integers Jstream>)

Aspect

CHAPTER 3

Apple Dylan Reference

You can also see the list of aspects for a pane’s basis by holding down
command-option while pressing on the name of the pane’s basis in the pane’s
header. The following figure shows the pop-up list for the source folder stream
basics. It was generated by clicking within the right-hand pane without
selecting anything, pressing command-option, and then holding down the
mouse button with the cursor on the name “stream basics” in the pane’s
header. This pop-up list is the same as would be generated by using the Aspect
command on the Browse menu.

=—————=— Project: Streams =i————————————
v Default (Contents of)

Il?l

kClasses of

Contents of

Duplicate Definitions of
Functions of zet o1 <integers)
Source Records of

Source Records with Warnings of

EIE ENEl

Uncompiled Source Records of L)

Undefined Dariables of integer>)

Unsaved Source Records of stream @ <streamn?)
Warnings of 0s o1 <integers Jstream:)

Warnings for Downloaded Code of

If you change the aspect of an object and wish to reset it to the default, choose
Default from the list. You can reset to the default aspects of several objects at
once by selecting all of them and then choosing Default from the list. If you use
Select All and then choose Default, the original default aspects of all browser
panes are restored.

Aspect 187

188

CHAPTER 3

Apple Dylan Reference

The following table shows all possible aspects and the objects to which they
apply. You can create a custom browser pane displaying any aspect of any

object or objects that have that aspect.

Aspect

All Methods of

All Slots of

All Subclasses of

All Superclasses of
Classes of

Contents

Direct Methods of
Direct Subclass of
Direct Superclasses of
Direct Slots of
Duplicate Definitions of
Function Family
Functions of
Modules of

References From

References To

Resource Files of

Source Code of

Source Folders
Source Records

Source Records with Warnings

Aspect

Objects

class

class

class

class

module, project, source folder
module, project, source folder
class

class

class

class

module, project, subproject, source folder
generic function, method
container

project, subproject

class, constant, function, interface,
macro, method, slot, top level form,
variable

class, constant, function, interface,
macro, method, slot, top level form,
variable, warning

project, subproject

class, constant, function, interface,
library, macro, method, module, slot, top
level form, variable

module, project, subproject
module, project, subproject, source folder

project, subproject, module, source folder

continued

Break

CHAPTER 3

Apple Dylan Reference

Aspect

Subprojects

Text of

Uncompiled Modules of
Uncompiled Source Folders
Uncompiled Source Records
Undefined Variables
Unsaved Modules of
Unsaved Source Folders
Unsaved Source Records
Variable Definitions of

Warnings for Downloaded code of

Warnings of

Warning Source Record of

Objects

project

error

project, subproject

module, project, subproject

project, subproject, module, source folder
module, project, subproject, source folder
project, subproject

module, project, subproject

module, project, subproject, source folder
module, project, subproject, source folder

class, constant, function, interface,
macro, method, module, project,
subproject, slot, source folder, top level
form, variable

class, constant, function, interface,
macro, method, module, project,
subproject, slot, source folder, top level
form, variable

warning

Related commands: all the aspects listed in the table of aspects.

See “Showing different aspects of objects” on page 42 and“Changing aspects”

on page 46.

Debug

Stops an application from running without untethering from the development
environment. No state is lost; everything is frozen. The action is the same as if

the code had executed break ().

Key shortcut: Command-,

Break

189

CHAPTER 3

Apple Dylan Reference

Break starts a break loop one level greater than the one in which the current
code was executing. You can resume running the application with Continue or
Abort.

Note

Break levels are recursive. This is because inspecting and
altering values is executing code in the Listener. It is
possible for that code to have error or break statements, so
if the new code stops, you enter another break level, which
you can use to debug the code that inspected or altered
values that you ran in the previous break level.

Call Grapher Browse

190

Works on methods, opening a browser presenting a graphical representation of
a function’s calling relationships. Click on the arrows on the graph to expand
and collapse it.

Related commands: Class Grapher, Grapher Pane.

The following figure shows the Call Grapher browser for the <random-state>
method of the sample project puzzle.

S[I=————— Call Grapher: random-state () => state :: <vector> ;
Grapher

S E; random-state () =» state :: <vector> ;

<F x randorn-state—=7 m random-state«puzzle () =» state .. T—=—Fx +

—Ex -

=Ex <L

=k = <= (objectl, object2) L»

=& 1 = (objestl , abjectZ) L

=k = Randormmac-toolboss mac-toalbex () =

=5 wr element (collection @@ <collection, key, ¥ <3

=& element-setter (value, collection :: <mut...

puzzle |

In the figure, the method <random-state> is the basis of the Call Grapher
browser. Therefore, while you can go up and down the graph from
<random-state>, full information is shown only for <random-state>.
Control-click on another object to make it the basis of the browser so you can
see full information on it.

Call Grapher

CHAPTER 3

Apple Dylan Reference

See the task “Using the browser Info for Selected Class” on page 53 for more
information on using grapher panes.

Call Recording Debug

Records the behavior of specific functions in the runtime. The results of Call
Recording are printed to the Listener. You must be tethered to the development
environment for Call Recording to work.

For more basic information about all the generic functions and classes in a
project, use Meter Expression.

Related command: Meter Expression.

The following figure shows the Call Recording dialog box. This is where the
recorded functions are listed after they are chosen. To select a function to add to
the list, choose Add.

E[I=——— Call HBCDI’UiI‘Ig
Functions Being Recorded
»
] Remove Al
W
Try "Metering...” for another uzeful tool. "

The Start Recording Calls for Function dialog box opens.

Call Recording 191

CHAPTER 3

Apple Dylan Reference

Start Recording Calls for Function

Module - Module: [Duylan -]
Function: |> |EI
Specializer: [None i |
Dptions: @ Print Entry and Exit

D HMeter

D BEreak on Entry
D Fecord Call Tree

Cancel l Record l

You then select the module the function is in, the name of the function, and the
specializer you want to record. The following figure shows some of the
specializers you could choose for the function “initialize” in the puzzle module.

Start Hec_nrding Calls for Funciinn

Module : Module: [puzzle -

Function: |init1’a1ize ||3

Specializer : (# None - Generic Function
(<puzzle-view:)

. (<ewternal-refersnce—table:)
Options : {<files)
(<frammewark-Tibrary >}
(<handle-stream>)
(<file-strearn:)
(<toolbox-events)
(<gd-region>]

[<gqd-text-styles)
[<ae—desc)

[<ae=Tist>)

(<seripting-event>)
(<rmenu-event>l

If you want to record a function and print the results to the Listener, choose
Print Entry and Exit from the Options field. If you want to meter a function,
choose Meter from the Options field.

When you have made your choices, click Record. The results are printed to the
Listener and the recorded function is listed in the Call Recording window.

192 Call Recording

CHAPTER 3

Apple Dylan Reference

E[1==———— Call Recording =
Functions Being Recorded
method initialize [<main-handler?, Fkey) <
Remove
Remove Al
Try "Metering...” for another uzeful tool.
]
[@

The Remove button deletes a selected function from the list. The Remove All
button deletes all the functions from this list.

Class Grapher Browse

Operates on classes, opening a browser that graphically depicts the
superclasses and subclasses for a class. Click on the arrows on the graph to
expand and collapse it.

In the following figure, the class <hello-message-property> is the basis of the
class grapher browser. Therefore, while you can go up and down the graph
from <hello-message-property>, full information, specifically multiple
inheritance and subclass relations, are shown only for the
<hello-message-property>. Control-click on another object to make it the basis
s0 you can see its multiple inheritance and subclass relations.

In this example, two classes are displayed, <hello-message-property> and its
superclass <property>. You can view any superclasses of <property> by
clicking on the arrow to its left.

Class Grapher 193

CHAPTER 3

Apple Dylan Reference

Class Grapher: <hello-message-property>

= ® <hello-messaqge-property>

B T et F W< hello-mess age—property ¥

Continue clicking on the left-most arrow until you reach the base class. If you
click on the arrows on the right end of the bars that separate each class, you can
collapse the graph, hiding the superclasses.

194 Class Grapher

CHAPTER 3

Apple Dylan Reference

[I==— Class Grapher: <hello-message-property>
Graphsr
% <hello-message-properiy>

& <objectr S=—=F & «dezignator: <=7 gz m@ﬂ == = <hello-message—propert 4|

Related commands: Call Grapher, Grapher Pane, Info for Selected Class.

See the task “Using the browser Info for Selected Class” on page 53 for more
information on using grapher panes.

Class Template (Copy Special) Edit

Creates a prototype class template named <foo>, which is a subclass of the
selected class, and copies the template into the Clipboard. To paste the class
template into text, use Paste. You can select either text that names a class or the
source record icon for the class from the active project.

For example, if you select the class <number>, Class Template (Copy Special)
copies the following template into the Clipboard:

define class <foo> (<number>)
end class;

You can then paste it into text.

Class Template (Copy Special) 195

CHAPTER 3

Apple Dylan Reference

You can select several classes at once and then use Class Template (Copy
Special) to create a class that is a subclass of all the selected classes. For
example, if you select the classes <ce11> and <ce11-view> and then choose Class
Template (Copy Special), you copy the following template to the Clipboard:

define class <foo> (<cell>, <cell-view)
end class;

Note that this command appears in the menu only if you select a class. If you
select a generic function or method, Method Template (Copy Special) appears
instead.

Key shortcut: Command-T

Related Commands: Copy Special, Class Template (Insert Special), Method
Template (Copy Special).

See “Editing in Apple Dylan” on page 66.

Class Template (Insert Special) Edit

196

Replaces the selected class with the prototype template of a subclass for the
selected class. Class Template (Insert Special) appears in the menu only if you
select editable text in the active project that names a class.

For example, if you select the class <bar>, Class Template (Insert Special)

replaces it with the following text:

define class <foo> (<bar>)

end class;

If you want to create a subclass based on a class, simply type its name, select it,
and then initiate Class Template (Insert Special).

This command is made available by pressing Option when clicking on Copy
Special on the Edit menu.

Key shortcut: Command-Option-T
Note
Class Template (Insert Special) creates a subclass based on

a single class. Class Template (Copy Special) creates a
subclass based on one or more classes.

Class Template (Insert Special)

CHAPTER 3

Apple Dylan Reference

If you select a generic function or method, Method Template (Insert Special)
appears in the menu instead of Class Template.

Class Template retrieves the prototype template for the selected object from the
compiler results database and inserts it into a source record.

Related Commands: Insert Special, Class Template (Copy Special), Method
Template (Copy Special).

See “Editing in Apple Dylan” on page 66.

Classes of (Aspect) Browse

Clear

Operates on a container in the active project, that is, any object that contains
other Apple Dylan objects, such as projects, subprojects, modules, and source
folders, displaying its classes.

Classes of (Aspect) is commonly used to customize a browser pane displaying
that aspect of a container. You can also select a single container in a pane and
display all its classes inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Edit

Deletes the selected text or object. The deleted text is not copied to the
Clipboard. You can use Undo Clear to reinstate the cleared text. Undo, Clear,
Redo Clear, and Undo Clear replace one another on the File menu, depending
on which is appropriate.

See “Editing in Apple Dylan” on page 66.

Pressing Delete or inserting text when there is a highlighted region present is
the same as doing a Clear.

WARNING

Clear supports Undo and Redo only for text. If you have
cleared an object, folder, or subproject, it cannot be undone
or redone. If you are about to clear a subproject, you are
warned. You cannot clear required subprojects.

Classes of (Aspect) 197

Close

CHAPTER 3

Apple Dylan Reference

File

Collapse

Closes a browser, window or project. Closing the project window closes the
project and all of its subprojects, unless the subprojects are used in another
project that is still open. You are prompted to save changes, if any. Closing the
active project while unrelated projects are still open makes the next project the
active project. You can close all open windows and browsers except the project
browser by holding down the Option key when you choose Close.

If you have a window active and hold down the Option key when you choose
the Close command, all open windows of the same type, such as browsers or
inspector windows, are closed. However, the project browser is not closed with
the Option-Close command.

Key shortcut: Command-W

Edit

198

Collapses the selected object so you cannot see its contents. You can also
collapse an object by clicking on its disclosure triangle, which is the triangle to
the left of the object’s icon. You can collapse several objects at once by selecting
them and choosing Collapse.

Related command: Expand.

The following figure shows the object “behavior-event” selected and Collapse
about to be chosen.

Close

CHAPTER 3

Apple Dylan Reference

[T Tert Projes
e
Undo More

Cut ®H
Copy #C
Paste U
Clear

Solact Al A roject: tent-app linactive)

T Gontents of
» [text-app
P[] Copyright © 1534 by Apple Computer, Ine. All rights reserved.

Copy Special P |
Paste Special b
b [defineframework-library"text-2pp")

Expana b [y <tent-spp-behsvior> Cbehavior>)

bE i " (behavior i pe for>, fors < <Tist>, m;

= B define nethod i (hehauion pp

next-behauiors 11 <listr,
[G nain-handler ©i cnain-handlers,
» B tent-app aven

id =
P [styled-test-behavior ignoredbehavior, next-behaviors, m

iors,

b [text-document opentmaked< text-docunent>)y,
and method;
(hehavior PP

B dfemenuia
B Gedit-menu-ia
B Gfont-menu-id
3 Gont-siee-menu-id

B Sfont-syle-menu-id

” = 5
[test-app (inacti... + [teni-app
- b [Copuriaht © 1994 by Apple Computer, Inc. ATl rights Feserved

b @ dytan-framework Cnact

= b (G define-framewerk-library tesct-app™)
b B oytn-user

b [3, <textapp-behavior> (<behavior>)
b P (behavior dists, m
Y I

= contents of b [i ibehavior , i <list>, main-hane
» [tent-app i
b O $fie-menu-id

P[] stuled-text-behavior o
$edit-menu-id

b [test-document b L
b $ront-menu-ia

bR $fent-size-menu-id

b O $fontstyle-menuid
b [Ry mittet 0= ()

set-Hbrary -init-functiantinit-test);

Color Text

Changes the color of the selected source text. This choice changes only the text
in a source record and has no semantic impact but it does flag the record for
recompilation. You can use color to help organize your sources.

Color 199

CHAPTER 3

Apple Dylan Reference

Compact Project Project

Reduces the disk space used by a project by eliminating unused information
from the source database by compacting the files in the selected open project.

The actions initiated include quitting the Application Nub (for the active
project), closing all project windows, and then compacting the files. You are
prompted to save your project if you have not. When compaction is complete,
the project is automatically reopened.

Compaction is a form of garbage collection for Apple Dylan source databases.
These databases retain everything that has been written to them until
compacted. This old information is of no value because it is not accessible, but
it is still occupying disk space.

See “Apple Dylan User Model” on page 95.

Compile and Download Region Project

Compiles an extended area within a single source record of the active project
and downloads it to the Application Nub. This command replaces Compile
Region on the menu when the Application Nub has been launched.

Key shortcut: Command-E

Compile and Download Region appears on the menu only if you select the text
by highlighting it and if the text exceeds more than a single expression. In a
pane, if you place the cursor in the text, the Compile and Download Selection
command appears on the menu instead. In the Listener, if you place the cursor
in the text, Compile Expression appears instead.

Related commands: Compile and Download Selection, Compile Expression,
Compile Selection, Recompile, Update Project.

Compile and Download Selection Project

200

Compiles the selected source record in a pane in the active project or
highlighted code in the Listener and downloads the result to the Application
Nub. This command replaces Compile Selection on the menu when the
Application Nub has been launched.

Key shortcut: Command-E

Compact Project

CHAPTER 3

Apple Dylan Reference

To select a source record, select its icon rather than its name or text. You can
select more than one source record. Source record objects are methods, classes,
variables, constants, macros, generic functions, comments, and top level forms.

To compile code within a source record, you can highlight the code you want to
compile, in which case Compile and Download Region replaces Compile and
Download Selection on the menu.

Compile and Download Selection can also compile commented out code if you
select the code within the range of the comment.

In general, Command-E compiles whatever is there to be compiled.

Related commands: Compile and Download Region, Compile Expression,
Compile Region, Recompile, Update Project.

Compile Expression Project

Compiles the selected expression and downloads (only when tethered) the
result to the Application Nub from the Listener. Compile Expression appears
only if you select the expression by placing your cursor in it; if you highlight
one or more expressions, Compile Selection appears instead. An expression is
any code that returns a value.

This command works only in the Listener with the insertion point within the
expression and with nothing selected.

Key shortcut: Command-E

Related commands: Compile Region, Compile Selection, Recompile, Update
Project.

See “Apple Dylan User Model” on page 95.

Compile Region Project

Compiles an extended area within a single source record. This command
replaces Compile and Download Region on the menu if the Application Nub
has not been launched.

Key shortcut: Command-E

Compile Region appears on the menu only if you select the text by highlighting
it and if the text exceeds more than a single expression. In a pane, if you place

Compile Expression 201

CHAPTER 3

Apple Dylan Reference

the cursor in the text, the Compile Selection command appears on the menu
instead. In the Listener, if you place the cursor in the text, Compile Expression
appears instead.

Related commands: Compile and Download Region, Compile Expression,
Compile Selection, Recompile, Update Project.

Compile Selection Project

Compiles the selected source record in a pane or highlighted code in the
Listener. This command replaces Compile and Download Selection on the
menu if the Application Nub has not been launched.

Key shortcut: Command-E

To select a source record, select its icon rather than its name or text. You can
select more than one source record. Source record objects are methods, classes,
variables, constants, macros, generic functions, comments, and top level forms.

To compile code within a source record, you can highlight the code you want to
compile, in which case Compile Region replaces Compile Selection on the
menu.

Compile Selection can also compile commented out code if you select the code
within the range of the comment.

You can use Compile Selection from the Apple Dylan Listener window by
highlighting the code you want to compile.

In general, Command-E compiles whatever is there to be compiled.

Related commands: Compile and Download Selection, Compile Expression,
Compile Region, Recompile, Update Project.

Contents of (Aspect) Browse

202

Operates on a container in the active project, that is, any object that contains
other Apple Dylan objects, such as projects, subprojects, modules, and source
folders, displaying its contents.

Contents of is the default aspect of most panes in the browsers supplied as part
of the Apple Dylan development environment.

Compile Selection

CHAPTER 3

Apple Dylan Reference

Continue Debug
Resumes running an application that has been stopped with a Break.

Key shortcut: Command-/
Related command: Break.

Copy Edit
Copies the selected text (or text of the selected object) to the Clipboard. You can
then use Paste to insert the contents of the Clipboard into a source record or the
Listener.

Key shortcut: Command-C
Related commands: Cut, Paste, Copy Special.
See “Editing in Apple Dylan” on page 66.
Copy Special Edit

Displays a menu containing two of three possible commands: Argument List
and either Class Template or Method Template.

The Copy Special commands are enabled only if a project is active and you
select a valid object. The object can be text that names an object (for example, a
method name) or a source record icon. The commands copy the prototype
argument list or template to the Clipboard. You then use Paste (from the Edit
menu) to paste the contents of the Clipboard into a source record or the
Listener.

The Copy Special commands retrieve the prototype argument list or template
for the selected object from the compiler results database and write it to the
Clipboard.

Key shortcuts: Command-” for just the argument list or Command-T for the
templates.

The closely related Insert Special commands are available by pressing Option
while clicking on the Copy Special menu. Where the Copy Special commands
write to the Clipboard, the Insert Special commands write into the current
buffer, including the Listener.

Continue 203

CHAPTER 3

Apple Dylan Reference

See: Argument List (Copy Special), Class Template (Copy Special), and Method
Template (Copy Special).

Related commands: Insert Special.
See “Editing in Apple Dylan” on page 66.
Note

The Copy Special and Insert Special commands are useful
for getting information as well as for writing code.

Copy Title Text Edit

Copies the title text of selected objects other than source records, such as
modules and subprojects. When you select valid title text, Copy Title Text
appears; otherwise, Copy appears.

Related commands: Copy, Paste.
See “Editing in Apple Dylan” on page 66.

Create Application Project

204

Builds a stand-alone application from your active project. Give your
application the name you want to appear in the Finder and choose its location.

You must have issued Set Project Type and quit the Application Nub (See Quit
Application Nub) before issuing Create Application. It is also suggested that
you issue Recompile before issuing Create Application.

When you choose Save on the Create Application dialog box, the application is
updated first and then built. If “Use separately loaded libraries” was checked
in the Set Project Type dialog, a copy of the link library is placed in the system
folder.

If you save an application to the desktop or an open folder, it appears as a
document rather than an application. To make it appear as an application, you
can either move it to a closed folder or close the folder it’s in and then reopen it.

If you are building a library instead on an application, Create Library appears
on the Project menu instead of Create Application. You designate which you
are building using Set Project Type on the Project menu.

CHAPTER 3

Apple Dylan Reference

Related commands: Update Project, Create Library, Set Project Type.

Create Library Project

Cut

Builds a library from your active project. You must Set Project Type and
untether from the development environment (See Quit Application Nub)
before issuing Create Library. You should give your library the same name you
entered in its Library ID field when you used Set Project Type.

If you are building an application instead of a library, Create Application
appears on the Project menu instead of Create Library. You designate which
you are building using Set Project Type on the Project menu.

Create Library creates both a _Library Model document, used by the
development environment, and a .dl document, used by the application itself.

When you choose Save, the library is updated first and then built.

|ﬁ core-framework v |
0 parg-frameworkow [©MacDylan -
[0 _Compiler Results Data... — ul
O _Source Database Its
Desktop

& |

6 ir

Save Library As: 5
|cure—frameumrk.dl | Cancel ["

T T = ey e Y

Related commands: Update Project, Create Application.

Edit

Deletes the selected text and saves it to the Clipboard.
Key shortcut: Command-X

Related commands: Copy, Paste.

See “Editing in Apple Dylan” on page 66.

Create Library 205

CHAPTER 3

Apple Dylan Reference

Direct Methods of Browse

Operates on a selected class. Displays a browser with the direct methods for
the class.

Related commands: Direct Methods of (Aspect), All Methods of (Aspect).

Direct Methods of (Aspect) Browse

Operates on a selected class in the active project, displaying its direct methods
only.

Direct Methods of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its direct methods inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The Direct Methods of command opens a single-pane browser displaying
direct methods.

Related commands: All Methods of (Aspect).

Direct Slots of Browse

Operates on a selected class. Displays a browser with the direct slots for the
class.

Related commands: Direct Slots of (Aspect), All Slots of (Aspect).

Direct Slots of (Aspect) Browse

206

Operates on a selected class in the active project, displaying its direct slots only.

Direct Slots of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its direct slots inline. See Aspect and “Customizing browsers” on

page 58 for more information.

The Direct Slots of command opens a single-pane browser displaying direct
methods.

Related command: All Slots of (Aspect).

Direct Methods of

CHAPTER 3

Apple Dylan Reference

Direct Subclass of (Aspect) Browse

Operates on a class in the active project, displaying its direct subclasses only.

Direct Subclasses of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its direct subclasses inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Class Grapher, All Subclasses of (Aspect), All Superclasses
of (Aspect), Direct Superclasses of (Aspect).

Direct Superclasses of (Aspect) Browse

Operates on a class in the active project, displaying its direct superclasses only.

Direct Superclasses of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its direct superclasses inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Class Grapher, All Superclasses of (Aspect), All Subclasses
of (Aspect), Direct Subclass of (Aspect).

Duplicate Definitions Browse

Operates on a container in the active project, that is, any object that contains
other Apple Dylan objects, such as projects, subprojects, modules, and source
folders.

This command opens a browser that lists the duplicate definitions in the
container.

For most objects, having the same name is sufficient to define duplicates, but in
the case of methods, duplicate definitions have not only the same methods, but
the same type signatures.

Related command: Duplicate Definitions of (Aspect).

Direct Subclass of (Aspect) 207

CHAPTER 3

Apple Dylan Reference

Duplicate Definitions of (Aspect) Browse

Operates on a container in the active project, that is, any object that contains
other Apple Dylan objects, such as projects, subprojects, modules, and source
folders, displaying its duplicate definitions.

For most objects, having the same name is sufficient to define duplicates, but in
the case of methods, duplicate definitions have not only the same methods, but
the same type signatures.

The Duplicate Definitions command opens a single-pane browser displaying
duplicate definitions.

Duplicate Definitions of (Aspect) is commonly used to customize a browser
pane displaying that aspect of a class. You can also select a single class in a
pane and display its duplicate definitions inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Exclude Source Records Project

208

Marks a selected source record as excluded so it won’t be compiled or included
in an update. Excluded source records are not downloaded when the project is
loaded into the Application Nub. Excluded code is not included in your
application or library when you build it.

Related command: Include Source Records.

Examples of source records that might be marked as excluded: test code,
unfinished code, unused alternate code, or example code, that is, anything not
ready or suitable for compilation and use.
Excluding a source record is equivalent to commenting it out, except that:

o Its icon and name show the kind of source record it is

o It can be browsed

o It can be switched from Excluded to Included without editing.

Excluded source records can be compiled by selecting them and pressing
Command-E.

Duplicate Definitions of (Aspect)

CHAPTER 3

Apple Dylan Reference

Expand Edit

Expands the selected object so you can see its contents. To expand an object you
click on its icon and then choose Expand. The object’s contents then appear
below its name. You can also expand an object by clicking on its disclosure
triangle, which is the triangle to the left of the object’s icon. You can expand
several objects by selecting their icons and then choosing the Expand command.

Related command: Collapse.
The following figure shows the object “behavior-event” about to be expanded.
[Aili N Text Project

Undo e
Undo More

Cut
Copy #C
Paste E L
Clear

Select All #A

Project: text-app (inactive)
[T Gontents of
» [text-app

B[] Copyright @ 1994 by Apple Cornputer, Inc. &11 rights reserved.

. [3 define-framework-library("text-app™)
Copy Special » blo 4 e

Paste Special b b [<text-app-behawiors (<behawiorss

53 I?Q behavior-setup-mmenus Chehavior ©: text-app-behavior s, next-behaviors :: <list:, m
4
B I?Q behavior-event (behavior @@ <text-app-behavior> , next-behaviors :: <list> , main-han
3 [ﬁ $file-menu-id

[[ﬁ Fedit-rnenu-id

23 I:;'_{ Ffont-menu-id

B [E $font-size-menu-id

Expand
Collapse

1+ alE

Preferences...
P[] stuled-text-behavior

o] & (7| @ [SE

P [T text-document
b R

[> [ﬁ $fant-sty le-rnenu—id
b [mittent =200
B [a set-library -init-func tionlinit-text);

The following figure shows it expanded.

Expand 209

CHAPTER 3

Apple Dylan Reference

roject: text-app (inactive

Contents of O] | @ sentents of

B tent-app (inacti... » [texst-app
T

3 a dylan-framework (inact

3 I:I [y lan-uzer

D I:l Copyright © 1994 by Apple Computer, Ine. A1l rights reserved.

I I_—a define—fi-arnework-Tibrary { "text-app")

3 |_—:o° <temt-app-behavior : [<behavior:)

3 rf; behavior-setup-menus (behavior :: <text-app-behawior?, next-behaviors :: <list, m

o h define method behavior—event (behavior :: <text-app-behawior:
rnext-behaviors 0 <list:,
main—handler :: <main-handler:,
event 1 <meru—event:,

id == #"new"» = (2
ignorecbehauior, next-behoviors, main-handler, ewvent, id>;

[§ Contents of

» [E tent-app
I D styled-text-behawvior

0] (7| & [EEm]

[D text=document openimake! < text-documents 33;
end method;
I] .

D r;; behavior-ewvent (behavior @@ <text-app-behavior s, next-behaviors :: <lists, main-ha
b [$ie-menu-id

[l:ﬁ Fedit-rmenu-id

[l:ﬁ $font-menu-id

P EE $font-size-menu-id

33 EE Ffont-style-menu-id

Expand Macro Debug

210

Prints the full macro expansion, displaying exactly the text sent to the compiler
by the parser. This command is used in debugging macros.

Operates on statement macros and definition macros. Does not work on
function macros. This command does not work on the icon; you must select the
full text of the macro in a browser or in the Listener. Expands the selected
macro to the Listener. You can also select the macro text in the Listener.

Key shortcut: Command-M

You can limit the expansion to one level of macro expansion by pressing the
option key before clicking on Expand Macro.

Key shortcut: Command-option-M

Related command: Pattern Match Macro.

Expand Macro

CHAPTER 3

Apple Dylan Reference

Export File
Exports the selected source folder from the development environment, along
with everything in the source folder. You cannot export an individual source
record. Export creates a Dylan text file with the suffix “.dylan”.

Not every object can be exported and imported without changes.

o A single source record with more than one top-level form or comment is
broken into an individual source record for each top level form or
comment when exported.

o In addition, if any code within a source folder has the incorrect number of
begins or ends, or is any other way seriously malformed, the source
folder can be exported, but the resulting Dylan text file cannot be
imported.

The exported object is stored in a Dylan text file, which has the suffix “.dylan”.
The Dylan text file has a header. Dylan text files can be edited outside of Apple
Dylan in other word processors or editors and mailed electronically.

Related command: Import.

Importing or exporting has no effect on objects marked for exclusion or
inclusion. Markings remain as they were.

Find/Replace Text

Finds and optionally replaces the text you specify in the Find&Replace dialog
box. This command searches through source code only, not the names of
containers, modules, etc. Find /Replace opens the object containing the
specified text. You can choose whether to search the current pane or the entire
project. If you choose to search the entire project, opens a new browser. You
may choose simply to find the text, find and replace one instance of the text, or
find and replace all instances.

Key shortcut: Command-F
See “Editing in Apple Dylan” on page 66.

Export 211

CHAPTER 3

Apple Dylan Reference

Find Again Text

Searches for whatever you last searched for using Find /Replace. Use Replace &
Find to change the target text and search for the next instance.

Key shortcut: Command-G
See “Editing in Apple Dylan” on page 66.

Find Selection Text

Font

Searches for a selected string. Find Selection finds only and has no effect on the
settings of Find /Replace, Find Again, or Replace & Find, nor does Find
Selection support replacement.

Key shortcut: Command-H
See “Editing in Apple Dylan” on page 66.

Text

Changes the font of the selected source text. This choice changes only the text
in a source record and has no semantic impact, but it does flag the source
record for recompilation. You can use fonts to help organize your sources.

See “Formatting commands” on page 70.

You can change the default font for the Listener and browsers, as well as the
font for editing code, using Preferences.

Function Family Browse

212

Operates on a selected method or generic function.

Opens a browser that lists the family of methods and the generic function the
selected method belongs to. You can have more than one Functions browser
open at once. If no object is selected, the functions for the entire project are
listed.

Related command: Function Family (Aspect).

Find Again

CHAPTER 3

Apple Dylan Reference

Function Family (Aspect) Browse

Operates on a selected method or generic function in the active project,
displaying all method definitions as well as the general function definition (if
one exists) for the method or function.

Here is how it works in each case:

o If a method has been selected, finds generic function it is associated with
along with all other methods of that generic function

o If a generic function has been selected, finds all methods associated with
that generic function.

Function Family (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its function family inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The Function Family command opens a single-pane browser displaying direct
methods.

Functions of (Aspect) Browse

Operates on a module in the active project, displaying all its functions. If no
object is selected, the functions for the entire project are listed.

Functions of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display its functions inline.

See Aspect and “Customizing browsers” on page 58 for more information.

Related commands: Function Family, Function Family (Aspect).

Grapher Pane Browse

Changes the active pane to a graph showing the relationship of the objects in
pane. If the basis of the pane is a class, the class’s superclasses and subclasses
are graphed. If the basis of the pane is a function, the function’s callers and
callees are graphed. Click on this command on the Browse menu to deselect it
and return the pane to its original type.

Function Family (Aspect) 213

CHAPTER 3

Apple Dylan Reference

Full information, such as multiple inheritance, is shown only for the object that
is the basis of the pane. Click on the arrows on the graph to expand and
collapse it.

Only a single relationship is shown for other objects in the pane. Control-click
on another object to make it the basis so you can see full information on it.

Related commands: References To, References From, Call Grapher, Class
Grapher, Info for Selected Class.

See the task “Using the browser Info for Selected Class” on page 53 for more
information on using grapher panes.

Hide Interface Builder Apple

Import

Hides the Apple Dylan interface builder to return you to the development
environment. It's a good idea to save your builder project before hiding it. Note
that this command does not quit the interface builder, it just hides it.

For more information on the interface builder, see the book Creating a User
Interface in Apple Dylan.

Related commands: Show Interface Builder, Load Ul Builder.

File

Imports Dylan text files. Dylan text files are created using a word processor or
editor or by exporting a source folder from Apple Dylan and have the suffix
“.dylan”.

If any exported code within a source folder has the incorrect number of begins
or ends, or has partial source records, the source folder cannot be imported.

Related commands: Export, New Text Window.
See “Importing and exporting Dylan text files” on page 70.

Importing or exporting has no effect on objects marked for exclusion or
inclusion. Markings remain as they were.

Include Source Records Project

214

Changes excluded source records into included source records. Includes a
specified source record with each compilation and update. Included code is

Hide Interface Builder

CHAPTER 3

Apple Dylan Reference

automatically recompiled and updated when those commands are issued.
Source records are automatically marked as included when they are created.

Related command: Exclude Source Records.

Info for Selected Class Browse

Operates on a class, opening a three-pane browser that shows the selected
class’s hierarchy in the grapher pane, its directs slots in the lower left pane, and
its direct methods in the lower right pane. Click on the arrows on the graph to
expand and collapse it.

Full information, such as multiple inheritance, is available only for the basis of
the browser. Only a single relationship is shown for other classes in the pane.
Control-click on another class to make it the basis so you can see full
information on it.

The following figure shows the Info for Selected Class browser with
<puzzle-view> as it basis. The class <puzzle-view> has been selected, so its
direct slots and direct methods are listed in the two lower panes.

Info for Selected Class: <puzzle-view> (<view>)

[@ erapher
» [3 <puzzle-view> (sview>)

B0 P

< & sviewradylan-framework«dylan-frame... s=—=7F z <puzzle-riewr«puzzle

oa <puzzle-view><puzzle (<... * aa <puzzie-view>zpuzzle (<view><dy...

[§ Direct Slots of C]| @ pirect Methods of =]
L

[» = puzzle-pictepuzzle

L

[t

[+ = puzzle-pict-setterspuzzle B
[+ = puzzle-statespuzzle g [P = drawspuzzle (view o <puzz]e—view><<puzzle,draw
[[@ draw-puzzle-tilecpuzzle (view <puzz]e-\riew>«p

[+ = puzzle-state-setter«puzzle

puzzle |

Related commands: Grapher Pane, Call Grapher, Class Grapher.

See the task “Using the browser Info for Selected Class” on page 53 for more
information.

Info for Selected Class 215

CHAPTER 3

Apple Dylan Reference

Insert Special Edit

Displays a menu containing two of three possible Insert Special commands:
Insert Argument List and either Class Template or Method Template. The Insert
Special commands work only on selected text, not on selected objects.

The Insert Special commands are available by pressing Option when clicking
on Copy Special on the Edit menu.

Key shortcuts: Command-Option-’ for just the argument list or
Command-Option-T for the templates.

The Insert Special commands are enabled only if a project is active and you
have selected text that names a method, generic function, or class. The type of
selected text controls which Insert Special commands are available.

The Insert Special commands retrieve the prototype argument list or template
for the selected object from the compiler results database and insert it into a
source record or other buffer.

The closely related Copy Special commands write to the Clipboard, where the
Insert Special commands write into the current buffer, including the Listener.

See Argument List (Insert Special), Class Template (Insert Special) and Method
Template (Insert Special).

Related commands: Copy Special.
Note

The Insert Special and Copy Special commands are useful
for getting information as well as for writing code.

Inspect Heaps Debug

216

Opens an inspector window for inspecting the heaps when you want to
monitor how your application is using memory. The heaps shown in this
window are a snapshot of all the heaps in the runtime. These heaps are either
downloaded with a project or created by it.

There are several types of heaps in Apple Dylan, each for a different type of
object. The heaps are calculated for you. When you select a heap in the top
pane, the contents are displayed in the bottom pane. The top pane is a snapshot
of the heaps taken when Inspect Heaps was issued. The bottom pane is a

Insert Special

CHAPTER 3

Apple Dylan Reference

snapshot of the heap at the time you select the heap from the top pane. You can
issue Inspect Heaps repeatedly to take snapshots at different times.

Note

Macintosh heaps are not shown in this window. Macintosh
heaps, such as for windows and menus, are created by the
toolbox and are not monitored by the development
environment.

The following figure shows the heap inspection window with “method”
selected in the top pane.

EO=—— Heaps ——P1-
Marme Size
Max free SE0K| ats
dy lan—frarnework 415K_
Dylan 415, I
free ok]
Mac uged 11
wvector ??K-
mac-toolbox EDK-
pair |
strin 2okl
I
wiapper |
hello-Tibrary 2|
Class Instances Total Size =
<gimple-rmethod »o Dy lans Dy lan 55 9,252 <
<slot-accessor-method»c Dy la.. 22 264
<code—wector xe Dy lans Dy lan 13 2,86 iy
5]

The gray bars indicate that memory has been allocated but is unused, while the
black bars indicate the memory used. The Mac free and free heaps are always
completely empty and the Mac used heap is always completely full. Memory
moves from the Mac free heap into the Mac used heap, neither of which
contains any Apple Dylan objects nor is under Apple Dylan control. The free
heap is for use by Apple Dylan objects, but has not been allocated yet.

In the example above, two different libraries in the project show up separately.
Library heaps cannot be grown or garbage collected. Libraries are displayed as

Inspect Heaps 217

CHAPTER 3

Apple Dylan Reference

subprojects in the project window. Every project has at least one library heap
for the Dylan subproject.

The other heaps contain Apple Dylan objects that have been dynamically
allocated by the application and can be garbage collected. Most instances of
user-defined classes go into the vector heap.

Use this window to find an object you couldn’t find programmatically. If you
double-click on a heap, a window opens listing of all the classes in that heap. If
you then double-click on a class, an inspector window on that class opens. You
can also double-click on a class in the bottom part of the Heaps window to
open an inspector window on a class. See the description of Inspect Stack for
more information on inspector windows.

You can sort each part of the Heaps window by clicking on a column’s name.
For instance, in the figure above, the bottom part is sorted by Instances, which
is indicated by the underlining. The number of instances is always one greater
than the actual number because the prototype instance for the class is included
in this count. The Total Size column is in bytes.

Inspect Listener Result Debug

Opens an inspector window on the first return value from the last form
compiled and downloaded to the Application Nub, whether from the Listener
or from Compile Selection. The command is available only when tethered.

Key shortcut: Command-I

See the description of Inspect Stack for more information on inspector
windows.

See “Inspecting Listener results” on page 151 for an example using this
command.

Inspect Module Variables Debug

218

Lists all the modules in the Application Nub. Before looking for a module on
this list, you should use the Update Project command. This ensures that all the
modules have been downloaded to the Application Nub. You choose a module
from the list to open an inspector window for it.

Inspect Listener Result

CHAPTER 3

Apple Dylan Reference

The following figure shows an example of the modules in a project’s
Application Nub.

wrse EELTTE indows

Inspect $tack #B
Inspect Selection

Inspect Listener Result %1
Inspect Module Variables P
Inspect Heaps

Meter Expression...
Call Recording...

Expand Macro
Pattern Match Macro

Break
Continue
Restarts...
Abort

Reset Stack

AEODb jectSupportlibrary-external-module«Dylan
Apple-Dylan«Dylan
Apple-Dylan-extensions«Dylan
ASLM-external-module«Dylan
Creole«Dylan
Creole-Kludge-Module«Dylan
Dylan<Dylan

dylan-framework <dylan-framework
Dylan-User«dylan-framework
Dylan-User«<mac-toolbox
Dylan-User«Dylan

Dylan-User

hello-module

Junk«Dylan

Kernel«Dylan
mac-toolboxd«<mac-toolbox
Memory-manager«Dylan
Preemption-support<Dylan
Prefis-support<Dylan

The module inspector window displays the names and values of the variables
that are defined in a module, as well as their read / write status. A menu item in
the Commands popup menu toggles between “Show All Variables” and “Show
Exported Variables.”

Note

The module inspector window shows only variables that
are actually created in that module. It does not show
variables imported from other modules even if they are
re-exported from the module being inspected. This is why,
for instance, the inspector doesn’t show any variables in
the “Dylan” module.

Inspect Module Variables 219

CHAPTER 3

Apple Dylan Reference

[Resample| [Edit |3 Inspect

Id: "Memory-manager"

Version:

External UVariables: 22

Kind Hame

#by tes-per—chunk®

#by tes-per—chunk-expans i ont
#bytes-per-L0S—c|uster+
*bytes-per-L0S-c |luster—expans i onk
| obber-o | dspace®

*apab le—automat ic—termination®

#anab | e—compact ing-garbage-co | lection®

#anob |e—garbage—col lect ion®

#go—back trace®

*#memory—shor taget

#memory—shor tage— lawe | #

#minimum-free—bytes®

#report-garbage—cal lect ionst

<memory-exhaus ted> clazs <memory-exhausteds >

<memory—-shor tager clazs <memory-shortoger

capture—back trace code vector copture-backtrace at: #::1142002>

col lect—garbage method col lect—garbage (®*key generation:, report:, compact:) at: #*=1124B32>
drain—termination-quaues method drain-termination—gueus ©) at: #112072R:

make-back trace-buf fer method moke-backtrace-buffer (<small-integer:) at: #=11427B2:
object-generation—rnumber method object-generation—rumber C<object>l at: #=211Z1B4A%
terminate gereric-function terminate ¢<object: i
terminate—when-unreachab e method terminate—when-unreachable C<object>) at: #®x1120642>

L
L
L
L
L
L
L
L
M
H
L
L
L
R
R
R
R
R
R
R
R
3}

In addition, the inspector window displays the kind of variable it is. Typically,
variables created by “define-class” and some variables with type declarations
are “obj” kind variables, which are slightly smaller than the other kinds.
Kinds of variables:

o blank—a variable that can hold an object or code.

o “obj”’—a variable that can hold only objects.

o “jump”—a variable that can hold only code.

o “byte”—a variable that can hold only unboxed bytes.

o “shor”—a variable that can hold only unboxed shorts.

o “long”—a variable that can hold only unboxed longs.

o “doub”—a variable that can hold only unboxed doubles.

o “code”—a variable that can hold only unboxed code.

Double-clicking on a variable in the inspector window opens another inspector
window on the value of the variable.

See the description of Inspect Stack for more information on inspector
windows.

220 Inspect Module Variables

CHAPTER 3

Apple Dylan Reference

Inspect Selection Debug

Opens an inspector window for the selected runtime object.

See the description of Inspect Stack for more information on inspector
windows.

Inspect Stack Project

Opens the Stack window, which allows you to inspect the current state of the
stack after an error or break is signalled. There is roughly one stack frame per
unreturned function call listed in the Stack window.

Key shortcut: Command-B

The Stack window is divided into three sections. The top pane lists the frames
on the stack. The central section contains information about the error and the
pull-down commands for the Stack window. As you select each frame in turn

in the top pane, the object’s active parameters and local variables appear in the
bottom pane.

The following figure shows a typical Stack window with the first line in the top
pane selected. Its contents appear in the bottom pane.

S[e=——————— Stack HIE
error Cdcondition:, #restl 4
anohymous #1 inside error O *]
errar Cistring:, #rest)
S tezmal l-integer:, <small-integer:
pascal—funcal | C&) E
|
Divide by zera: 3/ 0
5 Frames Commands w
Function: #{the method error (<condition:, #rest) at: #*?570BA: 4
Offset: 102 1
Args and Locals:
condition: #<<simple-errorr id: O
]
o

The following figure shows the commands for the top pane of the Stack
window. The commands for the Stack window are Show Home, Inspect
Method, Copy Stack as Text, Compute More Frames, Compute All Frames, and
Hide/Show Internal Frames. These commands apply only to the top pane. The

Inspect Selection 221

222

CHAPTER 3

Apple Dylan Reference

bottom pane displays the active parameters and local variables for the frame
selected in the top pane, as well as other information.

S(IE=—————————— Stack
errar (fcondition:, #restl

anongmous #1 inside error O3

errar (istring», #rest)

f tizmal l-integerr, <small-integer:)
poscal—funcal | (43

[H
| I |

[&

Divide by zero: 3 /0
S Frames

Show Home
Inspect Method
Offset: 102 Copy Stack as Text

Function: #{the method error (<condition:, #restl at:

Args and Locals:
condition: #:<simple—error: id: O

Compute More Frames
Compute All Frames
Show Internal Frames

You can double-click on a frame in the top pane to open a window for editing
the object’s source code. You can press the option key and then double-click to
open an inspector window on a frame’s function. You can double-click on a line
in the bottom pane to open an inspector window for the selected parameter.

Stack window commands

The Stack window has seven commands: Show Home, Inspect Method, Copy
Stack as Text, Compute More Frames, Compute All Frames, and Hide/Show
Internal Frames.

Show Home

Expands and highlights the home of the selected object. This is the same as the
Show Home on the Browse menu. See Show Home for more information.

Key shortcut: Command-Y, or double-click the stack frame.

Inspect Method

Inspects a method in the top frame.

Inspect Stack

CHAPTER 3

Apple Dylan Reference

Copy Stack as Text

Copies the stack as text into the Clipboard so you can print out a copy of the
top frame. Shows only the names of stack frames, not local variables.

Compute More Frames

Recomputes the selected frames.

Compute all Frames

Recomputes all the frames.

Hide/Show Internal Frames

The internal frames are listed in the top pane. The internal frames are generally
uninteresting to most programmers and should be set to Hide Internal Frames.

Al [

=—————————— Dylan §tack EEEE
#20 |ocative to DylaneDylaneinvisible-dylan-break—with-return at: #<379R56> f
#ithe method Oylan®Dylon®invoke-debugger-break (<object:, <object:)> at: #:10
#20 |ocative to DylaneDylaneinvisible-expecting-stack—walues at: #:3TIE46>
#¢the code wvector inside loop inside invoke-debugger [#53] at: #010412A%

#20 |ocative to DylaneDylaneinvisible-expecting-stack—walues at: #:3TIE46>
#o by = 1L tow Fpnunimd—reodt it grennl ot #-1RFENE

=1 Frames

Commands w
Divide by zero ¢/ 3 02

Function: #:a locative to Dylon®Oylan®invisible-dylan-break-with-return at: #:=4%
Offset: 2 I
Args and Locals:

&<

Inspector window commands

All inspector windows display the selected object and its class. The commands
on inspector windows are Resample, Edit, and a list of commands specific to
the object being inspected. The complete list of these commands include Show /
Hide Slots, Who Uses Object, Show /Hide Disassembly, Edit Definition, Graph
Class, Inspect General Instances, Inspect Direct Instances, and Show /Hide
Elements.

Inspect Stack 223

224

CHAPTER 3

Apple Dylan Reference

You can open an inspector window by double-clicking on an object in an
inspector window. If you have several inspector windows open at once, you
can hold down the Option key while closing one inspector window and all of
them will close.

Resample

Resamples the object in case it has changed. The development environment
caches data when it opens an inspector. If the object changes, the development
environment still shows the cached data rather than the data on the runtime.
Resample forces the development environment to retrieve the new data from
the runtime.

Edit

Opens a window where you can edit the text of the object selected in an
inspector window.

Show/Hide Slots

Hides and displays the slots of the object shown in the top line of the inspector.
In the following figure the slots are on display and the command to hide them
is about to be chosen.

= #<the class Dylan*Dylan*<simple-method>> EE

Hide Slots (R ple] [Edit | Inspect |
+| Who Uses Object i &

Fthod—class: >
Edit Definition time))

bd>> #<the class <function:> #¥<the class <object:>)
Graph Class

Inspect General Instances
Inspect Direct Instances
Slots: 12
type—instance?-subr: #<q |ocative to #<the method DylareOylonefzimple-method-instan
class—-bhits: 782

class—name: #f

class—direct—superclasses: #(#:{the class <method:: 3

class—direct-slots: #(#{the slot-descriptor 432

class—direct-initializations: #*()

class—cpl: #(#*:<the class DylaneDylan®<simple—method: >, #<the class <method::, T #<th
class—subclass—of-mask: 2102 =]

#HHIO

Inspect Stack

CHAPTER 3

Apple Dylan Reference

Who Uses Object

Opens a windows that lists all the objects that contain a direct reference to the
object. The reference can be a slot that refers to the object or a collection that
contains the object.

The following window is a typical result of Who Uses Object. In this example,
the method error (<condition>...) was selected in the inspector window and
the Who Uses Object was issued.

= 10 users of #<the method error (<co =}
Walue

1 #(*¥the method error (<condition>, ¥rest) at: ®¥x1B2172:) |45
B(#:the method error (cconditions, ¥rest) at: ¥x1B2172%)
B(#:the method error (cconditions, ¥rest) at: ¥x1B2172%)
B(#:the method error (cconditions, ¥rest) at: ¥x1B2172%)
#(#:the method error (<condition>, Frest] at: Fx1B2172:)

<Dy lan#Dylan® <dispatch-table: id: 16>

#[#:3 method closed over insert inside insert-rmethod-orderec
* <Dy lan®Dylan® <dispatch-tables id: 145

#[* 3 methad closed over inzert inside insert-rmethod-ordered
B(#:the method error (cconditions, ¥rest) at: ¥x1B2172%)

B[]

Show/Hide Disassembly

Hides or displays the machine instructions compiled for the inspected function.

The following figure shows disassembly code.

Inspect Stack 225

226

CHAPTER 3

Apple Dylan Reference

#<the method error (<condition>», ¥rest) at: ...

[Resample | |]

Who Uses Object

Brest) at: #x1B2172>
= imp | =—method: >
Edit Definition untime

- N astl
Default Hide Disassembly | 5itionsso

Hide Disassembly
e | O 0 HAS-EXTERNAL-REFEREMCE-MARP O HAS-UALUES-DA
4: JSR Dylanely|anesp—ehtry-n-reg-h—spec—rest

8: ORI.B (POINTER 7= 289102 LOCSE+

12: MOUEQ CLIST 7= 42> IMHMA

14: JSR Oylanely | anesp—cons—rast—war

18: SPUSH C5-D3

20: MOUE.L ARGY CS5-D2

22: CHMPI.L {LIST 7= 1928148 = #{ 1)) ARGZ

28: BME (LABEL 2363

32: Error disgssembling: Ho applicable method for RM::RUNMT IME-WRAPPER-OBJECT

40: ORI|.B (SHMALL-IMTEGER 4592) oSP D2Z.L Si

46: MOUE.L DOyloneDylane#|ast—error—2#% LOCF

52: JSR DulaneDy|anesp—set—cal lable

58: MOVE.L DyloneDylane*|ast-error# LOCF

64: JSR OylaneDy|anesp—uariab | e—to—argl

T0: MOUE.L ARGE ARGZ

¥2: Error disassembling: Mo applicable method for BM::RUMT IME-LRAPPER-OBJECT:

1 80: ORI|.B (POINTER 7= 36914} (5P D2.L 3

SNIDIIO

The following figure shows the disassembly code hidden.

#<the method error (<conditions, #rest) at:

(Tosomoe) |

#:the method error C<condition:, #restd at: #1B2172>
Class: #<the class Oylan®Dylan®<simple-method: >
Runtime: Application Mub/Local Runtime

Argument list: (<condition:, #restl

Special izers: #(#{the class <condition::2
Code+Trailer Size: 245

&<

Inspect Stack

CHAPTER 3

Apple Dylan Reference

Edit Definition

Opens a browser displaying the source code of the function or the class,
whichever is selected.

Graph Class

Opens a browser displaying a graphical representation of the selected class.

Inspect General Instances

Opens the inspector window Inspect Object of Class, which lists all the objects
whose type is that of the selected class or a subclass of it.

Inspect Direct Instances

Opens the inspector window Inspect Object of Class, which lists all the objects
whose type is that of the selected class.

Show/Hide Elements

Hides or displays the elements of a collection.

Launch Application Nub Project

Launches the Application Nub, loads the active project into it, and tethers the
Application Nub to the development environment. When you are tethered to
the development environment, the Apple Dylan Listener is usable and your
project can be run and debugged. The type of target chosen using the Target
Architecture command is the type of Application Nub launched with this
command.

Key shortcut: Command-K
Related commands: Tether to Application, Quit Application Nub, Run.

When you tether to the development environment, you can see that the
Application Nub is running by leaving Apple Dylan and checking the list of
running applications in the Finder. If you switch to the Application Nub from

Launch Application Nub 227

Listener

CHAPTER 3

Apple Dylan Reference

that list, you see that no windows or menus appear. You can return to the
development environment by clicking in one of its windows.

The notation “(Unconnected)” disappears from the Listener when the
Application Nub is tethered to the development environment.

See the Environment sheet under Preferences for whether to launch to the
Application Nub automatically when a project is opened. Using Preferences,
you can also choose to automatically issue Update Project before launching the
Application Nub.

You can replace an Application Nub with another by removing the file
Application Nub from your project’s folders and replacing it with another
Application Nub. The development environment searches first in the project
folder and then in the folder Application Nub. You can also use an alias to
another Application Nub as the replacement.

See Apple Dylan Listener.

List of Browsers Browse

228

Provides a drag and drop interface to the browsers available in the
development environment. From this list, you can:

= Drag and drop a browser onto a pane splitter and have that browser
embedded into any other browser.

= Drag and drop a browser into the inbox of a pane to replace the pane with
that browser.

= Open a browser by double-clicking on it. This is the same as selecting the
browser on the Browse menu.

= Drop an object onto a browser name to open that browser with that object as
the basis. This is the same as selecting an object and then selecting a browser.

Listener

CHAPTER 3

Apple Dylan Reference

Saved Browsers of
Apple Dylan
[T call Grapher

] Class Grapher

[wirect Methods

[Direct Slats

[T Duplicate Definitions
[T Find in Project

3 Function Family

[Infa for Selected Class
[List of Browsers

[Mew Browser

[Project

Dj References From

[References To

[Undefined Yarisbles
7] Unsaved Source Records

[T variable Search

| “Warnings

1| E=] I

Most of the objects on this list are browsers listed on the Browse menu; they are
the same browsers. This list also contains the command New Browser from the
Browse menu. Find in Project and Project are not on the Browse menu. Find in
Project opens a browser with the object you are looking for as its basis. The
Project object is the Project browser for the active project, which is brought to
the front when this object is selected. Browsers appear on this list because their
files are in the subfolder _System Browsers of the Browsers folder in Apple
Dylan.

You cannot delete a browser from this list. To delete a browser, quit the
development environment, find the browser file in the Browser folder _System
Browsers and move it out of the Browsers folder entirely. When you restart the
development environment, the moved browser will no longer be listed.

List of Browsers 229

CHAPTER 3

Apple Dylan Reference

Load UI Builder Project

Loads the user interface builder into the Application Nub. This causes the
Show Interface Builder command to appear on the Apple menu, which runs
the Apple Dylan interface builder from within the development environment.
You should launch the Application Nub before using this command. Note that
you can run the interface builder from the Finder by double-clicking the
standalone version of the interface builder.

For more information on the interface builder, see the book Creating a User
Interface in Apple Dylan.

Related commands: Show Interface Builder, Hide Interface Builder.

Look Up in Online Reference Browse

230

Looks for the online documentation reference entry that pertains to the selected
text and displays it with the QuickView application. Searches the Macintosh
Programmer’s Toolbox Assistant, or in the Apple Dylan language constructs.

Key shortcut: Command-=

The selected text can be text inside a source record or the Listener, such as
Inside Macintosh routines, header files, framework functions, or classes, Creole
extensions, or Dylan language constructs. You can use Look Up in Online
Reference even if you have not purchased the Macintosh Programmer’s
Toolbox Assistant and installed it on your computer, but in that case you won't
be able to search for Macintosh toolbox calls. If the entry exists, QuickView
displays the selected reference page. If the entry does not exist, no page
appears on your screen.

QuickView runs as a separate application from Apple Dylan. You can quit
QuickView and continue running Apple Dylan.

The Macintosh Programmer’s Toolbox Assistant is available on a number of
different CD-ROMSs from Apple:

o Macintosh Programmer’s Toolbox Assistant CD-ROM $89.95 from APDA
(part number T1616LL/A) or a bookstore near you.

o The Developer CD Series (March ‘95 and later Reference Library Editions)
12 CD-ROMs a year for $250.

o E.T.O. #17 and later—about $1,100

Load Ul Builder

CHAPTER 3

Apple Dylan Reference

o Some versions of MPW Pro—about $500

Meter Expression Debug

Meters an expression in the runtime. The Meter Expression window allows you
to type or copy in the expression you want to meter. When you run the
expression, the total time used and bytes alloted are calculated. In addition, the
generic functions called and classes allocated during the execution of the
expression appear. You must select the module the expression is in before
running it.

You can sort either of the lower panes in the Meter Expression window by
clicking on the column’s name you want the pane sorted by. The name of the
column that controls the sort is then underlined.

Meter Expression shows basic information about almost all the generic
functions and classes in a project. For detailed information about specific
methods or generic functions, use Call Recording.

Related command: Call Recording.

The total time used and bytes allocated are calculated in the Meter Expression
window. The first time you call a function it sometimes runs more slowly than
it will normally. If the generic function Dylan.Dylan.finalize appears on the
list, this is the first time an instance of this class has been created. You should
run the expression again for accurate timing.

If the generic function set-generic-function-dispatch<<Dylan<<Dylan appears
on the list, it indicates that this is the first time one of the generic functions has
been called. Sometimes if you add a method to a generic function, it needs to
be treated as if it is being called for the first time. You should run the
expression again to get more accurate timing results.

The following figure shows the total time used and bytes allocated for
draw-puzzle-tile, which is in the puzzle module.

Meter Expression 231

CHAPTER 3

Apple Dylan Reference

ED% mMeter Expression §|
Enter Expression: Module: [puzzle |
draw-puzzle-tile Ein

B
Data: EI Time: 30ps. Allocated: 0 byteq
Generic Function Tirnes Called
[
2]
Class Instances
ki
2]
[=l

Generic function calls that have been inlined are not displayed in the Generic
Function pane. You can double-click on a generic function to open an inspector
window on the generic function.

Some built-in classes, such as <1ist> and <byte-string>, are not displayed in
the Class pane but are counted in the Allocated bytes field. You can

double-click on a class in the Class pane to open an inspector window on the
class. The number of instances of the class are listed in the inspector window.

See Inspect Stack for more information on inspector windows.

Method Template (Copy Special) Edit

Copies a prototype method template for the selected generic function or
method from the active project into the Clipboard. To paste the method
template into a source record or the Listener, use Paste. You can select either its
source record icon or text naming the function or method.

Key shortcut: Command-T

232 Method Template (Copy Special)

CHAPTER 3

Apple Dylan Reference

Method Template (Copy Special) helps you create new methods, especially if
you are specializing the arguments of a method. For example, if you select the
method f1oor, Method Template (Special Copy) copies the following template
into the Clipboard:

define method floor(numerator :: <object>, denominator:: <object>)
=> quotient :: <integer>, remainder :: <real>

end method floor;

Method Template (Copy Special) retrieves the prototype argument list or
template for the selected object from the compiler results database and inserts
it into a source record. You can then specialize the types of the arguments and
fill in the body of the method.

Note that Method Template (Copy Special) appears in the menu only if you
select a generic function or method. If you select a class, Class Template (Copy
Special) appears instead.

Related Commands: Copy Special, Method Template (Insert Special), Class
Template (Copy Special).

Method Template (Insert Special) Edit

Replaces the selected generic function or method with the prototype template
of the methods for the selected method. Method Template appears in the menu
only if you select from the active project editable text that names a function or
method. This command is made available by pressing Option when clicking on
Copy Special on the Edit menu.

For example, if you select the function draw and hold down the Option key,
Method Template (Insert Special) replaces draw with the following text:

define method draw(view, r)

end method;
Key shortcut: Command-Option-T

If you select a class Class Template (Insert Special) appears in the menu instead
of Method Template (Insert Special).

Method Template (Insert Special) 233

CHAPTER 3

Apple Dylan Reference

Method Template (Insert Special) retrieves the prototype argument list or
template for the selected object from the compiler results database and inserts
it into a source record.

Related Commands: Insert Special, Method Template (Copy Special), Class
Template (Insert Special).

Modules of (Aspect) Browse

Operates on the active project, listing its modules.

Modules of (Aspect) is commonly used to customize a browser pane displaying
that aspect of a class. See Aspect and “Customizing browsers” on page 58 for
more information.

New Browser Browse

234

Opens a new browser with a single pane. The new browser’s pane contains the
default aspect of the object selected prior to choosing New Browser. The
selected object is called the basis of the browser’s pane and, therefore, the basis
of the browser. If no object is selected prior to choosing New Browser, the new
browser is empty.

For more information on using browsers, see the section “Using browsers” on
page 15.

You can also create a new browser by double-clicking on an object.

The following figure is a new browser that was created with the source folder
“puzzle” selected.

Modules of (Aspect)

CHAPTER 3

Apple Dylan Reference

Project: puzzle

contents of D [@ Contents of D
i puzzle » | » []puzzle >
G Dylan — [* B8 Copyright @ 1994 by Apple Computer, Inc. AT rightr—
> B mac-toolbosx I> D define—framework-Tibrary("puzzle™);
[+ B dylan—framework [P G cpuzzle-wiew: (<view)
[» @ Dylan-user I B intfET == New Browser: puzzle
> E puzzle P By i=- contents of
T 1 I B ram uzzle
] (ol bRy tile L
[§ contents of & b I"a i [» B Copyright @ 1994 by Apple Computer, Inc. Al rights reser
> = puzzle - b I_? 1: [+ By define-framework-Tibrary(“puzzle");
= : — g s [By cpuzzle-wiews (<view?)
uzzle —
P b By dra P By inftialize Crisw :: <puzzle-views, #key)
b B dra [By is-puzzle-zolved? (view : <puzzle—view) =3 solved o <bo
b B dra [» B random-state () =3 state :: ¢vectors ;
D r‘a Teft |> I‘Q tile-size-h [view :: <puzzle-view:) =» size :: <integer:
b B righ [By tile-size—v Cview @ ¢puzzle-wiews) =» size :: dinteger> ;
[B get-tile-rect (view 11 <puzzle-view:, tile :: <small-integer
bR

draw-puzzle-tile (view @ <puzzle-wisw?, source-tile

If you want to have more than one pane in a browser, you split the pane in two.
Each of the two new panes can also be split, both horizontally and vertically.
You split a pane with its splitter controls; the horizontal splitter control is a
short, horizontal bar just above the scroll bar on the right of a pane. The vertical
splitter control is a short, vertical bar just to the left of the scroll bar at the
bottom on a pane. To split a pane, hold down the mouse on the bar and then
drag the dashed line that appears to wherever you want the pane split.
Another method is to drag the outbox of a pane onto any splitter on any pane.
This splits the pane you drop it in and creates a link to the new pane.

You can close a pane by clicking its close box in the upper-left corner of its
header. The browser remains open as long as you don’t close the only pane in
it. You can resize a pane by dragging its resizing control in its lower-right
corner.

You can change the relative size of panes by dragging the line that separates
two panes. You move the cursor to the separating line until it changes into a
slider cursor, then you hold down the mouse and slide it to where you want
the new separating line to be. For more information on splitting panes and
resizing them, see the task “Customizing browsers” on page 58.

The panes in a browser work together through links. The contents of an object
you select in one pane shows up in another through a link you can create or
change. To see a link’s origin or destination, hold the cursor over the link’s

New Browser 235

CHAPTER 3

Apple Dylan Reference

inbox or outbox (the small arrows at the edges of the header of each pane).
When a link has been established, the arrow turns red.

In the following figure the origin of the incoming link of the lower-left pane is
revealed by holding down the mouse on its inbox. The origin of this incoming
link is root pane for the puzzle project, which is the upper-left pane.

EN=— Project: puzzle=—~——[1=
contents of C]| = contents of =l
@ puzzle % | » [library & module e

G [nylan [+ BB Copyright @ 1234 by Apple Computer, Inc. All r'ight;
[+ B8 mac-toolbox [G puzzle .
[+ B8 dylan-frameweork i [+ [puzzle
[+ B Dylan-uzer
> @ puzzle

&[]

Dylan-user |

When you split a pane, the original and the new panes are automatically
linked. In the following figure the split is complete, so the outbox of the
original pane on the left and the inbox of the new pane on the right are red. You
can now click on objects in the left pane and they are displayed in the right
pane. Because <puzzle-view> was selected in the original pane, it is displayed
in the new pane.

236 New Browser

CHAPTER 3

Apple Dylan Reference

Project: puzzle

contents of D @ Contents of D
£ puzzie * | » [puzzie >
G&h Dylan = [* BB Copyright © 1994 by Apple Computer, Inc. ATl rightF—
[+ B mac—toolbox [» Do define-framework-Tibrary("puzzle");
[* B dylan-framework [p O <puzzle-wiew: (Lviews)
b & Dylan-user b B it New Browser: puzzle
[B puzzle [B s @ centents of]| ® source code of + Marninas of
T LY 1 = b B ren{ o [T puzzle » | » [<puzzie-view> (cview>)
[- = | | < le—views (<
Copyri ht@ 1994 b efine class puzzlie-view
[Gontents of = bRy tile b O puri] slot puzzle-state,
+ [E puzzie - Py b [y define-framework-TiZ] init—function: rondom-stote
— b aetyl o [+ By <puzzle-views: {wi
[BB puzzle T I By dra s R =slot puzzle-pict :: <PicHand|
I I By initialize Criew o init-value: as{<PicHandle:
[[; I? dra I By is-puzzle-salved? [init-keyword: pict-handle:;
i dra . -
bRy ter b B random-stste () =2 slot soluved? :: <boolean:,
= [B tile-size-h (view :: init-value: #f;
b B righ [B tile-size-v (view : end elass;
[l =i [+

For more information on using links, see the task “Linking panes and
browsers” on page 34.

Related Command: Save Browser.

New Module File

Creates a new module named Untitled with a source folder named Untitled in
it. A second new module is named Untitled 2 with a folder named Untitled 2
and so forth. These source folders each contain an empty source record.

You can rename modules either by clicking on their names, or by selecting
them and pressing the Return key.

Note

The New Module command identifies a module to Apple
Dylan, but you must also identify the module to the
compile. To do this, you must create a source record with a
define module statement or add a use statement to the
current library defined with define 1ibrary. See “What
goes into a project?” on page 97.

New modules are placed at the end of the list of modules. You can reorder the
modules by dragging them. Changing the module order changes the load
order. In the Dylan language, forward declarations do not create load order

New Module 237

CHAPTER 3

Apple Dylan Reference

restrictions. However, load order dependencies, such as calculations that are
performed in one module based on a variable previously defined in another
module, must be accounted for in the module order you establish. For more
information on load order, see the Dylan Reference Manual.

The following figure shows the new module at the end of the list of modules.

Project: hello

New Project File

238

Creates a new project and opens a project browser for it. If no other project is
already open, the new project becomes the active project. Otherwise, the new
project is simply opened. The following figure shows the default project
browser for a new project.

New Project

CHAPTER 3

Apple Dylan Reference

S(=———— FProject: Untitled s |
Contents of C]| F Gentents of =l
& untitied » | » [Untitled >

q&h Cwylan = - B —

ki i

[+ B Dylan-uzer .]
=
(=11
[@ ©contents of =l
+ [E Dylan-user *
[» BB Untitled é

= 7]

B E

Duylan- user |
New Source Folder File

Creates a new source folder named Untitled with an empty source record in it.

You can rename source folders either by clicking on their names or by selecting
them and pressing the Return key.

New source folders are placed at the end of the existing list of objects by
default. If a source folder is selected, the new source folder is placed directly
after it. Because the order of the source records within a source folder and the
source folders within a module determines the load order, you might need to
move an object into its proper place after it’s created. You can reorder the
objects by dragging them.

New Source Record File

Creates a new, empty source record. The empty source record has a generic
icon until its contents are completed. Source record objects include methods,
classes, variables, constants, macros, generic functions, comments, and top
level forms.

Key shortcut: Command-N

New Source Folder 239

CHAPTER 3

Apple Dylan Reference

The following figure shows a new source record that has been created for the
puzzle module. The new record appears at the end of the list of other records
by default. If you place the cursor into the name of an existing source record,
the new source record is placed directly after it instead of at the end. Because
the order of the source records within a source folder and the source folders
within a module indicates the load order, you might need to move an object
into its proper place after it’s created. You can reorder the objects by dragging
them.

Project: puzzle

contents of = =Hj| =

il puzzle -
@1 Ly lan

3 ﬁ rnac—toolbo:

3 ﬁ dy lan—frarnework

= . Sylan-uzer

[=fi] 4 (@

[T Centents of =
+ [E Dylan-user »

LA D Tibrary & module

[I__a puzzle

|_—|i| puzzle

[«

New Text Window File

240

Opens a new text window. Use this window to make READ ME files, release
notes, scratch pads, and so forth. All the usual Apple Dylan editing commands
are supported. You are prompted for a file name and destination when you
close the window. The default output file name is “new.dylan”.

Use Export and Import for moving text files in and out of Apple Dylan.

New Text Window

CHAPTER 3

Apple Dylan Reference

Open File
Opens a project. You can also open a project by double-clicking on the project’s
icon from outside Apple Dylan. This launches Apple Dylan if it is not already
running.

Key shortcut: Command-O

You can have several projects open at once, but the first one you open is the
active project. The active project is the only project that can be browsed,
compiled, and downloaded.

You can also open text files with this command.

Page Setup File
Displays the standard Macintosh Page Setup dialog box to allow you to
determine the behavior of the Print command.

Related command: Print.
Paste Edit

Pastes text from the Clipboard into the current text selection or at the current
cursor location. Text is placed into the Clipboard using Cut and Copy, as well
as by all three of the Copy Special commands.

Key shortcut: Command-V

Related commands: Copy, Copy Title Text, Cut, Copy Special.
See “Editing in Apple Dylan” on page 66.

WARNING

Emacs-style editing commands create a kill ring that may

interact unpredictably with the Clipboard. See “Editing in
Apple Dylan” on page 66.

Open 241

CHAPTER 3

Apple Dylan Reference

Pattern Match Macro Debug

Prints the macro expansion first, displaying exactly the text sent to the compiler
by the parser. Then prints the pattern rule, showing which elements of the
macro match which elements of the pattern. From this information you can
determine if there is a match or not. If there is a match, you can determine its
scope. You can also determine whether the order of pattern matching is correct,
catching such errors as matching a general pattern before matching a specific
pattern (which would never be seen). This process is repeated for all further
macro expansion.

Operates on statement macros and definition macros. Does not work on
function macros. This command does not work on the icon; you must select the
full text of the macro in a browser or the Listener. Expands the selected macro
to the Listener. You can also select the macro text in the Listener.

This command is used in debugging macros.

If you select Pattern Match Macro from the menu while pressing the Option
key, the Pattern Match Macro Including Builtin command appears in the menu
instead. The behavior is the same, except that all macros are expanded,
including builtin macros from the Dylan language, such as case or begin.

Related command: Expand Macro, Pattern Match Macro Including Builtin.

Pattern Match Macro Including Builtin Debug

242

Prints the macro expansion first, displaying exactly the text sent to the compiler
by the parser. Then prints the pattern rule, showing which elements of the
macro match which elements of the pattern.

You must select Pattern Match Macro while pressing the Option key to make
the Pattern Match Macro Including Builtin command appear on the menu. The
behavior is the same as for the Pattern Match Macro command, except that all
macros are expanded, including builtin macros from the Dylan language, such
as case Or begin.

This command is used in debugging macros.

Related commands: Expand Macro, Pattern Match Macro.

Pattern Match Macro

CHAPTER 3

Apple Dylan Reference

Preferences Edit

Opens the Preferences dialog box, which consists of four sheets:
o Application Nub
o Environment

Editing

o Listener

O

By setting preferences on these sheets, you can make the development
environment interact with each of your projects in a specified way.

The following figure shows the four sheets on the Category pull-down list.
Clicking any Defaults button resets all the values on all three sheets to their

defaults.
=—————————————— Preferences
Application Nub
Category:
Editing

Listener

BrowserFont: | Leneva v| E”Zl
Browser Icon Size:

O Inspect $tack on Error

Cancel 0K

The following figure shows the default Application Nub Environment sheet.

Preferences 243

244

CHAPTER 3

Apple Dylan Reference

Preferences

Category:[Application Nub v |

Development Mode: & One Machine) Two Machine

Runtime Machine: |

[JLaunch Application Nub on Project Activation
[J update when prlﬁcatiun Mub is Launched

Cancel 114

o Development Mode—One-machine development is the default. Choose
two-machine development if you don’t want your runtime on the same
machine with the development environment.

o Runtime Machine—For two-machine development, name the machine
the runtime is on.

o Launch Application Nub when Active Project is Opened—Off by default.
See “The Application Nub” on page 107, and Launch Application Nub.

o Update when Application Nub is Launched—Off by default. See
“Keeping your project synchronized” on page 109, and Update Project.

The following figure shows the default Environment sheet. Not all choices are
reflected in the development environment until you open a new project.

Preferences

CHAPTER 3

Apple Dylan Reference

Preferences

Category:| Environment

Browser lcon Size:

O Inspect Stack on Error

Browser Font: | Geneva | E“El

Preferences on Environment sheet:

o Browser font and size—Not the source text font, but the title font you see

when an object is collapsed.

o Browser icon size—The smaller the icons, the more your browser can

display.

o Inspect Stack on Error—If you prefer, you can go directly to the stack

inspector on any error.

The following figure shows the default Editing sheet.

Preferences

Category: | Editing]

Default Editor Font: | Monaco

] []~]

Assign Meta To:) Option @ Escape

[Indent New Line on Return

[J Auto Display Argument List
[Display Warnings with Source

Indent Current Line on: 5] Return [Tab [£] Space

Cancel 114

Preferences

245

CHAPTER 3

Apple Dylan Reference

Choices are reflected in the text you write or edit, such as source code. Any
code entered before this preference is set remains unaffected. Changing this
font setting only affects new source text.

Preferences on the Editing sheet:

o Default editor font— the font for editing source code. The fonts used for
code entered before setting this are not affected.

o Assign Meta To—assignment of meta key. See “Emacs-style key
commands” on page 72.

o Indent Current Line on—part of auto-indent system. Choose how often
you want the current line checked for “pretty” indentation.

o Indent New Line on Return—extends auto-indent to the next line.

o Auto Display Argument List—Automatically display the argument list.

o Display Warnings with Source—Automatically display warnings with
source code.

The following figure shows the default Preferences sheet for the Listener.

Preferences

Category:[Listener -]

Font:| Monaco b E“EI

Display Truncation Options:
Lines:) Magimum Number: I:l ® unlimited

Elements:) Maximum Number: I:l ® unlimited
Levels:) Magimum Number: I:l ® unlimited

[J Detect Circularities

Cancel l 0K l

Preferences on the Listener sheet:
o Default Listener font—the font for editing code in the Listener.

o Set truncation of lines—Unlimited by default; controls the number of
lines printed in the Listener.

o Set number of elements—Unlimited by default; controls the number of
elements of a list printed in the Listener.

246 Preferences

Print

CHAPTER 3

Apple Dylan Reference

o Set number of levels—Unlimited by default; controls the number of break
levels displayed in the Listener.

o Detect circularities—Off by default. If set, stops printing after the first
time around.

File

Quit

Displays the standard Macintosh Print dialog box for printing. You can print
the contents of the Apple Dylan Listener or source text from a browser. If
nothing is selected, the entire project is printed.

Key shortcut: Command-P
Related command: Page Setup.

File

Quits the development environment. You are prompted to save unsaved
changes and prompted to confirm that you wish to quit. Issuing this command
also quits the Application Nub if you are tethered and performs an orderly
shutdown of Apple Dylan.

Key shortcut: Command-Q

Quit Application Project

Quits a running application and the Application Nub. Quit Application is
identical in effect to Quit Application Nub.

Quit Application quits a running application and also untethers the
Application Nub from the development environment (if connected). Quit
Application is the opposite of Tether to Application.

Related command: Tether to Application.

Quit Application Nub Project

Quits a running application and the Application Nub. Quit Application Nub is
identical in effect to Quit Application.

247

Recompile

CHAPTER 3

Apple Dylan Reference

Quit Application Nub quits a running application and also untethers the
Application Nub from the development environment (if tethered). Quit
Application Nub is the opposite of Launch Application Nub.

If you encounter difficulty quitting the nub, run the Quit Application Nub
application from the Finder.

Related command: Launch Application Nub.

Project

Initiates a complete compilation of the entire project, including, optionally, its
subprojects. All code within the chosen scope is recompiled whether it needs it
or not, regardless of status marking. Recompile throws away all caches and
cleans up all databases.

WARNING

Recompile is of limited value when tethered because it
adds all results of its recompilation to the existing compiler
results database and removes nothing.

Related commands: Compile Expression, Compile Region, Compile Selection.

See also: Create Application, Create Library.

Redo Clear Edit

248

Deletes text that you had previously reinstated with an Undo Clear. The
deleted text does not get copied to the Clipboard. Undo, Clear, Redo Clear, and
Undo Clear replace one another on the File menu, depending on which is
appropriate.

See “Editing in Apple Dylan” on page 66.

WARNING

Clear supports Undo and Redo only for text. If you have
cleared an object, folder, or subproject, it cannot be undone
or redone. If you are about to clear a subproject, you are
warned. You cannot clear required subprojects.

Recompile

CHAPTER 3

Apple Dylan Reference

References From Browse

Operates on the selected class, method, or variable, opening a browser that lists
all objects from which it is referenced.

Related commands: References From (Aspect), References To.

References From (Aspect) Browse

Operates on the selected class in the active project, method, or variable, listing
all references from it.

References From (Aspect) is commonly used to customize a browser pane
displaying that aspect of a class. You can also select a single class in a pane and
display references from the selected object inline.

See Aspect and “Customizing browsers” on page 58 for more information.

The References From command opens a single-pane browser displaying
references from the selected object.

References To Browse

Operates on the selected class in the active project, method, or variable,
opening a browser that lists all objects making reference to it.

See “Using the browser References To” on page 49.

Related commands: References To (Aspect), References From.

EC] References To: choose-document (file-list :: <list*) => result :: <filex ===

References To

% itz choose-document (file-list i <list?) => result ;; <file> 2

[* = behavior-event (behavior :: <debugger-behawvior:, next-behaviors :: <list:, main-handler :: <main-handler:, e

= @ do-event (ain-handler :: <main-handler, event :: <menu-eventr, id :: singletonCopen))
define method do—ewent (main—handler :: <main-handler:,
euent 1o <menu-event:,
id == #"open") =: ()
ignorefevent, idi;

A4 this stondard file stuff should really be broken out so people can customize i

let file = choose—documentimapifirst, main-handler.document—type-1istal;

send-eventi{make open—events, direct-object: make—descriptori{filel)l;
end method;

dylan-frameswo...

References From 249

CHAPTER 3

Apple Dylan Reference

References To (Aspect) Browse

Operates on the selected method, class, or variable in the active project, listing
all references to it.

References To (Aspect) is commonly used to customize a browser pane
displaying that aspect of a method, class or variable. You can also select a
single object in a pane and display references to it inline.

See Aspect, “Using the browser References To” on page 49, and “Customizing
browsers” on page 58 for more information.

The References From command opens a single-pane browser displaying direct
methods.

Replace and Find Text

Duplicates Replace & Find in the Find /Replace dialog box. Replaces the target
text with the replacement text and searches for the next instance of the target
text.

Key shortcut: Command-]J
Related command: Find /Replace.
See “Editing in Apple Dylan” on page 66.

Reset Stack Debug

250

Discards the stack all the way to the top of the stack without running any of the
clean-up code. Because it does not run any clean-up code, Reset Stack is very
risky; try Abort first. Severe side effects can result from not running the
clean-up code. For example, a file can be left open with no way to close it, or a
data structure, such as the Dylan subproject itself, can be left in a corrupted
state.

Reset Stack does not discard the runtime heap. To reset the heap, untether the
Application Nub from the development environment and then retether to it.

See “Debugging a project” on page 146 for a discussion of the choice between
Abort and Reset Stack.

References To (Aspect)

CHAPTER 3

Apple Dylan Reference

Related command: Abort.

Resource Files of (Aspect) Browse

Operates on the active project and its subprojects, listing their resource files.

Resource Files of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Revert File
Reverts to the saved version. This command works on either the whole project
or on selected objects. If you select more than one object, the next higher
container and all its contents are reverted. All changes you made since issuing
the last Save or Save All are lost. Revert cannot be undone.

Run Project

Runs the active project’s startup function after tethering the Application Nub to
the development environment and performing an update. Run performs
different functions depending on the state of your project, but it does compile
all sources marked as uncompiled and downloads the results, just as Update
Project does. It also tethers to the development environment, if needed, and
runs the startup function.

You can designate the active project using Set Project Type. The name and
location of the project’s startup function must have been specified using Set
Project Type or Run will not work.

Key shortcut: Command-R

When you run a project from within Apple Dylan, the user interface for the
application and its menu bar overlay the development environment. The
application’s menu bar can be used to manipulate the application and to quit it.
You can return to Apple Dylan by clicking in one of its windows or choosing
Application Nub from the Finder’s list. If you leave the application running
and return to Apple Dylan, the cursor becomes the watch cursor to remind you
that the application is still running, even though you can no longer see it.

Resource Files of (Aspect) 251

CHAPTER 3

Apple Dylan Reference

Note

You cannot use Apple Dylan again until you interrupt
your running application. Use Quit within your
application to do this.

Project: puzzle
= C]| @ contents of [O
AT » | » []puzzie [
. - @ Copgrlght@ 1994 bg apple Computer, Inc. AT rights reserved. —
o Ouit 30 b G _ Cpuzzle™;
[B dylan-framework [O
I @ Dylan-user I R i —view s, ¥hkeyl
= [@ puz=zle [Y :: <puzzle-wiew>) => solved :: <booleans ;
d B 1 = b By -.. s evectors ;
=Y le-wiew?>) = size :: ¢integers
Epgcenicrlt =1 [Y ‘ Te-wiew) => size :: <integers ;
+ [E puzzle - ! .
[» B get-tile-rect Cview .. <puzzle-wiew:, tile :: <small-integer>) =3 tile-
= [BB puzzle = I» B draw-puzzle-tile (view :: <puzzle-view:, source-tile :: <zmall-intege
[B draw-puzzle-tile (view :: ‘puzzle-view:, source-tile == 15, dest-tile]
[B draw Cview :: <puzzle-wiews, draw-region :: dregions) =» ()
[By teft-tile (tile :: <zmall-integer:) =» result :: <object> ;
b [imbd 4il a1 21 ek LTS hiaad
] & ([i
puzzle | Killed region saved

Related commands: Launch Application Nub, Quit Application, Update Project.

Save File
Saves the sources of the active pane and all the objects it contains. Save cannot
be undone.

Key shortcut: Command-S
Related commands: Save All, Revert.
For saving a new or revised browser configuration, see Save Browser.
Save All File

252

Saves the sources for all open projects. Save All cannot be undone.
Related commands: Save, Revert.

For saving new or revised browser configurations, see Save Browser.

Save

CHAPTER 3

Apple Dylan Reference

Save Browser Browse

Select All

Saves the configuration of a browser you have created or changed. You cannot
save the contents in the browser with Save Browser unless the basis of the
browser is a module. Any incoming links or outgoing links to the browser are
lost when it is saved.

You can name the saved browser what you want. Its name is added to the
fourth section of the Browse menu and to the List of Browsers browser, if you
save the file to the Browsers folder of Apple Dylan. If you save the file to the
Browsers subfolder _Ignore Selection Browsers, the new browser appears in the
third section of the Browse menu and the entire project is the only valid basis
for the browser. If you save the file to the Browsers subfolder _System
Browsers, the new browser appears only on the List of Browsers browser.

You can move browsers between subfolders, if you want. You can share a saved
browser with others by giving them a copy of the browser file or an alias to it.

You can delete a saved browser from the development environment by
removing its file from the Browsers folder. You must restart the development
environment for the browser to be removed from the List of Browsers browser
and the Browse menu.

Related command: List of Browsers.

See “Saving a browser configuration” on page 61.

Edit

Selects all the objects in the active pane or all the text in an object. To select all
the objects in a pane, click on one of the objects and then choose Select All. To
select all the text in an object, expand the object, click anywhere in the text and
then choose Select All. You can also select all the text in an object by clicking in
it four times.

Key shortcut: Command-A

Set Project Type Project

Sets the basic characteristics of a project, most importantly identifying its name
and whether it is to be built as an application or a library.

Save Browser 253

254

CHAPTER 3

Apple Dylan Reference

You must set certain characteristics of a project before building your final
application or library. After setting a project’s features, you complete the
building process by untethering from the development environment and using
Create Application or Create Library. It is also recommended that you issue a
Recompile command before building your final application or library.

The most important setting is whether the project is an application or library, as
shown in the following figure.

Set Active Project Type

Project Type: (iﬂpplicatiun) Library

Creator Type:

Startup Function: |start |

Module: |__puzzle v]

Memory: K Minimum

K Suggested

[Use Separately Loaded Libraries
[JCreate Fat Binary
Application Names:
68K: [puzzle68K |

PowerPC: |puzzIePPl: |

Fat: ||Ju22|eFat |

Cancel 0K

Specify the startup function by entering it in the Startup Function field. Specify
the module your startup function is in with the Module field; this module must
be exported from its library. The Creator Type field holds the creator ID you
want your new application to have. Designate your memory requirements for
suggested and maximum sizes in the spaces provided.

Check “Create Fat Binary” if you want to build a Fat application.

Check “Use separately loaded libraries” if you want the Dylan subproject and
framework subproject not to be bundled with your application. They will not
be included in your project’s link library in the binary, but instead the link

Set Project Type

CHAPTER 3

Apple Dylan Reference

library is loaded in from the extensions folder when the application is run. This
option saves disk space, but not memory. This setting also allows you to revise
and load new libraries for an application without changing the rest of the
application.

Set Active Project Type

Project Type: O Application @ Library

Creator Type:

Library Dersion:

Minimum Dersion:

I

Library Names:
68K: |paint-app68K.dl |

PowerPC: ||Jaint—ap|JPPI3.dI |

Cancel 0K

Setting the version of a library controls which version is recorded in the
compiler results database. When a library file is created from a project, the
library versions of all of its subprojects are recorded in the library file header.
Then at runtime, when the library is loaded, it will only accept those versions
of its the sublibraries which are compatible with the version of the sublibrary
used at library creation time. You should increment the version number
whenever you release a new version of a library.

The minimum compatible version is the lowest version that a library is
backward compatible with. The minimum version is checked during runtime
library search. You should increment the minimum version number whenever
you make incompatible changes. See “Library version numbers” on page 106
for a detailed explanation.

The suffix “.d1” is appended to the library’s name when you build it.

Set Project Type 255

CHAPTER 3

Apple Dylan Reference

See “Apple Dylan User Model” on page 95, in particular “Application or
library?” on page 104.

Show Home Browse

256

Displays and highlights the source code for the selected object. Checks first in
the current module and goes immediately to the definition. If there’s no such
name defined in the current module, searches all modules and goes
immediately to the definition. If there are multiple definitions with the same
name in different modules, presents a choice. If the source code is not found,
displays the name of the object it was looking for.

Note

If there are multiple objects with the same name, and one
is defined in the current module, you are not presented
with a choice, but rather go immediately to the definition.

Key shortcut: Command-Y

For example, if you are in the Listener and have not been working with a
certain function, you might not have its source record on display. In that case, it
is easy to find the source code using Show Home. To use Show Home, place the
cursor in the name of the function you are interested in, or select it, and then
issue Show Home.

In the following figure you can see the result of clicking on “initialize” in the
Listener and then choosing Show Home; “initialize” is expanded and

highlighted.

Project: puzzle

AN rights ressrved

Show Home

CHAPTER 3

Apple Dylan Reference

The following figure shows the result of clicking on the “text-app” module in
the root pane and then choosing Show Home; a new browser is opened with
text-app as its basis.

D [Copuriaht @ 1994 by Apple Computer, Inc. All rights reserved

b [& define-framework-library ("text-spp™)

s ¢text-app-behavior? (<behaviort)

B corents o
» [E tent-app

P [styled-text-behavior .3
b [0 test-document
= bim
| & | [T .
Show Interface Builder Apple

Runs the Apple Dylan interface builder from within the development
environment. Note that you can run the interface builder from the Finder by
double-clicking the standalone version of the interface builder.

For more information on the interface builder, see the book Creating a User
Interface in Apple Dylan.

Related commands: Hide Interface Builder, Load Ul Builder.

Show Interface Mapping Debug

Prints information about the mapping between C and Dylan names to the
Listener. Choose this command to set this feature, which prints the information
whenever a define interface statement is compiled. This command allows you
to check name mapping, plus import and export options. To disable this
feature, choose the command again to remove the check mark from the menu.

When this command is checked, the following is printed at the Listener
prompt: the C name, which is followed by an arrow, and the Dylan name.

As an example, when the following definition is compiled:
define interface

#include "Dialogs.h",

Show Interface Builder 257

CHAPTER 3

Apple Dylan Reference

name-mapper: identity-name-mapping,
define: {"SystemSevenOrLater"}, // for Gestalt
CFM-Tibrary: "Interfacelib",
import: {"ErrorSound", "Alert", "ParamText"},
// These next two will be null pointers anyway
type: {"SoundUPP" =3D> <machine-pointer>},
type: {"ModalFilterUPP" =3D> <machine-pointer>};
ffinclude "Resources.h",
name-mapper: identity-name-mapping,
define: {"SystemSevenOrLater"}, // for Gestalt
CFM-Tibrary: "Interfacelib",
import: {"OpenResFile"};
end interface;
The following output is printed in the Listener:
function ErrorSound => ErrorSound<<Online-Insultant
function ParamText => ParamText<<0Online-Insultant
function Alert => Alert<<Online-Insultant
function OpenResFile => OpenResFile<<Online-Insultant

Size Text

Displays a list of font sizes. The size you choose is applied to the selected text.

This choice changes only the text in a source record and has no semantic
impact. but it does flag the record for recompilation. You can use font size to
help organize your sources.

See “Formatting commands” on page 70.

You can change the font sizes for the Listener and Browsers (as well as the
source font size) using Preferences.

Source Code of (Aspect) Browse

Operates on source records and definition entities in the active project,
displaying the definition associated with the selected source record or

258 Size

CHAPTER 3

Apple Dylan Reference

definition entity. Source record objects are methods, classes, variables,
constants, macros, generic functions, comments, and top-level forms.

Source Code of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a module. You can also select a single module in a
pane and display its source code inline. See Aspect and “Customizing
browsers” on page 58 for more information.

Source Folders (Aspect) Browse

Operates on modules in the active project, listing the source folders for the
selected object.

Source Folders (Aspect) is commonly used to customize a browser pane
displaying that aspect of a module. You can also select a single module in a
pane and display all its source folders inline. See Aspect and “Customizing
browsers” on page 58 for more information.

Source Records (Aspect) Browse

Operates on any object in the active project that has source records: project,
subproject, module, source folder, listing the source records for the selected
object. Source record objects are methods, classes, variables, constants, macros,
generic functions, comments, and top-level forms.

Source Records (Aspect) is commonly used to customize a browser pane
displaying that aspect of an object. You can also select a single object in a pane
and display its source records inline. See Aspect and “Customizing browsers”
on page 58 for more information.

Source Records with Warnings (Aspect) Browse

Operates on any object in the active project that has source records: project,
subproject, module, source folder, listing the source records for the selected
object that have warnings in the active project. Source record objects are
methods, classes, variables, constants, macros, generic functions, comments,
and top level forms.

Source Records with Warnings (Aspect) is commonly used to customize a
browser pane displaying that aspect of an object. You can also select a single

Source Folders (Aspect) 259

CHAPTER 3

Apple Dylan Reference

class in a pane and display its source records inline. See Aspect and
“Customizing browsers” on page 58 for more information.

Status Indicators Browse

Opens the Status Indicators dialog box. You can also open this by
double-clicking in the gray, vertical status indicator column in a pane. The
status indicators you check in this dialog box are displayed in the status
indicator column in the active pane or in the pane’s header. You select the
status indicators separately for each pane.

To choose a status indicator, make the target pane active, open the Status
Indicators window, and click to the left of the status indicator you want until a
check mark appears. If you choose all the indicators, except Other, an indicator
for each will appear in your pane when that status applies. The status indicator
Other consolidates any of the unchecked indicators into a single indicator. By
checking only the specific indicators you want to see, and also checking Other,
you can see the specific indicators you need to see but still be informed that
other status changes have occurred.

The following figure shows the default Status Indicators dialog box. Unsaved
and Warnings indicators are displayed in the panes automatically. You can
choose not to see them by unchecking them in the Status Indicators dialog box.

Status Indicators

Show:
+ Unsaved uts
Uncompiled
+ Wlarnings
Read only
Other
=
Location: | Body b
Cancel 0K

260 Status Indicators

CHAPTER 3

Apple Dylan Reference

The Location field allows you to select where the status indicators will appear,
in the status indicator column (choose Body) or in a pane’s header (choose
Header). You can choose to have them appear in both places if you wish.

Status Indicators
Show:
+ Unsaved I
Uncompiled
+ Wlarnings
Read only
Other
||
Header
Location: B od
Header & Body
[Cancel] [[114]]

The following figure shows a typical project with the Uncompiled indicator
chosen and pointed to in the status indicator column. Note that the cursor is
pointing at the green (second) indicator, which is the Uncompiled indicator.
This causes the name of the indicator to appear in the prompt area at the
bottom of the browser.

Status Indicators 261

262

CHAPTER 3

Apple Dylan Reference

Project: puzzle

[> B mac-toolbos
[> @ dylan-framewaork
[> @ Dylan-user

= > @ puzzle

@ Contents of
+ [E puzzle

ws [+ @@ puzzle

contents of C)| = contents of
Ed puzzle » | » [7jpuzzle
& Dylan Copyright & 1994 by Apple Cornputer, Inc. A1l rig

PEFFFFFFFFFSFeO

Evvvvvvvvvvvvvv

define-framework-1library("puzzle");
<puzzle=wiew? [iview?>]
initialize (wiew :: <puzzle-view:, ¥key)

is—puzzle-salved? [view :: <puzzle-view:) =» salw

randormn-state () = state :: <vectar> ;
tile-size-h [view :: <puzzle-view>) =7 size :: <inte
tile-size—v (view : tpuzzle—view:) = size ;. ints
get-tile-rect (view 1 <puzzle-wiew>, tile 1 <zmall
draw-puzzle-tile (view i <puzzle-wiew?, source—t
draw-puzzle-tile (view i <puzzle-wiew?, source—t
draw [view o <puzzle-view:, draw-region @ <reqi
left-tile (tile ::
right-tile (tile :: <small-integer:) =: result :: <obj %]

szrnall-integer:) = result :: <obje

puzzle

| Uncornpiled i ndicator.

The following figure shows a typical project with the Unsaved indicator chosen
and pointed to in the status indicator column. Note that the cursor is pointing

at the blue (first) indicator, which is the Unsaved indicator. It is identified as the
Unsaved indicator in the prompt area at the bottom of the browser.

[> B mac-toolbosx
[> @8 dylan-framework
[> @ Dylan-user

= [@ puzzle

il

[@ Gontents of =l
+ E puzzle *
= [B puzzle

T T T T YT T YT T YT T W
T L Tl T L Tl L T L T S B

Project: puzzle =
contents of C)| = contents of =l
Ed puzzle » | » [7jpuzzle -

q&h Dylan Copyright € 1994 by apple Computer, Inc. All rig

define-framewark-Tibrary("puzzle");

=
<puzzle=wiew > [iview?>]
initialize (wiew :: <puzzle-view?:, ¥key)
is—puzzle-solved? (view :: <puzzle-view?) =» solvd
random-state () => state :: <vector>

tile-size~h [wiew :: <puzzle-wiew?>] => size :: dinte
tile-size-v (view :: <puzzle-view?:) => size :: <inte
get-tile-rect (wiew :: <puzzle-view>, tile :: <small
draw-puzzle-tile (view :: <puzzle-view>, source-t
draw-puzzle-tile (view :: <puzzle-view>, source-t
draw (view :: <puzzle-view:, draw-region :: <regi
Teft-tile (tile :: <small-integer>) =: result :: <objed

right-tile (tile :: <zmall-integer:) = result :: <o

puzzle | Ungaved i ndicator .

Status Indicators

Style

CHAPTER 3

Apple Dylan Reference

Text

Changes the font style of the selected source text. This choice changes only the
text in a source record and has no semantic impact, but it does flag the record
for recompilation. You can use font style to help organize your sources. For
example, it is common to use bold for the name of objects being defined.

The font styles available are Plain, Bold, Italic, Underline, Outline, Shadow,
Condense, and Extend.

Key shortcuts:

s Plain—Command-Shift-T

s Bold— Command-Shift-B

s [talic—Command-Shift-I

= Underline—Command-Shift-U

s Outline—Command-Shift-O

= Shadow—Command-Shift-S

= Condense—Command-Shift-Option-C
s Extend—Command-Shift-E

See “Formatting commands” on page 70.

You can change the font styles for the Listener and Browsers (as well as the
source font style) using Preferences.

Subprojects (Aspect) Browse

Operates on the active project and its subprojects, listing their subprojects.

Note
Remember that a subproject is simply a project that has
been included in another project.

Subprojects (Aspect) is commonly used to customize a browser pane
displaying that aspect of project.

See Aspect and “Customizing browsers” on page 58 for more information.

Style 263

CHAPTER 3

Apple Dylan Reference

Target Architecture Project

Identifies the target platform, either 68K or PowerPC, for any projects built into
applications or libraries. The default target is 68K. The target machine chosen
remains set across all projects, whether they are currently open or not. If, for
instance, a closed project had a 68K target when last opened and then is
reopened after the target has been changed to PowerPC, the project will be
retargeted to PowerPC. If a project is active when the target machine is
changed, the application nub is quit and the name shown in the Listener
changes to reflect the new target.

" % File Edit Text Projek! Browse Debug Windows

Apple Dylan Listener: 68K (Unconnected) ==EI=
Helcome to Apple Oylan! Eis
¥

Dulan-User v| [irn Dylan libraryl |<::I|| B

After you switch architectures, you must use the Update Project command to
refresh the compiler results database and library model files. Otherwise, they
will reflect the state they were in the last time the architecture was switched.

There is no provision in Apple Dylan for automatically using different source
code for the two target machines.

Related commands: Set Project Type, Launch Application Nub, Quit
Application Nub.

Tether to Application Project

264

Tethers the development environment to a running, standalone application
(which was originally created using the Create Application command from
within Apple Dylan). The standalone application can then be debugged. The
compiler results database for the original project must be available to tether to
a standalone application. The application can either be on the same machine as

Target Architecture

CHAPTER 3

Apple Dylan Reference

Apple Dylan or it may be running on some other system to which you have
access.

The standalone application must be halted before you can use this command.
You can cause it to halt by setting the event-check variable to be your own
method for detecting a break request. For more information on event-check, see
the book Apple Dylan Extensions and Framework Reference.

Here is an example of typical usage: if you get an error while running a
standalone Dylan application, launch Apple Dylan and issue the Tether to
Application command. You can then debug the application.

The notation “(Unconnected)” disappears from the Listener when the project’s
compiler results database file is tethered to the Application Nub.

See “Apple Dylan User Model” on page 95.

Related commands: Create Application, Launch Application Nub, Quit
Application Nub.

Text of (Aspect) Browse

Operates on warnings in the active project, listing inline the expanded long text
of the selected warning.

Text of (Aspect) is commonly used to customize a browser pane displaying that
aspect of a warning. You can also select a single warning in a pane and display
its expanded long text inline. See Aspect and “Customizing browsers” on

page 58 for more information.

Uncompiled Source Folders (Aspect) Browse

Operates on modules, projects and subprojects in the active project, listing the
source folders in the active project that contain uncompiled sources.

Uncompiled Source Folders (Aspect) is commonly used to customize a browser
pane displaying that aspect of a module or project. See Aspect and
“Customizing browsers” on page 58 for more information.

Text of (Aspect) 265

CHAPTER 3

Apple Dylan Reference

Uncompiled Source Records (Aspect) Browse

Operates on containers in the active project containing source records, listing
the uncompiled source records they contain. Source record objects are methods,
classes, variables, constants, macros, generic functions, comments, and
top-level forms.

Uncompiled Source Records (Aspect) is commonly used to customize a
browser pane displaying that aspect of a container. See Aspect and
“Customizing browsers” on page 58 for more information.

Uncompiled Modules of (Aspect) Browse

Operates on a project or subproject in the active project, listing the modules
containing uncompiled sources.

Note
Remember a subproject is simply a project that has been
included in another project.

Uncompiled Modules of (Aspect) is commonly used to customize a browser
pane displaying that aspect of a project. See Aspect and “Customizing
browsers” on page 58 for more information.

Undefined Variables Browse

Opens a browser that lists the undefined variables in the active project.

Undefined Variables (Aspect) Browse

266

Operates on a container in the active project, listing the undefined variables in
that container.

Undefined Variables (Aspect) is commonly used to customize a browser pane
displaying that aspect of a container. See Aspect and “Customizing browsers”
on page 58 for more information.

Uncompiled Source Records (Aspect)

CHAPTER 3

Apple Dylan Reference

Undo Edit

Undoes your last edit.
Key shortcut: Command-Z

Undo, Clear, Redo Clear, and Undo Clear replace one another on the File menu,
depending on which is appropriate.

See “Editing in Apple Dylan” on page 66.

A WARNING
Clear supports Undo and Redo only for text. If you have
cleared an object, folder, or subproject, it cannot be undone
or redone. If you are about to clear a subproject, you are
warned. You cannot clear required subprojects.

Undo Clear Edit

Undoes a Clear by reinstating the text or object you had deleted. You can use
Redo Clear to delete the text again, after using Undo Clear. Undo, Clear, Redo
Clear, and Undo Clear replace one another on the File menu, depending on
which is appropriate.

See “Editing in Apple Dylan” on page 66.

A WARNING
Clear supports Undo and Redo only for text. If you have
cleared an object, folder, or subproject, it cannot be undone
or redone. If you are about to clear a subproject, you are
warned. You cannot clear required subprojects.

Undo More Edit

Undoes your last edit up to 20 edits. The undos are in reverse order.

See “Editing in Apple Dylan” on page 66.

Undo 267

CHAPTER 3

Apple Dylan Reference

Unsaved Modules of (Aspect) Browse

Operates on an uncompiled active project, listing the unsaved modules in it.

Unsaved Modules of (Aspect) is commonly used to customize a browser pane
displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Unsaved Source Records Browse

Opens a browser that lists all source folders that hold unsaved source records
in the active project. The following figure shows the only unsaved source
record in the puzzle project, tile-size-v.

EO Unsaved Source Records: puzzle —=——01g|
unzaved Source Records of n
» Ef puzzle -

s [[y tile-size-v (view o dpuzzle-view) =» size o1 tintegers ;

Unsaved Source Records (Aspect) Browse

Operates on containers, listing source folders that hold unsaved source records
in the active project.

Unsaved Source Records (Aspect) is commonly used to customize a browser
pane displaying that aspect of a project.

See Aspect and “Customizing browsers” on page 58 for more information.

Update Project Project

Compiles any source records in the active project that have changed since the
last update or recompilation and downloads them to the Application Nub, if it
is tethered to the development environment. Any orphan definitions are

268 Unsaved Modules of (Aspect)

CHAPTER 3

Apple Dylan Reference

eliminated with this command. Orphan definitions are caused when source
records are created, compiled, and then deleted.

Key shortcut: Command-U

Only the active project can be updated. Use the command Activate Project to
make any open project the active project.

See the Project Interaction sheet under Preferences to choose whether to update
a project automatically when it is opened.

Related commands: Recompile, Revert.

Variable Definitions of (Aspect) Browse

Operates on source records or definition entities in the active project, listing all
variable definitions they include.

Variable Definitions of (Aspect) is commonly used to customize a browser pane
displaying those aspects of an object.

See Aspect and “Customizing browsers” on page 58 for more information.

Variable Search Browse

Finds all variables in the active project that contain the entered string.

A WARNING
This is not a text search, but a search of the compiler
results database. Uncompiled variables and text in
comments will not be found.

)==—=——=———— Find Defined Dariable

Enter a substring or space-separated substrings to
41| search for:

9 [Eancel] [Eigpd]

Variable Definitions of (Aspect) 269

CHAPTER 3

Apple Dylan Reference

Warning Source Record of (Aspect) Browse

Warnings

Operates on warnings in the active project, listing the sources for the selected
warning.

Warning Source Record of (Aspect) is commonly used to customize a browser
pane displaying those aspects of an object.

See Aspect and “Customizing browsers” on page 58 for more information.

The Warnings command opens a single-pane browser displaying all warnings
for the active project. Warning Source Record of shows source records for
selected warnings in this browser.

Browse

Opens the Warnings browser listing any objects in the active project that have
generated warnings. The warnings are included. You can have more than one
Warnings browser open at a time.

The following figure shows a typical Warnings browser.

[EC=—= warnings: puzzle —+—+—=p1g

Warnings of

» [puzzle @

[A Warning in tile-size-v: “filaar / * is called but not defined in any module.

Warnings for Downloaded Code of (Aspect) Browse

270

Operates on any object in the active project, listing warnings for any
downloaded code. The types of warnings listed are compiler, linker, runtime
errors, and runtime notices.

The Warnings command opens a single-pane browser displaying all warnings
for the active project. Warnings for Downloaded Code of (Aspect) shows
source records for selected warnings in this browser.

Warning Source Record of (Aspect)

CHAPTER 3

Apple Dylan Reference

Warnings (for Selection) Browse

Displays a browser that lists all warnings for the selected object.

The Warnings command opens a single-pane browser displaying all warnings
for the active project.

Warnings of (Aspect) Browse

Operates on source records and containers in the active project, listing all
associated warnings. The types of warnings listed are compiler, linker, runtime
errors, and runtime notices.

The Warnings command opens a single-pane browser displaying all warnings
for the active project. Warnings of (Aspect) shows source records for selected
warnings in this browser.

Warnings (for Selection) 271

CHAPTER 3

Apple Dylan Reference

272 Warnings of (Aspect)

Glossary

.1t —the suffix of an Apple Dylan project
document.

.dl - the suffix of a Dylan library file.
.dylan - the suffix of a Dylan text file.

.fasl — compiled Lisp file used by the Apple
Dylan development environment.

Jisp - Lisp file used by the Apple Dylan
development environment.

.xsrc — the suffix of a Macintosh resource
file.

active project — the open project that can be
compiled and downloaded to the
application nub. There can be only one
active project at a time. Only the active
project has its compiler results database
loaded in the development environment.
All relationships and aspects of the active
project are available through the browsers.
Inactive projects offer limited browsing. The
active project is sometimes called the root
project because all its subprojects are also
active.

Apple Dylan - the Dylan development
environment created by Apple, including
the framework and Creole.

Apple Dylan Listener — the window that
allows you to interact with the your
application as it runs. See connected,
tethered, application nub, runtime.

application — Internally, applications and
libraries built by Apple Dylan are identical,
except that an application includes a startup
function. An application can be started and
achieves some end result.

application nub - a tiny application that
serves as the core of your Dylan program.
The nub is essentially an empty Dylan
application. See runtime.

aspect —a view of a particular relationship
between objects. Aspects provide links
between objects that describe relationships
in a system. Source code is an obvious
aspect of an object. Another aspect of an
object is all the compiler linker, and runtime
errors or warnings associated with it. All
objects referenced by the source code of an
object are aspects of that object, as are all
objects containing a reference to that object.
You can view all defined aspects of an
object using a browser. The Aspects menu
appears on the Browser menu.

auto-indentation — services that
automatically indent source code for
readability. Controlled from the Editing
Sheet of the Preferences command.

automatic memory management - a
system that reclaims objects from memory
when they can no longer be referenced. This
also known as garbage collection. When
automatic memory management is running
a “GC” icon replaces the cursor.

273

GLOSSARY

basis — the object that forms the input for a
browser pane. The basis of a pane is
displayed in the pane header.

browser — a paned window where you
create and examine Apple Dylan objects.
Typically, browsers comprise a set of linked
panes displaying successively finer detail
about a project or object. For example, the
default project browser has three panes, the
first showing the libraries and modules in a
project, linked to a pane showing the source
folders in one of those modules, linked to a
pane showing the objects in that folder. If
you change the selection in any of the first
two panes, the succeeding panes change
accordingly. See hot link.

call tree — the references to an object and
references from an object are aspects that
can be combined to create a graphic display
of that object’s calling relationships called a
call tree.

cold link — See hot link.

compiler results database —the database
that holds object code, debugging
information, and other information
generated by the compilation.

connected —in the Listener, short for
connected to the runtime, which means the
Application Nub is connected to the
development environment. See tethered.

container — any object that contains other
Apple Dylan objects, such as projects,
subprojects, modules, and source folders.

Creole - feature of Apple Dylan providing
cross-language support, used primarily for
accessing the Macintosh Toolbox and other
existing C libraries.

274

definition entity — the compiled
representation of an object. In most uses of
Apple Dylan you are looking at the object
as compiled. However, each object has at
least one definition entity and may have
more, as in the case of a class, which has a
definition entity for each slot. It is rare that
you will need to work directly with a
definition entity, but certain browsers may
display them, using the bare icon for that
kind of object. (See “Orphan definitions in
the runtime” on page 111, “Apple Dylan
Listener” on page 113, and “Using icons in
Apple Dylan” on page 88.

development environment — the set of
browsers, commands, and tools that
support programming activities, also called
Apple Dylan. The development
environment can link to any application or
library built with Apple Dylan.

download - to move compiled code from
the development environment to the
application nub. Performed automatically
by the development environment as part of
updating, compiling, or recompiling.

Dylan text file — a file that contains a text
version of Dylan source code with the
.dylan suffix. Used for representing Dylan
source code outside the Apple Dylan
development environment.

Dylan-user module — A source module
included in all projects. In the simplest
projects, it contains all the code for the
project. In more complex projects, it
contains the module and library definitions
used to structure the rest of the project.

GLOSSARY

Emacs - an editor available on
non-Macintosh platforms. Emacs-style
editing has been partially implemented in
Apple Dylan using Fred. See also Fred.

export — 1. The Export command on the File
menu creates a Dylan text file.

2. In Dylan programming, you must write
code to export modules from libraries and
export variables from modules to make
them importable for use by your project or
by other modules, respectively.

expression - Anything that returns a value
is considered an expression in Apple Dylan.

framework — an object-oriented class
library that implements a common set of
features found in Macintosh applications,
such as the Clipboard, text editing, an event
loop and event handling, scrolling and
tracking, error reporting and event
handling, resource management and
streams. Just as the application nub is an
empty Dylan application, the framework
can be thought of as a generic, content-free
Macintosh application.

Fred - an editor used to emulate
Emacs-style editing. Fred stands for “Fred
Resembles Emacs Deliberately”. See also
kill ring.

garbage collection — see automatic memory
management.

hot link — Panes so linked that when you
select an object in the first, the contents of
the object are displayed in the second pane
are said to be hot-linked. When you split a
pane by using a splitter control, the two
panes are automatically hot-linked.

inactive project — a project that is open, but
cannot be compiled or downloaded because
its database is not loaded in the
development environment. You can open
an inactive project to browse its text or copy
code from it, but you cannot use most other
browser features. See active project.

inbox — the arrow at the left of a pane’s
header that represents the input to the pane,
that is, what is displayed there. See outbox.

incremental compilation — Apple Dylan
supports changing and compiling any
complete expression. You need not compile
all possible code to make a change. You can
compile projects, source modules, source
folders, source records, and individual
expressions. (You can even compile and
execute code that has been commented out.)

information line - the region at the bottom
of a browser window that provides
ephemeral information depending on what
you have selected. Also called the prompt
area. If you have selected a function, its
arguments are displayed. If you are
dragging an object, you are told whether it
can be dropped or not. In general, the
information line gives feedback on current
activities in the browser.

inline - In the development environment,
certain commands or mouse gestures
display their results in the same pane, or
inline, as opposed to a separate pane.

inspector window — a window that
displays information about objects in the
runtime.

275

GLOSSARY

kill ring - the means of copying text as you
edit in Fred. This is analogous to the
Clipboard, but sometimes conflicts with it.
See also Fred.

launch application nub - start the nub
running and tether the development
environment to the application nub. See
connected, tethered, runtime.

library - a set of linked modules built in
Apple Dylan with the Create Library
command.

Listener — See Apple Dylan Listener.

load order - the order of the source records
within a source folder and the order of
source folders within a module and the
order of modules within a project indicates
the load order.

Two-pass compilation eliminates load-order
restrictions of the type solved by forward
declarations in other languages, but true
load-order dependencies must still be
addressed.

meter expression — to track the use of an
expression.

module - a namespace for variable names.
Items can be exported and imported
between modules. Only specifically
exported variables are visible outside of
their module. Modules are contained in
projects. Modules contain source folders.

nub - see application nub.

object-oriented dynamic language —
Programming language supporting
self-identifying objects, with automatic
memory management, dynamic linking,
and incremental development.

276

OODL - object oriented dynamic language

open project — a project with a project
browser available. See active project.

orphan definition - a definition that exists
in the runtime but has no apparent source.
This can be caused when a source record
that defines an entity is compiled and then
subsequently renamed or deleted. Another
cause is when the definition is defined,
compiled and downloaded in the Apple
Dylan Listener.

outbox — the arrow at the right of a pane’s
header that represents the output from the
pane. Whatever is selected in the pane
drives the context of the next links.

pane — Each browser consists of one or
more panes. Each pane has a basis (the
object displayed in the header region) and a
default aspect (the kind of information
displayed about the object).

project — an application or library under
development. The project document has a
suffix of T

project file — the file in the Finder that
contains pointers into all the documents
that make up a project.

project browser — browser whose root pane
has a project as its basis. The default project
browser has three panes.

prompt area - See information line.

resource file — a standard Macintosh
resource file with the suffix .rsrc. Use
ResEdit or another resource editor to
change the contents of a resource file.

GLOSSARY

root project — The active project is
sometimes called the root project because it
makes all its subprojects active as well.

runtime - everything that has been
downloaded to the application nub or that
has been built into an application. When the
development environment is tethered to the
application nub, or to a running
application, it is said to be tethered to the
runtime.

select, selection— Using the mouse, you can
select modules, source folders, source
records, or text within source records. Most
actions in the Apple Dylan development
environment depend on what you have
selected. You can create a browser by
selecting an object and double-clicking it.
You can examine the union of aspects of
several objects by selecting them all. You
can compile individual source records or
portions of source text through selection.
Whatever is selected is highlighted.

source database — all sources for a project
are included in this database. This database
stores all the source code seen through the
browsers. See compiler results database.

source folder — a container within a
module that contains individual source
records. Source folders are used primarily
for organizing your project, but the order in
which they are listed determines load order.
There is no Dylan language construct
corresponding to the source folder.

source module — See module.

source record — the container that holds a
single piece of source code, usually
representing a single object. Source records
are contained in source folders.

splitter control- splits a pane. The
horizontal splitter control is a short,
horizontal bar just above the scroll bar on
the right of a pane. The vertical splitter
control is a short, vertical bar just to the left
of the scroll bar at the bottom on a pane.

status indicator — a small colored square
that appears in a browser pane or its header
to indicate the status of an item or object.

status indicator column - the gray bar at
the left of a browser pane where the status
indicators appear.

subproject — a project that has been
included in another project.

tethered — short for tethered to the runtime,
or application nub. To be tethered means
that the application nub is running, and
Apple Dylan is connected to it.

unconnected —in the Listener, short for
unconnected from the runtime. See runtime.

update — to automatically compile all
uncompiled code and download it to the
application nub. The action of the Update
Project command.

user-interface builder - the portion of the
development environment that helps you
create a user interface for an application.

277

GLOSSARY

278

Index

A

Abort command 176
About Apple Dylan command 176
Activate Project command 176
Active project 273
Adding
framework 131
new user interface 163
resource files 131
subprojects 131
user-interface builder 162
Add to Project command 177
All Methods of (Aspect) command 177
All Slots of (Aspect) command 177
All Subclasses of (Aspect) command 178
All Superclasses of (Aspect) command 178
Apple Dylan 273
bailing out 117
running 8
running applications in 144
user model 95
Apple Dylan Listener 113, 116, 273, 276
Apple Dylan Listener command 178
Apple menu
About Apple Dylan command 176
Hide Interface Builder command 214
Show Interface Builder command 257
Application Nub 107, 273, 276
launching 276
tethering Apple Dylan to 6
Application Nub Info command 181
Applications 1, 2, 273
building 164
building standalone 118, 164
running 15, 144
setting characteristics 104, 126
tethering to 145

Argument List (Copy Special) command 182
Argument List (Insert Special) command 182
Aspect 273
Aspect command 183
Aspects
changing 46
creating browsers for 5
showing 42
Auto-indentation 273
Automatic memory management 273

B

Bailing out 117

Basis 2, 34, 274

Break command 189

Browse menu
All Methods of (Aspect) command 177
All Slots of (Aspect) command 177
All Subclasses of (Aspect) command 178
All Superclasses of (Aspect) command 178
Aspect command 183
Call Grapher command 190
Classes of (Aspect) command 197
Class Grapher command 193
Contents of (Aspect) command 202
Direct Methods of (Aspect) command 206
Direct Methods of command 206
Direct Slots of (Aspect) command 206
Direct Slots of command 206
Direct Subclass of (Aspect) command 207

Direct Superclasses of (Aspect) command 207

Duplicate Definitions command 207

Duplicate Definitions of (Aspect)
command 208

Function Family (Aspect) command 213

279

INDEX

Function Family command 212

Functions of (Aspect) command 213

Grapher Pane command 213

Info for Selected Class command 215

List of Browsers command 228

Look Up in Online Reference command 230

Modules of (Aspect) command 234

New Browser command 234

References From (Aspect) command 249

References From command 249

References To (Aspect) command 250

References To command 249

Resource Files of (Aspect) command 251

Save Browser command 253

Show Home command 256

Source Code of (Aspect) command 258

Source Folders (Aspect) command 259

Source Records (Aspect) command 259

Source Records with Warnings (Aspect)
command 259

Status Indicators command 260

Subprojects (Aspect) command 263

Text of (Aspect) command 265

Uncompiled Modules of (Aspect)
command 266

Uncompiled Source Folders (Aspect)
command 265

Uncompiled Source Records (Aspect)
command 266

Undefined Variables (Aspect) command 266

Undefined Variables command 266

Unsaved Modules of (Aspect) command 268

Unsaved Source Records (Aspect)
command 268

Unsaved Source Records command 268

Variable Definitions of (Aspect) command 269

Variable Search command 269

Warnings (for Selection) command 271

Warnings command 270

Warnings for Downloaded Code of (Aspect)
command 270

Warnings of (Aspect) command 271

Warning Source Record of (Aspect)
command 270

280

Browsers 2, 274
built-in 24
creating for a specific aspect of an object 5
customizing 58
default project 2
inbox 275
information line 275
linking 34
project 2,276
saving configurations 61
using 15
Info for Selected Class 53
References To 49
Building
applications 164
libraries 164, 166
standalone applications 164

C

Call Grapher command 190
Call Recording command 191
Call tree 274
C code
including 132
Checking
code status 136
Classes of (Aspect) command 197
Class Grapher command 193
Class Template (Copy Special) command 195
Class Template (Insert Special) command 196
Clear command 69, 197
Close command 198
Code
C
including 132
checking status 136
compiling
excluding from 143
from Listener 141
including in 143
editing 76

INDEX

importing 171
retrieving by importing 171
sharing 168
by exporting 168
uncompiled
compiling 140
Cold link 274
Collapse command 198
Color command 199
Compact Project command 200
Compilation
incremental 275
Compile and Download Region command 200
Compile and Download Selection command 200
Compile Expression command 201
Compile Region command 201
Compiler results database 1, 2, 274
Compile Selection command 202
Compiling
code
excluding 143
including 143
from Listener 141
projects 133
selections 139
uncompiled code 140
Container 274
Containers 5
Contents of (Aspect) command 202
Continue command 203
Copy command 67, 203
Copy Special command 68, 203
Copy Title Text command 204
Create Application command 204
Create Library command 205
Creole 274
Customizing
browsers 58
development environment 83
Cut command 67, 205

D

Debugging
projects 146
Debug menu
Abort command 176
Break command 189
Call Recording command 191
Continue command 203
Expand Macro command 210
Inspect Heaps command 216
Inspect Listener Result command 218
Inspect Module Variables command 218
Inspect Selection command 221
Meter Expression command 231
Pattern Match Macro command 242
Pattern Match Macro Including Builtin
command 242
Reset Stack command 250
Defaults
setting
editing 86
Listener interaction 87
Definition entity 274
Development environment 274
customizing 83
introduction 1, 2
running 8
setting preferences 84
Direct Methods of (Aspect) command 206
Direct Methods of command 206
Direct Slots of (Aspect) command 206
Direct Slots of command 206
Direct Subclass of (Aspect) command 207

Direct Superclasses of (Aspect) command 207

Disclosure triangles 3
Duplicate Definitions command 207

Duplicate Definitions of (Aspect) command 208

Dylan text files 274
exporting 70
importing 70

Dylan-user module 274

281

INDEX

E

Editing 66
code 76
commands
Emacs-style 66,72, 76
Macintosh-style 71, 72
setting defaults 86
tools 66
Edit menu
Argument List (Copy Special) command 182
Argument List (Insert Special) command 182
Class Template (Copy Special) command 195
Class Template (Insert Special) command 196
Clear command 69, 197
Collapse command 198
Copy command 67, 203
Copy Special command 68, 203
Copy Title Text command 204
Cut command 67, 205
Expand command 209
Insert Special command 68, 216
Method Template (Copy Special)
command 232
Method Template (Insert Special)
command 233
Paste command 67, 241
Preferences command 243
Redo Clear command 248
Redo command 69
Select All command 253
Undo Clear command 267
Undo command 69, 267
Undo More command 69, 267
Emacs 66, 275
editing commands 72
Exclude Source Records command 208
Expand command 209
Expand Macro command 210
Export command 211
Exporting 275
code
sharing by 168
Dylan text files 70

282

Expression 275
Expressions
executing in Listener 5
metering 156

F

Fat applications 103
File menu
Add to Project command 177
Close command 198
Export command 211
Import command 214
New Module command 120, 237
New Project command 238
New Source Folder command 239
New Source Record command 239
New Text Window command 240
Open command 241
Page Setup command 241
Print command 247
Quit command 247
Revert command 251
Save All command 252
Save command 252
Find Again command 212
Find command 69
Find /Replace command 211
Find Selection command 212
Font command 212
Formatting commands
Color 70
Font 70
Size 70
Style 70
Framework 275
adding 131
Fred 72,275
kill ring 276
Function Family (Aspect) command 213
Function Family command 212
Functions

INDEX

monitoring 159
Functions of (Aspect) command 213

G

Garbage collection 275
Grapher Pane command 213

H

Heaps

inspecting 153
Hide Interface Builder command 214
Hot link 275

Icons

using 88, 93
Import command 214
Importing

code

retrieving by 171

Dylan text files 70
Inactive project 275
Inbox 275
Include Source Records command 214
Incremental compilation 275
Info for Selected Class browser 53
Info for Selected Class command 215
Information line 4, 275
Inline 275
Insert Special command 68, 216
Inspect Heaps command 216
Inspecting

heaps 153

Listener results 151

modules 154

stack 148

Inspect Listener Result command 218
Inspect Module Variables command 218
Inspector windows 116, 117, 275
Inspect Selection command 221

Inspect Stack command 221

K

Key command shortcuts 173, 175
Kill ring 276

L

Launch Application Nub command 227
Launching
runtime 135
Libraries 276
building 164, 166
setting characteristics 128
version numbers 106
Linking
browsers 34
panes 3, 34
Links 34
cold 274
hot 275
inbox 34
Listener 5, 273, 276
compiling code from 141
inspecting results 151
setting interaction defaults 87
Listener window 113, 116
List of Browsers command 228
Load order 120, 126, 237, 276
Load Ul Builder command 230

Look Up in Online Reference command 230

283

INDEX

M

P

Meter Expression command 231
Meter expressions 276
Metering

expressions 156

Method Template (Copy Special) command 232
Method Template (Insert Special) command 233

Module
source 277
Modules 276
inspecting 154
Modules of (Aspect) command 234
Monitoring
individual functions 159

N

New Browser command 234

New Module command 120, 237
New Project command 238

New Source Folder command 239
New Source Record command 239
New Text Window command 240

O

Object-oriented dynamic language 276
Objects
saving in panes 130
OODL 276
Open command 241
Open project 276
Orphan definitions 111, 276
Outbox 276
outbox 34

284

Page Setup command 241
Panes 2,276
basis 2, 34
disclosure triangles 3
information line 4
Linking 34
linking 3
outbox 276
root 2
saving objects in 130
splitter control 277
Paste command 67, 241
Pattern Match Macro command 242
Pattern Match Macro Including Builtin
command 242
Preferences command 84, 243
Print command 247
Project browser 276
Project files 276
Project menu
Activate Project command 176
Application Nub Info command 181
Compact Project command 200

Compile and Download Region command 200

Compile and Download Selection
command 200

Compile Expression command 201

Compile Region command 201

Compile Selection command 202

Create Application command 204

Create Library command 205

Exclude Source Records command 208

Include Source Records command 214

Inspect Stack command 221

Launch Application Nub command 227

Load Ul Builder command 230

Quit Application command 247

Quit Application Nub command 247

Recompile command 248

Run command 251

Set Project Type command 253

Target architecture command 264

INDEX

Tether to Application command 264
Update Project command 268
Projects 95, 276

active 102, 273

applications
setting characteristics 126

browsing 16

compiling 133

creating new 120

debugging 146

files 101

inactive 102, 275

libraries
setting characteristics 128

open 276

opening 11, 101

root 102, 277

saving 130

scope 97,100

setting characteristics 104
applications 104
libraries 104

sharing 168

starting 119

synchronization 109
orphan definitions 111
restoring 113

Prompt area 276

Q

Quit Application command 247
Quit Application Nub command 247
Quit command 247

R

Recompile command 248

Redo Clear command 248

Redo command 69

References From (Aspect) command 249

References From command 249
References To (Aspect) command 250
References To browser 49
References To command 249
Replace and Find command 250
Replace command 69
Reset Stack command 250
Resource files 276

adding 131
Resource Files of (Aspect) command 251
Revert command 251
Root project 277
Run command 251
Runtime 277

launching 135

untethering from 136

S

Save All command 252
Save Browser command 253
Save command 252
Saving

objects in panes 130

projects 130
Select All command 253
Selection 277
Selections

compiling 139
Set Project Type command 253
Sharing

code 168

by exporting 168

projects 168

user interface 164
Show Home command 256
Show Interface Builder command 257
Size command 258
Source Code of (Aspect) command 258
Source database 277
Source folder 277
Source Folders (Aspect) command 259

INDEX

Source module 277
Source records 1, 2, 277
Source Records (Aspect) command 259
Source Records with Warnings (Aspect)
command 259

Splitter control 277
Stack

Inspecting 148
Standalone applications

building 118
Status

code

checking 136

Status indicator column 277
Status indicators 277

and synchronization 111
Status Indicators command 260
Style command 263
Subprojects 277

adding 131
Subprojects (Aspect) command 263
Synchronization 109

restoring 113

T

Target Architecture 103
Target Architecture command 264
Tethering 6, 277

to running applications 145
Tether to Application command 264
Text menu

Color command 199

Find Again command 212

Find command 69

Find /Replace command 211

Find Selection command 212

Font command 212

Replace and Find command 250

Replace command 69

Size command 258

Style command 263

286

Text of (Aspect) command 265
Two-machine development 9, 120, 244

U

Uncompiled Modules of (Aspect) command 266
Uncompiled Source Folders (Aspect)
command 265
Uncompiled Source Records (Aspect)
command 266
Undefined Variables (Aspect) command 266
Undefined Variables command 266
Undo Clear command 267
Undo command 69, 267
Undo More command 69, 267
Unsaved Modules of (Aspect) command 268
Unsaved Source Records (Aspect) command 268
Unsaved Source Records command 268
Untethering
from runtime 136
Update Project command 268
Updating 277
User interface
adding new 163
creating 161
sharing 164
User-interface builder 277
adding 162
User model 95

\Y,

Variable Definitions of (Aspect) command 269
Variable Search command 269

wW

Warnings (for Selection) command 271
Warnings command 270

INDEX

Warnings for Downloaded Code of (Aspect)
command 270
Warnings of (Aspect) command 271
Warning Source Record of (Aspect)
command 270
Windows menu
Apple Dylan Listener command 178

287

T HE A PPLE PUBLISHI

N G

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final pages were
created on a Docutek. Line art was
created using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatinc® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

PRODUCTION MANAGER
Trish Eastman

LEAD WRITER
Linda Kyrnitszke

WRITERS
Sarah Lee Bihlmayer, Tom Parmenter,
Daphne Steck

ILLUSTRATOR
Sandee Karr

PRODUCTION EDITORS
Lorraine Findlay, Alexandra Solinski

SPECIAL THANKS TO
Jeremy Jones, Paige Parsons, Andrew
Shalit

	Using the Apple Dylan Development Environment
	Contents
	Preface
	What to Read
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	For More Information

	Learning Apple Dylan
	Introducing the Apple Dylan development environment
	Running Apple Dylan
	Running the development environment
	Opening a sample project
	Running a sample application

	Using browsers
	Browsing a project
	Using the built- in browsers
	Linking panes and browsers
	Showing different aspects of objects
	Changing aspects
	Using the browser References To
	Using the browser Info for Selected Class
	Customizing browsers
	Saving a browser configuration

	Editing in Apple Dylan
	Copy, Cut and Paste in Apple Dylan
	Copy Special and Insert Special commands

	Undo and Clear commands
	Replace and Find commands
	Formatting commands
	Importing and exporting Dylan text files
	Macintosh and Emacs- style editing commands
	Macintosh- style key commands
	Emacs- style key commands

	Editing code

	Customizing the development environment
	Setting development environment preferences
	Setting editing defaults
	Setting Listener interaction defaults

	Using icons in Apple Dylan

	Using Apple Dylan
	Apple Dylan User Model
	The Project
	What goes into a project?
	WhatÕs
	in a project?
	What happens when you open a project?
	The active project

	Targeting 68K and PowerPC Platforms
	Application or library?
	Library version numbers

	The Application Nub
	Keeping your project synchronized
	Orphan definitions in the runtime
	Status indicators and synchronization
	Restoring synchronization

	Apple Dylan Listener
	Inspector windows
	Bailing out of Apple Dylan
	Building standalone applications

	Starting a project
	Creating a new project
	Setting the project type for an application
	Setting the project type for a library
	Saving a project
	Saving the objects in a pane
	Adding a subproject or resource file
	Adding the framework
	Including C code

	Compiling your project
	Launching the runtime
	Untethering from the runtime
	Checking code status
	Compiling a selection
	Compiling all uncompiled code
	Compiling code from the Listener
	Excluding code from compilation
	Including code in compilation
	Running an application in Apple Dylan
	Tethering to a running application

	Debugging a project
	Inspecting the stack
	Inspecting Listener results
	Inspecting heaps
	Inspecting modules
	Metering expressions
	Monitoring an individual function

	Creating a user interface
	Adding the Apple Dylan interface builder
	Adding the new user interface
	Sharing your user interface

	Building your application or library
	Building your standalone application
	Building a library

	Sharing code
	Sharing projects
	Sharing code by exporting
	Retrieving code by importing

	Apple Dylan Reference
	Key Command Shortcuts
	Command Reference
	Inspector window commands
	Abort
	About Apple Dylan
	Activate Project
	Add to Project
	All Methods of (Aspect)
	All Slots of (Aspect)
	All Subclasses of (Aspect)
	All Superclasses of (Aspect)
	Apple Dylan Listener
	Application Nub Info
	Argument List (Copy Special)
	Argument List (Insert Special)
	Aspect
	Break
	Call Grapher
	Call Recording
	Class Grapher
	Class Template (Copy Special)
	Class Template (Insert Special)
	Classes of (Aspect)
	Clear
	Close
	Collapse
	Color
	Compact Project
	Compile and Download Region
	Compile and Download Selection
	Compile Expression
	Compile Region
	Compile Selection
	Contents of (Aspect)
	Continue
	Copy
	Copy Special
	Copy Title Text
	Create Application
	Create Library
	Cut
	Direct Methods of
	Direct Methods of (Aspect)
	Direct Slots of
	Direct Slots of (Aspect)
	Direct Subclass of (Aspect)
	Direct Superclasses of (Aspect)
	Duplicate Definitions
	Duplicate Definitions of (Aspect)
	Exclude Source Records
	Expand
	Expand Macro
	Export
	Find/Replace
	Find Again
	Find Selection
	Font
	Function Family
	Function Family (Aspect)
	Functions of (Aspect)
	Grapher Pane
	Hide Interface Builder
	Import
	Include Source Records
	Info for Selected Class
	Insert Special
	Inspect Heaps
	Inspect Listener Result
	Inspect Module Variables
	Inspect Selection
	Inspect Stack
	Stack window commands
	Inspector window commands
	Launch Application Nub
	Listener
	List of Browsers
	Load UI Builder
	Look Up in Online Reference
	Meter Expression
	Method Template (Copy Special)
	Method Template (Insert Special)
	Modules of (Aspect)
	New Browser
	New Module
	New Project
	New Source Folder
	New Source Record
	New Text WindowNew Text Window
	Open
	Page Setup
	Paste
	Pattern Match Macro
	Pattern Match Macro Including Builtin
	Preferences
	Print
	Quit
	Quit Application
	Quit Application Nub
	Recompile
	Redo Clear
	References From
	References From (Aspect)
	References To
	References To (Aspect)
	Replace and Find
	Reset Stack
	Resource Files of (Aspect)
	Revert
	Run
	Save
	Save All
	Save Browser
	Select All
	Set Project Type
	Show Home
	Show Interface Builder
	Show Interface Mapping
	Size
	Source Code of (Aspect)
	Source Folders (Aspect)
	Source Records (Aspect)
	Source Records with Warnings (Aspect)
	Status Indicators
	Style
	Subprojects (Aspect)
	Target Architecture
	Tether to Application
	Text of (Aspect)
	Uncompiled Source Folders (Aspect)
	Uncompiled Source Records (Aspect)
	Uncompiled Modules of (Aspect)
	Undefined Variables
	Undefined Variables (Aspect)
	Undo
	Undo Clear
	Undo More
	Unsaved Modules of (Aspect)
	Unsaved Source Records
	Unsaved Source Records (Aspect)
	Update Project
	Variable Definitions of (Aspect)
	Variable Search
	Warning Source Record of (Aspect)
	Warnings
	Warnings for Downloaded Code of (Aspect)
	Warnings (for Selection)
	Warnings of (Aspect)

	Glossary
	Index

