Using
Lingo

Version

Trademarks

Action!, Authorware Professional, Macromedia, Macromedia Director, Macromedia Three-D, MacroModel,
SoundEdit Pro, and SoundEdit are trademarks of Macromedia, and Authorware and MacroMind are registered
trademarks of Macromedia, Inc. All other trademarks are the property of their respective owners.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
REGARDING THE ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY
OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE
MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 1994 Macromedia, Inc. and Apple Computer, Inc. All rights reserved. This manual may
not be copied, photocopied, reproduced, translated, or converted to any electronic or machine-
readable form in whole or in part without prior written approval of Macromedia, Inc.

First Edition: February 1994
Macromedia, Inc.

600 Townsend St.

San Francisco, CA 94103

Contents

INTrOAUCTION ... 1
USING LINGO ceeiiiiiieeee e 2
UsING thiS GUIAE «oeutieiiiiiiiiie et 4
What's in this GUIAE ...eoveiiiiiiiie e 4
What you should readccoooiiiiiiii 6
Conventions used in this guide.........cccovviiiiiiiriiiene e 6
Learning Lingo with online files.........ccoooviiiiiiiiiiiiie e 8
The LinGOo EXPO..iiiiiiiiieiiie ettt 8
TUtorial MOVIESoviiiiiiiiiieiie it 10
Online help eXamples........oooiiiiiiiiiiiieee e 11
New Lingo features in Director 4.0......ocooviiiiiiiiiiiieeeeee e 13
Using outdated Lingo......cooouiiiriiiiiieiiiee e 14
Chapter 1—Script BaSICS........ccoooovieieeceeceeeeeeeeeeee e, 17
Introduction tO SCIIPINGveeeiriiiieeiiiiiiee ettt e e 18
WHAE Q@ SCIIPE 1S:-ttteniieeitie et et e ettt et e e e e 18
IVLESSAZES «.eeeeeiiiiiiieiee et e e ettt e e et e e e e 23
HandIersoovieiiiiiiiie e 25
DEDUGZING -ttt 28
Testing a statement in the message Window.........cccovcieiiiiiiiieennienns 31
The SCTIPUNG PIOCESS ..vteetieeiiieeiiee et e ettt eeiee et e et e et e aeeeeaneeeeeneeeeneee 32
WWTIEIILE SCTIPES.ueevttiieeeeeeeeeeeeeiiiiite ettt e e e e e e ettt e e e eeeeeeeaneetbbneeeeeeeeeeens 33
Writing different types Of SCIPLS ..evvvvereieeriiieiiee e 34
Using the Lingo MEeNUcooiiiiiiiiiiieiiieeee e 35
Editing teXt fOT SCIIPLS -.veerurreeiiieiiiieiiieeeiieeeiiee et e eeeseeeeeeeee e e 36
Finding and changing teXt in SCTIPLS.......ccoveerrurierrieeniieenieeeiee e 37
Removing a script from the SCOTe........ocvrriiiiriieiiiieiieee e 39
SCIPE MUMDETS -.eeiiieiiee e 39

Chapter 2—Working with Navigation

Adding navigationcoeccvveriiiiniie i
Creating looPS.....veeeeeeeriierieeee e
Moving between SeqUENCes.........ccceevvveeenveeennne.
Identifying movie locationsccccee....
Moving forward and backward..................
Pausing and continuing a movie.........ccceecveeenee.
Returning to the same 10cationc.cooooiiiiiiiiiiiiii e
Chapter 3—Conceptsccceeevveevvecieen.
TYPes Of SCIIPLS «nevvveerireiiieeiie e
Primary event handlers
SPIIEE SCIIPES cueeiiiiiiieeieeee e ettt ettt e e e e e e e e
Scripts Of €ast MEMDETSeiiiiiiiiiieiie e 69
Frame SCIIPES c.ueevviiieeeieeeee e e e 70
IMOVIE SCTIPES.cceeeiiiiiiieieiieeeeee e it eeee e e e e e e e e e e e e eeeneneeeeae 70
Introducing events, messages, and handlers...........ccocccoviiiiniiiiniinn 71
DESCIIDING VOIS ...iiiiiiieiiie ettt 74
How Director reSponds tO MESSAZES .. .eevuvrrerirreeiieeaiiienieeeniieeeneeeeeeee e 77
Messages to primary event handlerscccoooiiiiiiiniiini, 77
MESSAZES tO ODJECES..eeeniiiiiiiieeiiee e 79
The advantages of handlers...........cccoooiiiniiiiniii e, 82
Where to place handlers..........cccooviiiiiiiiiiii 82
Defining handler names..........oocoovoiiiiiiiinie e 83
Strategies for placing handlers...........cccoviiiiiiiiii 84
Describing CONAItIONS.couvviiiiiiieiiieeie et 86
Scripts that make choiCes.....ocoviiiiiiiiiiii e 87
if. . then...else StrUCTUESccooiiiiiiieiiiiiiiic e 90
Repeating an actionccooviiiiiiiiiiiieiiiii e 94
Repeating a specific number of timescccoveiieiiierniieinie e, 95
Updating Vallesooouiieriieieiie et 97
Assigning values to variablescccoviiiiiiiiii 98
Creating variablesoooiiiiiiiiie e 99
Handlers that return results...........ooovieiieriiniiiiieieee e 102
Using arguments tO Pass VAIUESoeoriieeriiieriieeniie e eiee e 103
HoW Lingo fIOWS ...eoouiiiiiiiiiiiieee e 105
Working with values.........ccooiiiiiiiiii e 106
Testing and setting CONAILIONSeeiviveeriiieeriieeiee et 106

Operators

Expressing literal valuesccoooiiiiiiiiiiiiii e 111

TEXE SEIIIIGS ..ot e ettt et e et e e s e e 111
TIEEZOTS e 112
Decimal numberscccoiiiiiiiiiiiii 112
Cast numbers and NAMEScooeiiiiiiiiiiiiiiiic e 113
SYMDOIS L 113
CONSEANES ...t 114
The elements Of LINZOoooiuiiiiiiiiiiiiiiiiie e 115
UsIng LINGO0 S SYIIEAX ...oiuviiiiiiiiiiiiiiiie it 117
Parentheses.......oooiiiiiiiiiiiii 117
Character SPACESccuiiiiiiiiiiiiii e 117
Upper- and lowercase Lettersccooiviiiiiiiiiiiiiiiiiiciciic e 118
COMIMENES ...ttt 118
Optional keywords and abbreviated commandsoe. 119
The tracing symbols in the message Windowccccccceociieniiennne.. 120
Chapter 4—Working with Puppetscccoccooiiiiiiiii, 121
What puppets offer........cccooiiiiiiiiiiiii 122
Creating a sample PUPPELcc.ooviiiiiiiiiiiiiiicii et 123
USING PUPPELS .o 126
USING PUPPEE SPIILES ... 126
Using puppet SOUNSooiiiiiiiiiiiiiiiiieiecee e 129
UsSINg pupPet teMPOS ...oeeiviiiiiiiiiiiie i 130
Using puppet transitionsccoooiuiiiiiiiiiiriiiie e 130
Using puppet palettesoooiioiiiiiiiiiiiiiiiieicic e 132
Chapter 5—Manipulating SPrites...........cccocceoiiiiiiiiiiiieieeiees 133
Making sprites draggableccccooiiiiiiiiiiii 134
Checking a sprite’s [ocation...........ccoouiioiiiiiiiiiiiiiieiicci e 135
Checking cursor and sprite 10cationscccceeeieiiiiniiiiiiiiieniens 135
Comparing sprite loCationsceouiiouieriiiiiiiiiiieiieiie e 138
Controlling sprite I0Cationsccoouiiiiiiiiiiiiiiiiiieiic e 141
Changing a sprite’s JoCation..........cooiioiiiiiiiiiiiiiiieic e 141
Constraining a moveable SPrite...........ccocvieiiiiiiiiiiiiiiiiiiieieee 142
Switching a cast member assigned to a SPIiteccceevveiiiiiiiiiieiiennnns 144

Chapter 6—Using the Keyboard and Mouse................cc..cc........ 147

EItINg TEXE..eeiuiieeiiie ettt 148
Checking Keys «...eoeiiiiiiieie e 149
CRECKING TEXE +o vttt e 156
Modifying text fIeldsoooiiiiiiiie e 158
Additional ways to update text fieldscccovoiiiiiiiiii 160
Detecting a rollOVETeiiiiiiiiii e 162
Checking for tiIMEOULS . ..oovviiiiiiiiiee e 165
Chapter 7—Controlling Sound..................ccooooiiiiiieceee 171
Playing puppet SOUNMS........eeeriiieiiie it 172
Playing sound in a specific channel.............coooiiiiiiiii 174
Checking for sound conditions...........oooeeiriieriieeniie e 175
Checking sound anywhere in the moviecccceviiiiviiiiniiiince 175
Checking sound in a specific channel ..o 176
Turning sound Offooiiiiiii e 177
Measuring a SOUN’S TIIIIE ...eevuurrieeiiiiiiieeeiiiiee ettt e et e e eeeeeireee e 178
Controlling sound vOIUMEcccoiiiiiiiii e 179
Setting and testing the sound level..........ccccooiiiiiiiniiiie 179
Fading sound in and out..........ccoooiiiiiiiiiiienc e 184
Chapter 8—Creating Interfaces..............ccccooovooviviicieeceeee 187
Creating MEINUSeoeeeeiiiiiiiiieeeeee e e e ettt e eeeeeeeeeaentt e eeeeeeeeeeeesnanneens 188
Installing @ MEeNU.....ooooiiiiiiiiiee e 188
Defining what’s in the menuoccooviiiiiinicc e 191
Removing a Menueeiiiiiiiiiiiiiiiccceeeeeceeee e 194
CreatiNg CUTISOTS coeeeiiiiiiiiiiieieeeeeeee ettt eeeeeee e e sttt eeeeeeeeeeeeesnannnnes 196
Creating DULLONS «.eeoveieiiiieriiie et 201
Controlling bUtLONScouviiiiiieiiie et 202

Vi

Chapter 9—Movies in a WINdOWcccooiioiieiiieeee 205

TUSIIE JISES. -ttt ettt 206
Creating LISTSeeeuieeeiie ettt 209
SOLTNG TISES. ettt 211
Checking items 10 @ LSteeiiiieiiieie e 211
Adding items 0 a LISte...eeeiouiieiiieeiie e 212
Changing items in a TStooooiieiiiiinii e 213
COPYING LISES -ttt 213

What a movie in a WiNdOW IS........cocuieriiiiiiiiiinienie e 214

Creating a sample movie in @ WindOWccoovviiiiieiiiee e 216

Controlling WindOWScceiiiiiiiiieie e 223
Setting the WiNdOW CYPE ...veeriieiiiiiiiiee it 223
Opening the WINAOWcoiiiiiiiiiiiiii e 224
Moving the window to the front or backcoccceiviiiiiiiiniinn, 225
Making the window visibleooccoviiiiiiii 225
Displaying a window title.........ccoooiiiiiiiiiiie e 226
Interaction between Windowsccceerviiiiiiiieniiciiieiii e 226
Setting the window size and location..........coocevivieiiieeiieeneeee, 227
CloSING WINAOWS ...eeiiiiiiiiiiiiee ettt 229
Listing the WINAOWSoooviiiiiiieiiie e 229

Chapter 10—Parent Scripts & Child Objects................cc...c......... 231

Why use child ObJectscuviiiiiiiiii e 232
Notes for experienced Programmers.cceevveeerveerneeennieeenieeanenees 234

Looking at a simple child object........ccooooiiiiiiiiiii 235

WIItING @ PATEIE SCTIPEL.ceeeeeeieiiiiiiiiiiiiiiieeeeeeeeiieiee et e eeeeeeseiiinneeeeeeeeees 237
What’s in @ Parent SCIIPt.....eeerureereeerieerieee e eeee e e sieeeeeeee e 238
Declaring property variablescccoooeiroiiiniiiinieieeee e 239
Creating a birth handlerccooooiiiiiiiiii e
Using additional handlersccooooiiiiiiiin e

Creating child ObJeCts...uviiiiiiiiiii e

Controlling a child object.......ooooiiiiiiiiii

Looking at multiple OBJECtSvevuiieriiiiiiiieeie e

Creating multiple child objects
Understanding the parent SCripts.........oceerueerriierrieerieenee e 258
Understanding the ancestor SCriPt.......oceevveeerieerrieeriieenee e 259
Understanding the movie SCIPL......eevrierriieiiiie e 261
Setting up a list for child objectscceviiiiriiiiiiiieee 262
Adding the handler that creates the balls...........coccoiviiiiiiiiniinn, 264
Testing what you have Writtencccoeviiiiniiiiiiceeee e 266

Studying the movie MECHc.coiiiiiiiiiii e 267

Vil

Appendix A—Using XCMDS & XFCNS.........ccccooveiiniiieiiiieie 269

Using XCMDs and XFCNSs in DIrector.....cooueierieeiiieeniieenieeeiee e 270
Differences between XObjects and XCMDScceevviiiiiieeniieennen. 271
Learning to use XCMDSuiiiiiiiiiiiiiiiiecceeeeeeeeee e 272
Opening XCMD FESOUICTESvvvviiieeeeiiiiiiiiiiiieeeeeeeeeeeeiieeeeeeeeeeee 272
Viewing XCMD IeSOUICES......cccuuiiiiiiiieieeeeiiiiiiiiieeeeeeeeeeeeianneees 273
Closing XCIMD FESOUITESuvveeruiieeriiieeaiieeeiieeeieeeaieeeneneeeneeeeeneeens 273
Using an XCMD or XFCN ... 274
XCMDs and callbacks.......cceeiiiiiiiiiiiiiiiiiiecc e 275
Using a callback handler............ccoooiiiiiii 275
Creating the callback objectoccvviriiiiiiiiiiie e 281
Specitying the callback handler............coooiiniiiiiiiiie 281
XCMD and XFCN callback requestsoeevveieniieriieeniieenieeeiee e 282
Appendix B—Using XObjJecCtS..........ccooovviiiioiicceeeeeeeeee e 287
WhY U8€ X ODJECES ettt 288
General 0bject theory.....ociiiiiiiiie e 288
What an XODJECE 1S «eevuvvreriieeiiieeiee et 289
Learning how to use XODJECES ...uuvieriiririiieriiieriee e 292
Basic XODbJeCt SCIPIIZvveererieeriiieaiiee et eiie et e et e e eeieeeeeeee e 293
What happened here?........cccoooiiiiiiii e 294
Working with multiple objects.......oovriiiiiiiiiiieeiee e 294
Using basic FIlelO ..o 297
Syntax for FIelOcciiiiiiiiiii e 297
Resolving pathname eITOTSveiieieiiieeiiieeriee e 299
Using basic device control.........cooiiiiiiiiiiiiinii e 300
Creating an instance of the XODbjJect.....oooveriiiiriiiiiiieiieeeeee 301
Sending commands to the devicecoooiveviiiiiiiiiie e 302
Disposing of the object......cviiiiiiiiiiii e 303
Special considerations for device control..........ccoocoeeviieiniiieniieennes. 303
Using serial deVICES ..oouviiiiiieiiiieeiie et 308
Retaining interactive CONErol.........covviiiiriieiniieiiee e 309
Testing the position 0f @ deViCeooviiiiiiiiiriiiieeeeeee e 312
General tips 0n XODJECt USAZE ...veervvreiiiieiiiieiiie e 313
Storing instances in global variablesccocoiiiiiiiiii 313
Handling XObject names and filenamesccoocceeviieeniieniennnnes. 313
Handling pathnames...........oooviiiiiiiiie i 314
Always using MIDISPOSE ..eevviieriiiiiiiieiiiee it 314
XODJECt FEIEIEIICE .. eeutieeiiiieeeiiee ettt ettt 315
SerialPort XODJEC . euveeiiiieiiieeeiee et 315
FIleIO XODJECE ..ottt 320
OrthoPlay XODJECES «.vveeevieiiieeiiieeeiie ettt 325

viii

ApPpPeNdixX C—FaCtOFIESccoviiieiieieieceee e 341

INtroduction tO fACTOTIESceeuiveriii et 342
ODbjects and MeSSAZES....ceouvieiiiieriieeeiie ettt e e 343
How factories are defined.........oooooiiiiiiiiiiice e 345
Instance variables........ooiiiiiiiiiiiie e 346
The perFrameHook Propertycoccceeviiiiniiiiiiieieeeieeee e 347
Creating objects from factoriesoovvieiriieiiieenie e 348
Special methods In factories.ooouvviriiiiiiie e 349
Creating and using object arraysccoeveeerieeriieeniie e 349
Removing an object from Memoryc.ccvvevveerrieenieeniee e 350
The me KeyWord ...ooooiiiiiiiee e 350
INABX . 353

Introduction

Lingo—Director’s scripting language that adds interactivity to
your multimedia productions—expands the possibilities for your
movies. You can create movies that users can explore and travel
through in the order that suits them best; that communicate with
users by receiving and sending information; that combine
animation and sound in ways that the score alone can’t; and that
let you precisely control text, sound, and digital video.

This introduction to Using Lingo tells you:
0 The features that Lingo provides

0 What this guide contains and what the typographical
conventions indicate

0 Which Lingo features are new in Director 4.0.

Using Lingo

Lingo adds an intelligent dimension to your movies beyond what the
score offers. With Lingo, you can bring the following features to your
Director movies:

O

Traveling and exploration. Y our user can choose to travel in and
explore different segments of your movie or branch to a separate
movie.

Interactivity. You can evaluate and respond to user actions. For
example, your movie can let users drag objects to different places
on the screen, make choices by clicking buttons, enter text, or ask
the user a specific question and let the user know whether the
answer is correct.

Sprite control. You can animate sprites and control their location
and appearance in response to changing movie conditions and user
input.

Text manipulation. You can combine and edit text as the movie
plays. In addition to reading text that you display, users can make
their own entries part of the text. For example, the movie can
prompt users to enter their names and then address the users by
name for the rest of the movie.

Sound control. You can play sounds at different times than the score
allows, control sound volume, and fade sounds in and out.

Working with external files. You can import data and text files from
outside Director and modify them. This lets you build movies that
receive and respond to changing input from the outside world.

Movies in windows. Director can play more than one movie at a
time. The movies can play independently of each other or
interact. For example, you could use a Director movie as the
interface for a database.

Interfaces. You can create common interface elements such as
menus, buttons, checkboxes, and beeps.

Introduction

Parent scripts. You can create parent scripts, which you can use to
generate a set of objects that share characteristics but can behave
independently. For example, Lingo can create a series of buttons
that animate in a similar way or a flock of birds that look the same
but each fly slightly differently.

XObjects. You can create software modules that interact with
external objects such as video cards, and CD-ROM players.

Math operations. You can evaluate many mathematical equations
and relay the result for use elsewhere in the movie.

HyperCard commands. You can use XCMDs from HyperCard to
perform many functions within Director.

Using this guide

This guide is for the multimedia developer who is already familiar with
Director’s animation features. It assumes that you’ve read the manuals
Using Director and Learning Director.

Use this guide to learn about strategies for adding interactivity and
flexibility to your movies through Lingo.

Before you start, remember that even though basic Lingo greatly
increases your control of a movie, the entire body of Lingo is a deep
subject that requires time and effort to learn. Full mastery of Lingo
comes from months of experience, but each aspect that you master
adds to the ways you can enhance your movies. The more features
you know, the more you can achieve; but you don’t need to be able
to use all features to get useful results.

What’s in this guide

This book includes ten chapters, three appendixes, and an index.
Chapter 1, “Script Basics,” introduces basic concepts about scripts.

Chapter 2, “Working with Navigation,” explains ways to allow
movies to branch to different frames or other movies regardless of
where frames are placed in the score.

Chapter 3, “Concepts,” introduces the theoretical concepts behind
Lingo and scripting.

Chapter 4, “Working with Puppets,” shows you how to make the
contents of the score channels independent of the score and control
them directly from Lingo.

Chapter 5, “Manipulating Sprites,” shows you new ways to move
sprites on the stage, make movie’s actions depend on where sprites
appear, and change which cast member is assigned to a sprite.

4 Introduction

Chapter 6, “Using the Keyboard & Mouse,” describes ways to check
what the user enters with the keyboard and mouse and have the movie
respond accordingly.

Chapter 7, “Controlling Sound,” shows you how to turn sounds on
and off'in response to events in the movie instead of from settings in
the score, and how to control sound level.

Chapter 8, “Creating Interfaces,” describes ways to create and control
interface items such as menus, buttons, and checkboxes.

Chapter 9, “Movies in a Window,” explains how you can play more
than one movie at the same time.

Chapter 10, “Parent Scripts and Child Objects,” shows you ways that
you can create a set of objects that are similar but can still behave
independently of each other.

Appendix A, “Using XCMDs and XFCNs,” describes ways you can
use HyperCard XCMDs and XFCNs in your movies.

Appendix B, “Using XObjects,” explains creating and using
XObjects.

Appendix C, “Factories,” explains a way to create more than one
object from the same Lingo script. This is an alternative to parent
scripts.

What you should read

Where you should begin in this guide depends on your background:

O

If Lingo is the first scripting language you’ve worked with, you
need to become familiar with some fundamental scripting
concepts. Chapter 1, “Script Basics,” explains those concepts and
presents simple scripts to demonstrate these concepts.

If you have experience with a scripting language such as
HyperTalk but are just learning Lingo, you are already familiar
with many of the scripting concepts that Lingo uses and are ready
to learn how to write scripts for Director. See Chapter 2,
“Working with Navigation,” for information about using Lingo
to provide navigation within a movie and to branch to other
movies.

If you are familiar with using Lingo for navigating and branching
in movies, you can start learning the concepts and features
described in Chapters 3 through 10.

If you are unfamiliar with controlling sprites from Lingo, be sure
to read Chapter 4, “Working with Puppets.”

Conventions used in this guide

This guide uses the following visual and naming conventions:

O

O

The terms “Lingo” and “Director” refer to version 4.

Within the text, and in Lingo examples throughout the book,
Lingo language elements and parts of actual scripts are shown in
Couri er font.

Here is a sample line of code:
put 2 + 2 into answer
Here is a command name within a line of text:

Use the set command to control object properties.

Introduction

Quotation marks that are part of Lingo statements are shown in
the text and Lingo code examples as straight quotation marks (")
rather than as “curly” quotation marks.

"This is a quoted Lingo string."

Quotation marks that surround names of cast members, movies, or
fields are shown in the text as “curly” quotation marks.

Variables used to represent parameters in Lingo code and appear
in italics; for example, whichCastMember is commonly used to
indicate where you insert the name of a cast member in Lingo
code. The names of sample titles such as Noh Tale to Tell also
appears in italics.

Paragraphs next to the Tip> note contain useful information that
can help with using Lingo but aren’t essential for learning Lingo.

The continuation symbol (7) (which you enter by pressing
Option-Return or Option-L) indicates that long lines of Lingo
have been broken onto two or more lines. Lines of Lingo that are
broken up this way are not separate lines of code. When you see
the continuation symbol in this manual, you can recombine the
lines when you type them into a script window.

Learning Lingo with online files

Director 4 includes three ways to learn Lingo in addition to this guide:
0 The Lingo Expo

0 The Learning Lingo tutorial movies

0 The online help and help settings files.

Each of these is discussed in the following sections.

The Lingo Expo

A first step for learning Lingo is to explore the sample movies in the
Lingo Expo folder. You might already be familiar with the movies
from studying the score and cast, but look at them again and notice
what Lingo achieves.

To illustrate typical ways that these features are used, your Director
package contains three sample titles:

0 Noh Tale to Tell, based on a story from traditional Japanese theater,
uses Lingo to let users travel back and forth through parts of the

story.

O Fumiture + Philanthropy, an information kiosk about an exhibition
of furniture design, demonstrates a wide range of user interactivity
and information handling.

0 MECH, asource of simulated gears, balls, and ramps that you can
drag onto the stage and combine to create complex machines, uses
advanced Lingo.

These samples are common types of movies that people create with
Director. They are intended to give you the background you need to
create a similar project yourself.

8 Introduction

The Navigator provides a convenient way to play and study the sample
titles. You can use it to play any of the titles and study the Lingo that
each title contains. In addition, the Navigator’s Lingo index shows you
examples of Lingo used to implement specific features in the titles.

Remember that the Lingo in these movies increases in complexity.
Noh Tale to Tell contains basic Lingo. Furniture + Philanthropy uses
more complicated Lingo, but you can learn very useful Lingo tricks
from it with a reasonable amount of effort. MECH uses advanced
Lingo. However, you do not need to understand all of Lingo before
you can use the parts of it that are demonstrated in these movies.

Explanations in this manual often refer to Lingo used in the sample
movies. This helps you better understand the feature by seeing it in the
context of a movie. But besides teaching you Lingo, these movies
show you typical Lingo scripts that you can imitate in your own
movies, and illustrate approaches to structuring Lingo for an entire
movie.

Tutorial movies

The Director package also includes tutorials that contain the building
blocks for the sample movies. The step-by-step tutorials throughout
this book use the following movies in the Learning Lingo folder:

0 Storybook (folder). This folder contains tutorial movies that are
excerpted from Noh Tale to Tell. The individual movies are:

& “BasicNav,” in which you write Lingo that determines how
the movie can branch to different frames or let the user decide
when to pause or continue

¢ “BNOM,” which shows you how to write Lingo that returns
to the frame that the movie was at when the movie branched

<@ “IfThen,” in which you write Lingo that chooses an action
based on conditions and events in the movie

@ “ITOM,” a companion movie to “IfThen,” which “IfThen”
can branch to

¢ “MyMenus,” which shows you ways to install custom menus

¢ “Shared.dir,” which contains the shared cast used by the
tutorial movies in the Storybook folder.

& “Sound,” in which you control sound levels and fade sound
in and out

¢ “Timeout,” which has you specify what happens when no
one uses the keyboard or mouse for a specified period of time.

0 Kiosk (folder). This folder contains tutorial movies that are
excerpted from Furniture + Philanthropy. The individual movies
are:

@ “Cursors,” in which you write Lingo that changes the cursor
to indicate movie conditions

¢ “Rollover,” in which you write Lingo that checks when the
cursor is over specified sprites

& “UserKeys,” an exercise that teaches you how to combine
display text and checks which keys the user presses.

10 Introduction

O Simulation (folder). This folder contains several movies that are
simple examples of the type of Lingo used in MECH. The
individual movies are:

&

“INTERACT,” a movie used by the tutorial movie
“MIAW,” is also in this folder

“Lists,” which lets you create a simple list

“MIAW,” an exercise in which you create a movie that can
create a2 window and play a separate movie in it

“PareDone,” which is a finished version of the movie you
Yy
create in “Parents”

“Parents,” an exercise that has you write Lingo that creates
more than one child object from one parent script

“SimpDone,” which is a finished version of the movie you
create in Simple

“Simple,” an exercise that has you write a simple parent script

“Wallcovering movie,” a QuickTime movie used by the
movie “MIAW.”

Not all the Lingo in the sample movies is explained in the tutorials.
The best way to learn how the movies were put together is to take
them apart and examine their scripts individually.

Online help examples

The online help system for Director includes a description of each
Lingo command. In addition, it includes an example of each command
in use that you can copy and paste into a script window. Both the
Director 4.0 help and the help settings file must be in the same folder
as your application.

11

Help note indicator

Note

To use the help settings file:

Launch the Director application.

Open a script window.
The Lingo menu appears.

Choose Help Pointer from the Apple menu or press
Command-?.
Your cursor turns into the help cursor.

Choose the command you would like help on from the Lingo
menu.
The help screen for that command appears.

SIe——————— Help window

8.

Bookmarks v

oz |
TOMICS HOTES E' SEARCH

/ importFilelnto (Lingo)
Syntax: importFilelnto costibades, Fledsme]

This command replaces the content of cast member specified by cssdtdemndes
with the file specified by #Flefisme

Click the Motes button at the top of this Help window to see an example of the use
of this Lingo element.

ElE

Click the help note indicator.
The help note screen appears.

Copy any script fragments you would like to use.
Click OK to cancel the help note dialog box.

Paste into the script window.

The Lingo that you copy from the help window is an example, and not
necessarily in the final form that it needs to be to run in your movie. Expect to
change references to items such as cast members, variables, and markers to the
appropriate versions before the Lingo runs in your movie.

12

Introduction

New Lingo features in Director 4.0

Director 4.0 introduces the following new Lingo features:

O

Windows that can play auxiliary Director movies with each
movie’s Lingo in effect. You can create and delete these windows
as your primary movie plays. (See Chapter 9, “Movies in a
Window.”)

Parent scripts, which let you create a set of similar objects on
command from the same parent script. This is a simpler alternative
to factories in earlier versions of Director. (See Chapter 10,
“Parent Scripts and Child Objects.”)

Removing Lingo source code text from final movies. This lets you
protect a movie’s scripts when you create projectors and protected
movies, and immediately check whether a script’s syntax is valid
before playing the movie.

An easier way to enter, edit, and check scripts. Movie, frame, and
sprite scripts are now treated as cast members. Director 4.0 also
checks whether a script’s syntax is correct as soon as you enter the
script, which saves rewinding and playing the movie to test a
script’s syntax. (See Chapter 1, “Script Basics.”)

An important difference is that when you edit an existing script
and then press Enter, your changes are made to the original script.
This differs from earlier versions of Director, in which pressing
Enter after editing an existing script automatically created a revised
version of the script and assigned it a new script number.

An improved, more consistent approach to handling messages and
defining event handlers. (See Chapter 3, “Concepts.”)

Additional cast and file management elements. The new elements
let you use Lingo to do such things as find out or change cast
member’s type, color depth, palettes, and other attributes; copy
and paste cast members to and from the Clipboard; and move cast
members within the cast window.

13

0 Lists, which offer a simpler way to hold a series of values. This is
an alternative to using factory arrays with mGet and mPut . New
Lingo elements for manipulating values are also included.

0 New math features, including trigonometric and exponential
functions.

O Ability to save modified files using Lingo.

For a complete list of the Lingo elements that are new in Director 4.0,
see Appendix A “Lingo Changes” in the Lingo Dictionary.

Using outdated Lingo

Director 4.0 introduces some changes in Lingo syntax. As a result,
Director 4.0 does not support all Lingo in movies created with earlier
versions of Director. Director 4.0 automatically updates some
outdated syntax when opening an old movie. Also, when the Allow
Outdated Lingo checkbox in Director’s Movie Info dialog box is
turned on, Director does run some types of outdated Lingo. However,
you cannot use any outdated Lingo when you create new scripts in
Director 4.0.

14

Introduction

The following table lists the Lingo syntax that is outdated in
Director 4.0 and indicates the effect of turning on Allow Outdated

Lingo:

Feature in earlier Changes in Updated Can be used

version Director 4.0 when movie with Allow

opens? Outdated
Lingo?

Sprite scripts Sprite scripts now require No Yes
that on nouseUp and
on nmouseDown events
be declared explicitly.

Frame scripts Frame scripts now require No Yes
thaton enter Frane
and on exi t Fr ame be
declared explicitly.

Text window scripts Scripts in text cast Yes Not applicable,
members are now in Director 4.0
movie scripts. automatically

updates

Macro syntax Macro syntax no longer Yes Not applicable,
used.Useon ... to Director 4.0
define handlers. automatically

updates

Loose syntax at end No longer ignores extra No Yes

of line text at the end of a line.

Handlers that contain Now generate a syntax No Yes

improper syntax error.

Using variables Now generates an error No Yes

before they are when the script is

defined compiled.

Octal syntax (e.g., Octal syntax is no longer No Yes

Al11) for cast names supported. Octal terms are
treated as variable names.

on stepMovie Replaced by No Yes

on enter Frame.

15

16

Introduction

Chapter 1

Script Basics

This chapter introduces basic concepts about scripts.

The first section of this chapter, “Introduction to scripting,”
describes what scripts are and how simple scripts behave. The
second section, “Debugging,” describes the process used to
identify and correct errors in scripts. The third section, “The
scripting process,” describes what writing scripts is like and the
type of effort you should expect to make. Read these sections if
scripting is completely new to you.

The final section, “Entering scripts,” describes how to use
Director’s score and script windows to enter, edit, and assign
scripts in the score and script windows. The method for doing this
is new in Director 4.0. Even if you are familiar with Lingo, you
should read this section to see how this part of the interface has
changed.

17

Introduction to scripting

The basics of using scripts are similar in any scripting language such as
Lingo. This section introduces those basics and guides you through a
few simple exercises that show the basics in use.

What a script is

Scripts are combinations of words that convey information and
instructions. In this way, they are similar to the language you speak
every day. Scripts vary in complexity. They can consist of a single one-
word statement or of many statements similar to paragraphs.

Lingo and other scripting languages have certain elements that you use
and rules that you follow to create statements. You use the statements
in much the same way as when you speak.

To see a simple Lingo statement, complete the following simple
scripting exercise. The exercise is intentionally brief and meant to
show you basic Lingo concepts. Later information shows you
advanced uses for this and related Lingo.

Before you start:
1. Start the Director application.

2. Choose New from the File menu.

3. Turn looping on in the control panel.

18

Chapter 1

To create a simple script:

1. Open the score and select channel 1 in frame 1 of the score
window.

=——— Untitled Score ;E@
Script pop-up menu—— |
L T
5 0 3 20 23
+ [E
Frame 1, channel 1 ink +—1
Copy ||+ 2
Anti-alias |+ 3
2

_|Trails

2. Open the tools window by choosing Tools from the Window
menu.

3. Click the button tool to select it in the tools window; then
drag it on the stage to create a button.

Select any button color and text setting you want.
Type the word Beep in the button’s text field.

With the button still selected, choose New from the Script
pop-up menu in the upper left corner of the score window.
The score script window, in which you write scripts, appears.

E[[=——— Score Script 2 =——-—-"V|
e|el*[i]l 4

on mouselp

end

The score script window already contains the lines on mouseUp,
followed by a line with a blinking cursor, and a line with the word
end.

Script Basics 19

6.

Type beep in the script window.

The word appears at the blinking cursor. It is important that you
type scripts correctly. Lingo can’t interpret misspelled words or
incorrect punctuation.

Press Enter or click the close box in the upper left corner of
the script window.

Always press Enter or click the close box to enter a script. You
might expect to press Return, but Return starts a new line in a
script, the same as in a word processor application.

To test what you made:

1.

Rewind and play the movie.
The movie loops in frame 1 because you turned looping on.

Click the button.

You should hear a beep. If you don’t hear a beep, try the steps that
you followed to create a simple script again. Make sure you typed
beep correctly and pressed Enter or clicked the close box when
you were done in the script window.

20

Chapter 1

To see a simple example of how you can combine Lingo elements:

1. Create a second button in channel 2 of frame 1 of the score
you have been working with.

Type 3 Beeps in the button text field.
With the new button still selected, choose New from the

Script pop-up menu.
A new script window appears.

Type beep 3; then press Enter or click the close box.

Play the movie and click the buttons.
The button named “3 Beeps” has the computer beep three times
when you click it.

6. Stop the movie you just made by pressing the stop button
on the control panel or pressing Command-period.

7. Press Command-S to save the movie you have been creating.
The first time you save the movie, a directory dialog box appears.

8. Type the movie’s title in the Save Movie As field.
Give the movie any name you want.

9. Click Save.

As you might expect, adding the number 3 after the term beep
created a script that has the computer beep three times when the script
runs. Many Lingo commands allow you to add parameters that further
specify what the command does.

You just wrote scripts attached to sprites. When you clicked a sprite
while the movie was running, Director checked whether the sprite
had a script attached. The movie responded by running the script. In
this case, the script was either beep or beep 3.

Script Basics 21

To write a different type of script:

1.

Open the movie you just made if the movie is not currently
open.

Turn off looping in the control panel.

Select frames 1 to 5 in channel 1 and channel 2; then use in-
between to copy the Beep and 3 Beeps buttons into each
frame.

Select frame 5 of the script channel.

Create a new script window by choosing New from the
Script pop-up menu in the score.

A new script window appears. When you create a new script
window for a script in the script channel, the window already
contains the line on exi t Fr ane, followed by a line with a
blinking cursor, and then a line with the word end.

Typego to frame 1 in the script window, and then press
Enter.

The script you entered becomes attached to the script channel for
frame 5.

Rewind and play the movie.

By looking at the frame number display in the lower left corner of
the control panel, you can see that the movie loops from frame 5
back to frame 1, even though you turned off looping in the
control panel. The Beep and Beep 3 buttons you created still work
the way their scripts instruct them to.

Stop the movie; then press Command-S to save what you
have done.

You just wrote a script attached to the script channel. Scripts in this

channel define what happens each time the playback head enters, exits,
or is in the frame that the script is attached to.

The scriptgo to frame 1 instructs the movie to go to frame 1 each
time the script is encountered. This loops the movie from frame 5 back
to frame 1.

As the movie plays, the scripts assigned to the buttons have the same

effect as before. Clicking a button makes the computer beep.

22

Chapter 1

Messages

Director controls a movie by sending and receiving messages among
the movie’s objects—items such as cast members, sprites, and scripts.
Messages can be generated by a script, user action with the keyboard
or mouse, or something that occurs in the system.

When events— such as clicking the mouse or exiting a frame—occur,
Director sends a message describing the event to a series of objects.
The terms mouseUp and exi t Fr ame are examples of such messages.
When an object has a script that is set to respond to the particular
message, the instructions in the script are carried out.

Script Basics 23

To

Trace checkbox

2.

see how messages are passed as a movie plays:

Choose Message from the Window menu.
The message window appears.

Message
to Director ——
Mouselp Script

== MouseDown Script

== Clickon Script for sprite:
1

=
ifs

Helcome

Mowie: Hard disk:Desktop
Folder:Untitled Frame: 4
Script: 2 Handler: mouselp
——: go to frame 1

Mauselp Script

= MouseDown Script
= Clickon Script for sprite:

2
== Frame: 2 Script: 4 Handler
mouselp

—=r testHandler

== Sctipt: 3 Handler:
testHandler

——: besp 3

- &nd

[Trace

[

Turn on the Trace checkbox in the lower left corner of the
message window.

When Trace is on, the message window displays messages and
scripts that are encountered as the movie plays.

Play the movie in which you created the Beep and 3 Beeps
buttons.

Click the Beep and 3 Beeps buttons as the movie plays.
Notice that when you click the button in channel 1, the message
window displays the message O i ckon Script for

sprite: 1. Whenyou click the button in channel 2, the message
window displays the message Cl i ckon Script for sprite:
2. The message window also displays the script attached to the
sprite.

You just used the message window to trace a message that was sent
when you clicked the mouse. You also saw that the message window
displays lines of scripts as they are executed.

24

Chapter 1

Handlers

A handler is a set of Lingo statements attached to an object. The
statements are preceded by the word on and the name of the message
that the handler should respond to.

The following is what occurred in the scripts you wrote in “What a
script is,” earlier in this chapter. The first line on nouseUp was
actually the first line of a handler. The line on nmouseUp had the
statements in the handler run whenever the mouse button was released
after you clicked the object that had the script attached. A nobuseUp is
one of Lingo’s predefined events that can call handlers. As you’ll see in
the next exercise, you can also define handler names yourself.

By attaching the on nouseUp handler to a sprite, you tell Director to
execute the handler only when the mouse button is released after
clicking the sprite that has the handler. When you click other places
on the stage, the handler doesn’t execute.

When an object receives a message that calls or refers to the handler,
the instructions in the handler are executed in the order the statements

appear.
The following exercise shows how to create a simple handler. In this

case, the name of the handler is one you define.

First write the script for the handler:

1. Open the movie that contains the Beep and Beep 3 buttons
you just created if it isn’t currently open.

2. Choose Script from the Window menu.
A script window appears.

3. Click the add sign in the upper left corner of the script
window.

A new script window appears.
4. Type the following:
on testHandl er
beep 4
end

5. Press Enter or click the close box to enter the script.

Script Basics 25

Handlers always begin with the word on followed by the handler’s
name and end with the word end. Lines of Lingo within the first and
last lines of the handler run when the handler is called by a message.
Handlers, such as t est Handl er, that have names you define yourself
require a line of Lingo that calls the handler at the proper time. This is
different than handlers such as on nmouseUp, whose names are
predefined in Director. Predefined handler names in Director are
described in the section “Describing events,” in Chapter 3.

To give objects in the movie a way to call the script in the handler, put
the handler’s name in a script attached to the object.

Select frame 1 in channel 3 of the movie.

2. Use the button tool in the tools window to create a button
cast member.

Type Handl er in the text field for the button.

Select frames 1 through 5 and in-between the button sprite
across all five frames.

5. With frames 1 through 5 still selected, choose New from the
script pop-up menu.
The script window appears.

6. Typet est Handl er in the script window; then press Enter to
enter the script.
t est Handl er is the name of the handler you wrote in the movie
script. The script is entered for all sprites that are selected when
you press Enter.

To test what you created:

1. Open the message window and turn on the Trace checkbox.
Rewind and play the movie.

3. Click the handler button.
As you expect, Lingo in t est Handl er has the computer beep
four times.

Chapter 1

You just wrote a handler attached to a sprite. You can follow what
happens by checking the message window. When the sprite is clicked,
the cl i ckOn message activates the t est Handl er statement attached
to the button. Director finds the contents of this script in

t est Handl er, which you defined in a movie script.

Script Basics 27

Debugging

Very few scripts do what you want the first time they run. Often the
script has an error in its syntax: possibly a word is misspelled or a small
part of the script is missing. Other times the script might work, but
doesn’t produce the expected result.

Getting the script to run correctly requires identifying the problem and
then correcting it. This process is commonly called debugging.

Debugging scripts is an important part of scripting a movie. The best
ways to determine what the problem is in a script vary depending on
the type of script and the Lingo involved. The explanations of specific
Lingo features later in this manual include debugging techniques that
are useful for the specific feature being discussed. For additional
debugging methods, see Tips & Tricks.

Some simple debugging tricks are useful for any script. When a script
fails, make sure that:

0 Terms are spelled correctly, spaces are in the correct place, and
necessary punctuation is used. Lingo can’t interpret incorrect
syntax.

0 All necessary parameters of the Lingo statement are present. Many
Lingo structures expect certain terms to be present. The specific
parameters depend on the individual element. See the Lingo
Dictionary or online help to determine any additional parameters
required by an element.

O Quotation marks surround the names of cast members, labels, and
strings of text used within the statement. See the section,
“Expressing literal values,” in Chapter 3 for more information
about which items require quotation marks.

O Values for parameters are correct. For example, using an incorrect
value for the number of beeps that you want the beep command
to generate would obviously give you the wrong number of

beeps.

28

Chapter 1

O Values that change—such as variables and the content of text cast
members—have the new values you want. You can check this by
using the put command as described later in this section. Variables
are described in Chapter 3, “Concepts.” You do not need to
understand them now.

It is good practice to break your Lingo into smaller sets of statements
and test each one as you write it. This keeps potential problems
isolated to areas that are more easily identified.

The first debugging test occurs when you close the script window.
Lingo gives you an error message if the script contains incorrect syntax
when you close the script window. The message usually includes the
statement in which the problem was first detected.

When the script window closes without an error message, the script
might still contains a bug. For example, the names of cast members,
numbers of sprites, or parameters you include could be incorrect
values.

If the problem isn’t a simple one, you can often find which script the
problem is in by using the message window to follow how scripts are
being executed as the movie runs.

To see how the message window displays information about scripts in
the movie, play the movie that you made in the previous section with
the Trace checkbox in the message window turned on.

Message =——
—— Helcome to Director ——

o

== Mouselp Script

== Mowie: Hard disk:Tofu:Tafu
appl ication:beeper Frame: 5
Script: 5 Handler: exitFraome
——: go to frame 1

== Frame: |

——r epnd

== Mousebown Script

== Clickon Script for sprite:
1

== Sctipt: 2 Handler: mouselp
——r beep

== Mouselp Script

== MouseDown Script

== Clickon Script for sprite:
2

== Sctipt: 4 Handler: mouselp
——: beep 3

== Mouselp Script

== Framez: 3 Script: 3

b Trace =]

Script Basics 29

When a script is activated, the message window displays each line of
the script as it is executed. An arrow made up of a double hyphen and
right angle pointer (- - >), precedes each script line. You can often
locate the problem by following the display in the message window to
isolate where the problem occurs.

You can also use the put command to display messages about the
script’s progress as it runs.

To see how the put command works:

1. Open the movie script for the movie in which you created
the handler named testHandler.

2. Add the line put "the handl er is done" before the last
line of the handler.

When you have finished making this change, the last two lines of
the handler should be

put "the handler is done"
end

Turn on the Trace checkbox in the message window.

Play the movie and click the handler button.

Notice that when the movie reaches the line put "t he handl er
i s done", the message window displays the message “t he
handl er is done”.

Turn off the Trace checkbox in the message window.

Replay the movie and click the handler button again.
Notice that the message “t he handl er is done” still appears
in the message window even though the Trace checkbox is not
on.

7. Close the movie without saving changes.

This 1s an example of how you can use the put command to follow a
script’s progress. The put command displays the specified result in the
message window whether or not the Trace checkbox is on.

You can also use the put command to check the value of a variable,
the content of a text string, or similar values by displaying them in the
message window. More uses for the put command as a debugging
tool are discussed with other Lingo features later in this guide.

30

Chapter 1

Testing a statement in the message window

To use the message window to test a one-line Lingo statement, type
the statement directly in the message window and press Return. Lingo
executes the statement immediately.

If the statement is valid, the results are visible on the stage or in the
message window itself if you have used the put command, which
displays the result of the statement in the message window. If the script
is invalid, an alert appears.

You can test a handler by writing it in a movie script or score script
window and then calling it from the message window by typing the
handler name in the message window and then pressing Return.

Script Basics 31

The scripting process

The scripts you've written so far are simple. You followed instructions
to write short scripts for specific objects.

When you apply scripts to an entire movie, the quantity and variety of
scripts increase tremendously. Deciding which Lingo to use, effective
ways to structure scripts, and where scripts should be placed requires

careful planning and testing as the complexity of the movie grows.

The most important part of scripting is formulating your goal and
understanding what you want to achieve before you begin writing
scripts. This is as important and typically as time-consuming as
developing storyboards for your work.

Once you have an overall plan for the movie, you are ready to start

writing and testing scripts. Expect this to take time. Getting scripts to
work the way you want often takes more than one cycle of writing,

testing, and debugging.

As the scripts you write in a movie become more complicated, it is
easy to forget what the scripts are intended to do or what certain values
in the script are for. To let you make useful notes about the script,
Lingo lets you add comments—descriptive lines within a script that
don’t run as part of the script. Comments lines start with a double dash
(- -). Anything you type after the double hyphen and before Return
doesn’t affect the script.

To write a sample comment:

1. Open the movie script in which you created the handler
named testHandler.

2. Before the first line of the handler, type two hyphens
followed by the commentthis is a sanple handler.

3. Play the movie and press the handler button.
Notice that the script executes the same as before and that the
comment you added doesn’t affect the script.

Scripts used later in this book include examples of comments. You can

see how useful they are as you continue to work with scripts.

You can comment or uncomment statements that are already written by selecting
the statements and choosing Comment or Uncomment from the Text menu.

32

Chapter 1

Writing scripts

Several Director tools are used to write scripts:

O

Script windows let you write, edit, and enter scripts. There are
three types of script windows: movie script windows, score script
windows, and script of cast member windows.

The score lets you select frames and sprites that you can assign
scripts to. When one or more cells is selected, choosing a script
from the Script pop-up menu assigns the score script to the
selected items. Scripts assigned in the script channel are assigned to
the entire frame they occur in and are called frame scripts; scripts
assigned to sprites are called sprite scripts.

Choosing New from the Script pop-up menu opens a new score
script window. Choosing an entry for an existing script and then
clicking the script preview button to the right of the script
pop-up menu opens the script window for that script. Any script
that you enter or edit in the script window is assigned to the
selected frames or sprites.

The script button in the cast window or the Script option in the
Cast Member Info dialog box for the selected cast members opens
a script window for the cast member. Any script that you enter in
this window is assigned to the cast member. (Cast members that
have been assigned scripts display a small “L” in their thumbnails
in the cast window.) A script assigned to a cast member is also
known as a script of cast member.

The cast window lets you open an existing movie script or score
script by double-clicking the script cast member. You can copy a
movie script or score script by selecting the script and choosing the
Duplicate Cast Member command from the Cast menu.

The Lingo menu lists Lingo elements that you can choose and
insert into a script you are writing. After the element is inserted,
the entry prompts you for any additional parameters that the
element uses. You can use this menu to help remember what
Lingo elements are available or an element’s correct syntax.

Script Basics 33

When using these tools, you see that scripts can be assigned to different
places in your movie. The advantages of different places that you
might put scripts are discussed in the section “Strategies for placing
handlers” in Chapter 3. For now, you just need to learn the mechanics
of entering scripts.

Writing different types of scripts

How you write and edit score scripts, movie scripts, and scripts of cast
members depends on whether they are new or already exist:

0 Open new score scripts by clicking the add (+) button in the
upper left corner of the script window; or choosing New from the
Script pop-up menu in the score and then clicking the script
button in the upper right corner of the score.

0 Open existing score scripts by choosing the script’s number from
the Script pop-up menu or double-clicking the script in the cast
window.

0 Open new movie scripts by clicking the add (+) button in the
upper left corner of the script window.

0 Open existing movie scripts by double-clicking the script in the
cast window.

0 Open scripts of cast members by selecting the cast member and
then clicking the script button in the cast window or by clicking
the Script button in the cast member’s Cast Member Info dialog
box.

34

Chapter 1

Using the Lingo menu

You can use the Lingo menu to insert Lingo elements in any script
window. When an element requires additional parameters, Lingo
includes placeholder names that indicate the additional required
information. When more than one argument or parameter is required,
Lingo highlights the first one for you, so all you have to do is type to
replace it. You have to select and change the other parameters
yourself.

The Lingo menu is an alphabetical list of Lingo elements. Choosing an
element pastes the item where the blinking cursor is in the message
window or script window.

Operators b

i abbr
p| abort

p| abs

b actorList
M add

» addAt

¢ addProp
b after
b

b

b

b

b

b

4

C
1]
E
F
GH
1 K
alert

ancestor

and

append

atan
backColor of cast
backColor of sprite
BACKSPACE

beep

beepOn

before

blend of sprite

bottom of sprite
buttonstyle

(=]

R

L
™
N
P
a
S
T
U

UIWHZ

Script Basics 35

If you forget the syntax for a particular Lingo element, there’s a quick
way to get online help for Lingo words:

1.

Press Command-? or choose Help Pointer from the Apple
menu.
The pointer changes to the Help pointer (a question mark).

Choose an item from the Lingo menu.
The Help window opens to the description of that Lingo
command.

Editing text for scripts

Entering and editing text in a script window is similar to entering text
in any other text field:

O

O

O

Select a whole word by double-clicking the word.
Select a whole script by triple-clicking in the script.

Use Undo, Cut, Copy, Paste, Clear and Select All from the Edit
menu while you are in the script window.

Enter statements one line at a time. The editor automatically
formats the statements with indented lines when you press the Tab
or Return keys.

Use Option-Return to break up long lines of code. This allows
Lingo to interpret the statement as one line, even though you
wrap the text so that it can be read easily. This type of line break
is similar to a soft return instead of a hard return.

Press Enter to enter the script and close the script window when
you are done. If the script syntax is not valid, an error message
appears when you close the script window.

Pay attention to how Lingo indents lines as you type. Because Lingo
automatically indents statements when the syntax is correct, you can sometimes
tell that there is a bug in a line if it doesn’t indent properly.

36

Chapter 1

As you write new score scripts, they are assigned numbers. These
numbers appear in the Script pop-up menu in the score. The number
of the script also appears in its corresponding cell in the script channel.
Numbers of movie scripts and scripts of cast members do not appear
in the Script pop-up menu.

You can assign an existing script to any new location in the score
simply by selecting the cells and then selecting the desired script from
the Script pop-up menu.

Finding and changing text in scripts

The bottom half of the Text menu contains commands that are useful
for finding and changing text in scripts, finding handlers, and
commenting and uncommenting parts of scripts.

Use the Find/Change, Find Again, Change Again, Find Selection, and
Find Handler commands to search through your scripts for a particular
word or words.

» Choose the Find/Change command to open the Find/Change
dialog box.

Find/Change

Find:|A12 | _Fina]
Change tu:|2l]34 | Change

& Whole Words Only Change All

O wrap-Around Search
Cancel

[<] search Rll Cast Members

Enter the string you want to find and press Return or click the
Find button. Find is not case-sensitive: ThisHandler, thisHandler,
and THISHANDLER are all the same for search purposes.

Script Basics 37

Select the Whole Words Only checkbox to search only for whole
words and not fragments of other words that match the word you
are searching for. Select the Wrap-Around Search checkbox to
have the search start over from the beginning after the search
reaches the end. Select the Search All Cast Members checkbox to
search all cast members of the same type; Director searches text or
script cast members only, depending on your current selection.

If you want to change the string, enter the new string in the
Change To field. Click Find to find the next occurrence of the
string. Click Change to find the next occurrence of the string and
change it. Click Change All to find all occurrences of the string
and change them.

Choose Find Again from the Text menu to search for the
next occurrence of the string that you entered in the Find/
Change dialog box.

Choose Change Again from the Text menu to change the
string to the string you entered in the Change To field of the
Find/Change dialog box.

Choose Find Selection from the Text menu to find a string
that is the same as a string you have selected in a script.

Choose Find Handler from the Text menu to open the Find
Handler dialog box.

Find Handler

1 Current Script
Find

@ All Scripts In

mouselp ¢
mousellp 8
mousellp 9
28
eXitFrame 28
20
exitFrame 29
30

mouselp 30
31

liew: O by Name & by Order

38

Chapter 1

The scrolling list in the Find Handler dialog box displays the
names and script numbers of the movie’s handlers. Find Handler
is described in Chapter 6 of Using Director, “Menu Reference.”

Removing a script from the score

You can remove a script from a cell in the score by selecting the cell
and choosing 0 from the Script pop-up menu. Scripts in the pop-up
menu that haven’t been placed in at least one of the cells of the score
are deleted when you close the movie, and the scripts are renumbered
accordingly. Script number 0 is always available.

Script numbers

Script numbers for score scripts appear in the Script pop-up menu.
When you create a new score script, the script is given the number of
the first available slot in the cast window. A script is entered and
assigned to the selected cells in the score whenever you press Enter or
click the close box in the script window.

When you make changes to an existing script, the changes are made to the
original script. To use a script as a starting point for another script, copy the
original script by selecting it in the cast window and choosing Duplicate Cast
Member or copying and pasting the original script into a new slot in the cast
window.

Script Basics 39

40

Chapter 1

Chapter 2

Working with Navigation

Navigation, giving users the ability to move around in and explore
parts of a movie or branch to other movies, is the most common
use of Lingo. This chapter shows you how to write navigation

scripts in a way that you can easily duplicate in your own movies.

‘Writing navigation scripts is usually the part of Lingo that people
learn first. If this is your first experience writing Lingo, you need
to learn two things at once: the specific Lingo you are working
with and some general concepts that always apply when using
Lingo.

If you are a new Lingo user, you can follow the discussion of
navigation scripts without too much background. You do need to
read the section “Writing scripts” in Chapter 1 to see how to enter
and edit scripts. After you master navigation scripts, see Chapter 3,
“Concepts,” for a better understanding of how Lingo sentences
are structured, how to use Lingo syntax, and where you can place
Lingo scripts.

41

Adding navigation

Including navigation in a movie gives users the ability to explore
movies at their own pace, branch to parts of the movie that offer
additional information, and pause or repeat the parts of a movie that
interest them the most.

For example, the first section of Noh Tale to Tell can branch to one of
several frames. The frame marked Stay displays the screen that you use
to select a sound level; frames marked Loud and Soft contain Lingo
that sets the sound level when you choose an item from the Volume
menu; the frame marked Start is the beginning of the story. When you
choose a sound level from the Volume menu or start the story, the
playback head jumps to the appropriate frame as follows:

v ¥ Stay ¥ Loud ¥ Soft vStart// v3/ /v 4

Frame | \ \ \
25 30 40 | |45 \J105) 160

- J /

1 ((L (

2 AR

3) L)

4 iy

5 \ UL

o NYTTT

go to "Start"

The Lingo you use to add navigation is relatively simple. Choosing
where to place the possible paths for users is an important design
consideration. The sample movies in the Lingo Expo are a good source
of ideas about uses for navigation scripts.

The following sections describe Lingo scripts that implement
navigation features in typical situations.

42

Chapter 2

Creating loops

Looping a movie in a segment of one or more frames uses basic Lingo
navigation scripts.

In Chapter 1, “Script Basics,” you wrote a simple script that used the
g0 command to jump to a different frame. By jumping to the
beginning of a sequence of frames—or looping—you can create
animation that appears to recycle. This section shows you how to use
the go command and related Lingo to create a loop within a movie
segment.

First, create the animation segment to use for the loop:
Choose New from the File menu.

Select frame 1 in channel 1 of the score.

Open the paint window.

Draw a small circle.

Drag the circle onto the stage using the place button.

Close the paint window.

N o g ks w NP

With frame 1 in channel 1 of the score still selected, copy
the cell.

Paste the sprite into frame 5 in channel 1.
Stretch the circle on the stage in frame 5.

10. In-between the circle from frame 1 to frame 5 in channel 1.

This sequence makes the circle appear to expand. You can make it
appear to contract by reversing the sequence.

To reverse the sequence:

1. Copy the sprites in frames 1 through 4 into frames 6
through 9 in channel 1.

2. With frames 6 through 9 still selected, choose Reverse
Sequence from the Score menu.

3. Play the movie.
The circle appears to expand and then contract.

Working with Navigation 43

To have the frames loop using Lingo:

1. Select the script channel in frame 9.

2. Choose New from the Script pop-up menu at the top of the
score.

A new score script window appears. The lines on exi t Frame
and end already appear in the window.

3. Typego to frame 1;then press Enter.
Pressing Enter enters the script and assigns it to the script channel
for frame 9.

Open the message window and turn on the Trace checkbox.

Play the movie.

The message window display and the playback head in the score
show how the movie plays through the frames and then returns to
frame 1.

6. When you are done, press Command-S to save your work.
Name the movie whatever you like.

You just created an animation sequence and then had it loop by
returning the playback head to the beginning of the sequence.You
returned the playback head by using the script go to franme 1.

Many times you want a sequence to play through and then wait for
the user to respond. For instance, when presenting a story such as Noh
Tale to Tell, you probably want to wait at the end of each scene to let
the reader finish reading before going on. A simple way to make the
movie appear to wait is to have the segment loop in the last frame.

As an exercise, you can do this yourself by re-creating the Lingo that
provides this feature in the movie Noh Tale to Tell.

First, play the unfinished version of the movie you will add the Lingo
to:

1. Open the movie “BasicNav” in the Tutorials: Learning Lingo:
Storybook folder.

Open the score and play the movie.

Notice that the movie plays from frame 47 (the end of
scene 9) to frame 48 (the beginning of scene 10) without
stopping.

You can follow what happens by watching the playback head
advance in the score.

44

Chapter 2

To write Lingo that has the movie loop in the last frame of scene 9:
1. Select the script channel in frame 47.

2. Choose New from the Script pop-up menu.
A new score script pop-up menu opens.

BasicNau Score |

Script on exitFrame
[¥] ¥io
#ee= 0 Frame LT LLCCCOCCL T OCE LT LT
35 40 45 50 25 E
+ 24 E o
Ink » =]
Copy || 1
dnti-Alias :
(o] (= 3 is faded,
R EEEEEEEEEEEEE i gt
Tran + 4 15 neq
ralls
_IMoveabl s
oveable
T + 6 ggg”EDE Score Script 2 E===——7—H%
itable * 7 TIL[1 | — —
(uf (] v -
: 3 2 iﬂl"‘l‘l’llll 2"
Display on exitFrome

L [oR] e e rrans
end

[€]] [=]

3. Typego to the frane, and then press Enter.
The expression t he frane is one way that Lingo refers to the
current frame. Pressing Enter enters the script and attaches it to the
script channel for frame 47.

Open the message window and turn on the Trace checkbox.

Play the movie.
The message window display and the playback head show how the
movie advances through frames and then loops in frame 47.

Working with Navigation 45

Navigation features that you use later in this chapter require that the
same script be at the end of scenes 10 and 11a.

To add the same script to the end of scenes 10 and 11a:
1. Stop the movie if it is still playing.
2. Select the script channel in frame 148.

3. Choose the number of the script you just wrote from the
Script pop-up menu.
The script is now assigned to frame 148 also.

Select the script channel in frame 167.

Choose the number of the script you just wrote from the
Script pop-up menu.
The script is now assigned to frame 167 also.

6. When you are done, press Command-S to save your work.

The arrow in the following figure illustrates how the playback head
loops by re-entering the frame. A movie set up this way continues to
loop in the specified frame until it receives further instructions. The
next section describes how you can also use the go t 0 command and
markers to provide ways for the user to branch to a different part of a

s

movie.

46

Chapter 2

Moving between sequences

Authors often want to let viewers jump to a movie sequence they
choose. You can give users this choice through scripts that send the
playback head to difterent locations in a movie.

This section first tells you ways to identify the frames you want to go
to by using frame numbers, markers, and labels. It then shows you how
to write scripts that let someone move back and forth in the parts of a
story, or choose one of several places to go to. You add this Lingo to
the movie “BasicNav,” for which you wrote a looping script in the
section “Creating loops,” earlier in this chapter.

Identifying movie locations

From working with the score and basic Lingo, you have seen how
frame numbers identify specific places in a movie. These identifiers are
important in movies that can jump between segments.

As you saw when you used the Lingo statement

go to frame 1, Lingo can refer to frames explicitly by frame
number. For convenience, Lingo offers several ways to refer to the
current frame and frames before or after it:

0 To refer to the current frame, use the function | oop ort he
frane. For example, go | oop orgo to the frame loops the
movie in the current frame. The statement put t he framne has
the message window display the number of the current frame.

0 To refer to a frame that is a specific number of frames before the
current frame, use t he frame followed by a minus sign and the
number. For example,go to the frame - 1 refers to the frame
just before the current frame. The statement put t he
frame - 2 has the message window display the number of the
frame two frames before the current one.

Working with Navigation 47

0 To refer to a frame that is a specific number of frames after the
current frame, use the function t he frane + followed by the
number. For example, go t o t he frane + 1 refers to the frame
just after the current frame. The statement put the frame + 2
has the message window display the number of the frame two
frames after the current one.

As the size of your movie increases, it becomes more difficult to

remember what’s in different sequences of frames. R eferences to frame
numbers may also become incorrect if you rearrange, insert, or delete
frames in the score. Markers identify places in the movie by the same
name or whether the markers are before or after the current location.
These references remain the same no matter how much you edit the

score.

48

Chapter 2

Marker

To see how to create a frame marker and label:

1. Open the movie ““BasicNav” that you worked with in the
section, “Creating loops,” earlier in this chapter.
Open the score and scroll so that frame 155 is visible.
Click the marker well and then drag a marker to frame 155.
Release the mouse button in frame 155.
A black marker appears at the top of frame 155, as shown in the
following figure.
= BasicNav Score
_Scm?t
well [ﬂ ¥Randorn ¥ ¥iz
Frame | [[[{[T0ICTOPTIOTT T MECP TP
13 40 145 150 1 170 17
3 = 2 H o
Ink SO BN A e Blalalaiaiaalalallolol) | | 181
Copy |1 2 REEEEEEEEEREEEEEEER Bl lalalalafalalololole) | | 18I
b i s e
Ainti- Aliaz * 3 0] oo |o G [|0]0 oo fao IS
S S A A A e e A A A A A e L Elololololalalalolala]3] H
=55 B REEREIREERR
M Trails 3 6 EFEEEEEEREREREREEEER B e G e o G R
Led (o] (e (u] (e} (o] (x] (o] (e} (o] (o] (x] (o] {x] (o] {x] (e e x] (] Lo e] (o] Cu] (R (] (] (o] {x] (o] e v}
.Moveab1e¢ 7 C e e G = e
S) e o] (o] [u] Lo (e e] (o] (] (x] [x] e e} [x]
M Editable + 8 oEBEERERER R EEEE e F R
L] (x (o] (=] [u] (e Lx (e} {u (o] (<] [} [} o f0)0
+ 9 BEEREERREEREEEERLEEEE
G L I e e L A A A A A e
+ 11
+ 12 |2 alalala o
+ 13 |2 HEHEH 5
+ 14 8 HHHH H
IETIE
The marker shows a blinking cursor, ready for you to enter a label
for the frame.
5. Type 1lla and press Return.
You labeled the marker 11a to indicate that this is the beginning
of scene 11a.
6. Press Command-S to save your work.

Lingo can specify a frame with a marker by referring to its marker
label. For example, the Lingo statement go to "11a" has the
playback head jump to the frame that has the marker labeled 11a. In
the “BasicNav” movie, the statement go to "11a" is equivalent to
go to frame 155.

Working with Navigation 49

Lingo can also refer to markers by how many markers they are ahead
or behind the current frame. For example, mar ker (0) refers to the
current marker, mar ker (1) refers to the first marker after the current
frame, mar ker (2) refers to the second marker after the current
frame, and so on. Use a minus sign before the number for markers
before the frame. For example, mar ker (- 2) refers to the second
marker before the current marker.

Moving forward and backward

By including a go t 0 statement in a script assigned to a cast member
or sprite, you can let users jump to a different location in a movie by
clicking the object that has the script assigned to it.

0 When you want the object on the screen to always respond the
same way when it is clicked, assign the script to the cast member.
For example, write a script for a button that always goes to the
same help section or the beginning of the movie by assigning the
script directly to the button cast member. Otherwise, you would
need to write the script for every sprite of the button that is in the
score.

0 When you want clicking the object to have difterent results in
different frames, it is better to assign the script to the sprite. For
example, a button that the user clicks to answer yes to a question
could require a different response to different questions. Assigning
scripts to sprites lets you control the response depending on the
situation.

In this section, you re-create the Lingo that was used to go forward
and backward in the movie Noh Tale to Tell.

50

Chapter 2

Before you write the scripts, first see what the movie does without
them:

1. Open the movie ““BasicNav’’ for which you wrote a looping
script in the section, “Creating loops,” earlier in this
chapter.

2. Open the score.
The score duplicates segments for scenes 9 through 12 of Noh Tale
to Tell.

3. Play the movie.

The movie stops at frame 47, which is where you placed the frame
script that has the movie loop in frame 47 when you performed the
exercise in the section, “Creating loops.”

Reverse arrow — |

BasicNauv Score |

Script on exitFrame
90 to the frame

[¥] ¥io
R T T3 NNNNNNNNNNNNNEN NENNNENEE
35 40 45 a0 25 E
+ 145 <
Ink » 24y
Copy I = E
T + 1
anti- Al =
- is faded,
——| 3 his heart—
Trails + 4 [ECEEEEEEEEEEEEEEEEEEEEEEEE
_IMorveabls —————
e + 3 [EO0E—=—— score Script 2 —————=—01=
itable 36 E1EE]r =
o iy Y W [T

Display on exitFrame

0
T Te [on| o io e frame

end

2lola

Forward arrow

Now add Lingo that has the playback head jump to the next marker
in the movie. In this exercise, you assign the script to the cast member
used for the forward arrow in the movie’s control panel. When the
Lingo is present, clicking the arrow has the movie go on to the next
scene.

Working with Navigation 51

To write the script that lets the user go to the next marker:
1. Open the cast window.
2. Select cast member 27, the forward arrow.

3. Click the script button at the top of the cast window.
The script of cast member window appears.

BasicNav Score |

Scriﬁt
[¥] ¥i0
[e> L { | ®rame | [][][T0TIT0TTMTTITLLL T
35 40 45 50 59 |3
27 + 5 4
Ik * ﬁ (o (xR ()) {uB (o}l {uR (o} () fu] (u) Pl (o) (u)] (ud [l fu) [ull (el (0] (]
[|{ R A X A A A E E A A
preremrersvl (RN B H R H AR RRRRARRER ;
> 9 || [BlEEEERERERRE is faded,
——{5 10 his heart—
_|Trails
_|Moveabl » 11
oveal e
a2 12 |ZEE|[ECJI== Script of Cast Member 27 ===
+ 13 -
+ 14 | "I“ I "I i ” 2-"I”
Lrigplay

ol mouselp
48[40[20| 90 to nex

etid

Script of cast member windows automatically open with the lines
on nouseUp and end already written for you.

Chapter 2

4. Typego to next.
When you are done the entire script should be:

on nouseUp
go to next
end

5. Press Enter or click the close box to enter the script.
The script is now assigned to the forward arrow cast member. The
script runs when someone clicks and releases the mouse button
after clicking the forward arrow.

The script go t 0o next sends the playback head to the next marker
in the score. The result in this sample movie is that when you click the
forward arrow, the movie goes on to the next scene. To have the
movie loop in the current frame, use the statement go to | oop. To
have the movie back up to the beginning of the current scene, use the
statement o t 0 previ ous, which sends the playback head to the
marker before the playback head. To have the movie back up to the
beginning of the scene before the current scene, use the statement
go to marker(-2).

When writing loops and go to commands, it is useful to leave the score open so
that you can track where the playback head goes as the movie plays.

Working with Navigation 53

To write Lingo that has the playback head go to the beginning of the
current segment when the user clicks the reverse arrow in the control

panel:

1. Ifitisn’t open, open the movie “BasicNav” that you have
been working with.

Select cast member 26, the reverse arrow.

Click the script button at the top of the cast window.
The script of cast member window appears.

o}] 2]

BasicNauv Score |
Scr'i?t
[¥] ¥i0
a Frame | [[[|[({[[II0{[[MII{IIT01 [}
35 40 45 50 55 |5
2% [5 T
Ink * ﬁ (o} {=} (o} [x} [u] [u] [u] [u] [u] [} [u] [u] [x] [u] [x] [u] (o] {u) [a] (] [u] (u] [}
T | A T AR E BB AR H R
rerearreon N N FIRFHRHHRFHRFAHRER is faded
» 9 [[[REEEREERREERRE IS
——+ 10 his heart—
_ITrails
perey AL
owveable i = —
e e 12 [EEE|S=—= S%cript of Cast Member 26 =—01=
"‘ 13 | -
= + 14 I*I‘I*Il” 26"
1=play on mauselp
+8] #B[2W] 90 to previous
end

54

Chapter 2

Type go to previous.
When you are done the entire script should be:

on nouseUp
go to previous
end

Press Enter or click the close box to enter the script.

The script is now assigned to the reverse arrow cast member. The
script runs when someone releases the mouse button after clicking
the reverse arrow.

To test the scripts you wrote for the forward and reverse arrow cast

members:

1. Open the message window and turn on the Trace checkbox.

2. Rewind and play the movie.

3. Click the forward arrow after the movie reaches frame 47,
which is the end of scene 9.
The movie jumps to the next marker, labeled “Scene 10,” when
you click the forward arrow.

4. Click the reverse arrow after the movie reaches the ends of
scenes 9 and 10.
The movie returns to the marker at the beginning of the current
scene and plays the scene again.

5. Click the forward arrow again when the movie reaches the
end of scene 10.
The movie plays to the end.

6. Press Command-S to save your work.

The script go t 0o next sends the playback head to the next marker
in the score. The result in this movie is that the movie goes on to the
next scene each time you click the forward arrow that you assigned the
go to next script to.

Working with Navigation 55

Another common use of a script for a cast member is to create a button
that sends the playback head to the same frame regardless of where the
playback head is. For example, Noh Tale to Tell has a marker labelled
“Start,” which marks the beginning of scene 1. You can have clicking
a button or other cast member always return the movie to the start of
the movie by assigning the following script to the cast member:

on nouseUp
go to “Start”
end
Lingo’s go t 0 scripts have many uses. You can get more ideas of how

to use them by studying the sample movies in the Lingo Expo, which
provides many examples of these scripts.

56

Chapter 2

Pausing and continuing a movie

Many times you will want to let the user finish looking at a screen or
make a decision before going on. The pause and conti nue
commands provide these choices—allowing you to pause the movie
until the user clicks a particular sprite.

To see how to use these commands, add a pause before the second
block of text begins to appear in scene 10 of Noh Tale to Tell. Then
addacont i nue command that has the movie continue when the user
clicks the forward arrow on the control panel.

To add the pause:

1.
2.
3.

If it isn’t open, open the movie ““BasicNav.”
Open the score.

Select the script channel for frame 118.
At frame 118, the third block of text has appeared.

Choose New from the Script pop-up menu to open a new
score script window.

The lines on exi t Fr ame and end automatically appear when the
new script window opens. For this script, you need to replace the
line on exi t Frame with the phrase on ent er Fr ane. (The
phrase on exi t Fr anme has the script run when the playback head
leaves the frame. The phrase on ent er Fr ane has the script run
when the playback head enters the frame.)

Working with Navigation 57

5. Select the phrase on exit Frane and then type:
on enterFrane
pause
When you are done, the script should look like this:
on enterFrane

pause
end

BasicNav Score

Script on exitFrame
s0zg Y]
Frame || || [[{LTLTI0ITIOITITLT
115 120 125 130 135 E
+ 24y i
Ink + =]
(oo Jlo 1 i
Anti-alizs |+ 2 it o light—
53
+ 4 33333333333333333333333'
[Trailz - oEE e EE e e BB R R E R EE EE e
#
_|Moveable o ——————— ——
& + 6 [LShSTe=——=— score Script 29 ==——=01F
itable 3 7 ggg =
—— s i tleleli] =
Display on exitFrome

#0] +0 20| _pousd

ehd

(<] [[=]

6. Press Enter or click the close box to enter the script.
The script is assigned to frame 118. Whenever the movie plays and
enters frame 118, the script runs and the movie pauses.

To test the pause script you wrote, rewind and play the movie. Notice
that the movie pauses at frame 118.

58

Chapter 2

Typically, when you include a pause, you also include a cont i nue
script that tells the movie when to resume playing. For the “BasicNav”
movie, you will assign a cont i nue script to the forward arrow sprite
in frame 118. The sprite script overrides the script of the cast member
in any cells that the sprite script is assigned to.

To add the cont i nue script:

1. Select the forward arrow sprite in channel 14 of frame 118.

2. Choose New from the Script pop-up menu at the top of the
score to open a new script window.
The lines on mouseUp and end automatically appear when the
new score script window opens.

3. Type conti nue.

BasicNav Score

Soript an rousellp
[¥]
Frame | ||| [LILTCTUPTETTETLT LT (i
115 120 125 130 135 E
+ 0 i
o + 6 FCEEFEEREREREREEEEREREEEEREEEE
C "! Gy o} [(uc (u} [} (o) (o) Cu) fu) (o) (] Cu} () (o) () Co) () (o) (e}) O] () o)]
| opy I * | =5 EEEEEREE HE RS HE R . ig.
B 2 8 (e itto light—
+ 9 éééééé?&"&'oooooooooloolo'é"é"é'ol
+ 10 AR ARRAE
_|Trails BEESEEEE
_IMaweabl s 1]
oweable r - —r =
IEditatle = 12 ggg"EDE Score Script 30 ====m—=F=Fz1=
+ 13 §§3| -
14 = i'I" I .'I 1 ” 30||
Drizplay

oh mouselp

T IR

end

4. Press Enter or click the close box to enter the script.
The script is assigned to the forward arrow sprite in frame 118.

Working with Navigation 59

To test the scripts you created:
1. Rewind the movie and open the message window.

2. Play the movie.
Notice that at frame 118, the movie pauses. The message window
reports that the pause script ran.

3. Click the forward arrow.
Notice that the movie resumes playing. The message window
shows that the script assigned to the forward arrow in frame 118
ran when you clicked the sprite.

You just used the pause and cont i nue commands to pause and
continue the movie.

The pause command pauses the movie by stopping the playback head
when the command is issued. Because the pause command is in the
script channel, the pause command always runs whenever the movie
enters the frame without relying on the user to do anything.

The cont i nue command makes a paused movie resume playing. To
let the user control when the movie resumes, you can assign the
cont i nue command to a sprite on the stage. That way, the

cont i nue command doesn’t run until the user clicks the sprite.

A script assigned to a sprite overrides the script assigned to the sprite’s
cast member. The result in this case is that clicking the arrow in frame
118 has a different result than clicking the arrow in the rest of the
movie. Assigning the continue script to the forward arrow’s sprite
rather than the cast member in this case is a good use of a sprite script,
because the arrow uses the cont i nue command in frame 118 only.

60

Chapter 2

Returning to the same location

Sometimes, you want the movie to jump to a different frame or a
separate movie and then return to the frame it left from. For example,
in a scientific title, you might want to jump to a movie segment that
explains a term and then return to your original location.

You could accomplish this by using go t 0 statements. However, to
return to the original frame, you would need to include Lingo that
remembers the original frame number. Instead, you can accomplish
the same thing with the pl ay and pl ay done commands.

Scene 11b of Noh Tale to Tell, in which Rokujo tells about a visit
from Genyji, is actually a separate movie that Director can branch to at
the end of scene 10. The movie containing scene 11b is in the movie
“NTBranch.” As an exercise, re-create this Lingo in the “BasicNav”
and “BNOM” movies in the Learning Lingo folder.

The finished version of Noh Tale to Tell contains Lingo that decides
at random whether the movie branches or not. In this section, you
write only the Lingo that branches. For an explanation of the Lingo
that decides whether to branch, see the section, “Scripts that make
choices,” in Chapter 3.

First, play the unfinished version of the movie:

1. Openthe movie “BasicNav” in the Tutorials: Learning Lingo:
Storybook folder.

Open the score and play the movie.

3. Click the forward arrow at the end of scene 9.
The movie plays to the end of scene 10, which is frame 148.

4. Stop the movie.

Working with Navigation 61

To write Lingo that has the movie branch to “BNOM”:
1. Select the script channel in frame 149 of the score.

2. Choose New from the Script pop-up menu.
A new script window appears.

BasicNauv Score |

Script on exitFrame
IE' ¥Eandom
Pe=® | Frame || [[][[11(11MUTTIUITI00T (I
140 145 150 155 160 E
+ 10 ats
= + 2o
Copy I - = E
Anti-Alias |21
52
- + 3
_|Trails + 4 [FEEEECEEEEEEE BEEEEEE
_|Moveable = 7 ==
= + 5 [E0S=——= Score Script 33 =—="o012
itable 4+ 6 B
| -
- 7 000|+I*I’III| 33"
Dizplay S g———

4010 [PH| Play novie "BNorT]
end

[&] (] [2]

3. After the line on exitFrame, type:
pl ay novi e " BNOM

4. Press Enter or click the close box to enter the script.
The new script replaces the frame script you assigned to this frame
earlier in the section, “Creating loops.”

5. Press Command-S to save the changes you made.

62

Chapter 2

Next, add the pl ay done command to the end of the movie
“BNOM”:

1. Open the movie “BNOM” in the Tutorials: Learning Lingo:
Storybook folder.

Open the score.

Select the script channel in frame 30, the last frame of the
movie.

A new score script window appears.

BNOM Score |
Soript an exitFrams Embarrassed b}'
_ play dane bis nieelect
[¥] ¥iib-1 wiitwlitwiite S !
+¢09 | erame [T e pushed a branch
1 5 015 20 _255[om the sacred tree
B I:D <“fough the curtains,
[b 24 LT offer my heart
C [= =] :
e | unchanging as
Anti-Alias =
3 2 BEEAEER this evergreen,
- _’ 3 111111111111999 D-IOD andknee
jT””S S 4 SCI=—— Score Script 4 ===} *
Moveable
+ 5 -
_|Editable | *I * I ’I Q Il |
+ 6 on exi tFrome
A N HEA | TR
+08]#8 [+0 |0

[l m] (5]

4. Type pl ay done after the line on exit Fr ane.
5. Press Enter or click the close box to enter the script.

6. Press Command-S to save the changes you made.

Working with Navigation 63

To see the effect of the pl ay and pl ay done commands you entered:
1. Open the modified movie “BasicNav.”
2. Open the message window and turn on the Trace checkbox.

3. Play the movie.
The message window display and the playback head show how the
movie plays to frame 149 and then branches to the movie
“BNOM.”

If you have modified the movie since you last saved it, the dialog
box that asks whether you want to save changes appears when the
movie branches to “BNOM.” When you branch between movies
that you are still authoring, Director asks whether you want to
save changes to the movie you are leaving.

4. Click Save.
The movie “BNOM?” plays until the pl ay done command is
encountered and returns to frame 149 of the movie “BasicNav.”

You just used the pl ay and pl ay done commands to have the movie
branch to another movie and then return to the original frame. The
pl ay command doesn’t need you to specity where to return—it
remembers the original frame so that the movie can return to it when
the pl ay done command is encountered or the sequence is finished.

The pl ay done command is necessary when you want to return to
the original frame before the sequence finishes. The pl ay done
command in the script you just wrote for “BNOM,” was optional,
because it was at the end of the movie anyway.

The pl ay done command used by itself sends the playback head to
the beginning of the movie when the pl ay done command is
encountered. This sometimes happens when you are authoring and
open a segment that contains the pl ay done command without
having played the segment that contains the pl ay command. When
this happens, open the movie you would otherwise return to by
choosing Open from the File menu.

64

Chapter 2

The pl ay command is useful when:

0 The movie you want to play does not have instructions about
where to return.

0 You want to play several movies sequentially from a single script.
When one movie finishes, control returns to the part of the script
that issued the pl ay command.

O You want to put a sequence inside another and easily return to
where you were in the outer sequence.

0 You want to jump to one loop from several different locations.

Depending on the parameters you include after the pl ay command,
the playback head can jump to a different frame, another movie, or a
specific frame in another movie.

You can specify these places in several ways:

To jump to Use Examples
A different frame the frame number or pl ay "Hel p"
marker label play frane 60
The beginning of a the word novi e, pl ay novi e-
another movie followed by the movie "Noh Tal e"
name -
A specific frame in the word f r ane play frame 15-
another movie followed by a frame of novi e=

identifier, then followed " Noh Tal e"

by the word novi e, -

and the movie name
play frame-
"Menmory" of =
novi e "Noh_Tal e"

You can also use expressions or variables to specify the movie’s name,
frame number, or marker label. Chapter 3, “Concepts,” tells you more
about what variables are and how to use them.

Note that all the ways that can specify a location also work with the
go t o command.

Working with Navigation 65

66

Chapter 2

Chapter 3

Concepts

This chapter covers scripting language concepts used to apply
some of Lingo’s more powerful features.

It tells you about:

O

O

The difterent types of scripts

Events and messages, how handlers respond to them, and
strategies for placing handlers

If—then logic structures that make choices depending on
conditions and events

Variables and arguments and how they are used to keep track
of and share values in 2 movie

The order in which Lingo flows, that is, how it follows a
certain order when executing a series of statements

Syntax rules for writing scripts and expressing numbers and
text in a way that Lingo can understand.

67

T'ypes of scripts

A script’s type is determined by where it is placed in the movie. As you
will see in the sections “How Director responds to messages” and
“Strategies for placing handlers” later in this chapter, the type of script
in which you place Lingo can affect the script’s behavior.

You can assign scripts to different places in the score and cast. The title
bar at the top of the script window tells the type of script in the
window. You can turn a movie script into a score script or turn a score
script into a movie script by choosing from the Type pop-up menu in
the Script Cast Member Info dialog box.

The following sections briefly describe the different types of scripts
that you can write in Director.

Primary event handlers

A primary event handler is a script that is available at any time or place
in the movie. You have to explicitly define a primary event handler
whenever you want it to be available in the movie and explicitly turn
it off when it is no longer appropriate.

Use the following elements to define a primary event handler:
0O keydownScri pt

O nousedownScri pt

O nouseupScri pt

O tinmeoutScript.

68

Chapter 3

Create a primary event handler by setting one of these elements equal
to the script you want. For example, the statement:

set the nmousedownScript to "go to frane 20"

creates a primary event handler that sends the playback head to
frame 20 anytime the mouse button is pressed, regardless of where on
the stage the click occurred.

When you want to turn off the primary event handler, set the primary
event handler to EMPTY. For example, to turn oft the nouseDown
script set t he nouseDownScript to "go to frame 20", use
the statement set the nousedownScript to EMPTY.

Sprite scripts

Sprite scripts are attached to a sprite cell or cells. They require
keyboard or mouse input to be activated. A sprite script takes
precedence over a script assigned to the sprite’s cast member, if it has
one.

Scripts of cast members

A script of a cast member is assigned to a cast member and runs when
the cast member is clicked. A cast member script is useful when you
want the cast member to always have the same script attached,
regardless of where the cast member appears in the score.

Unlike movie scripts and score scripts, scripts of cast members do not
appear in the cast window. You open them by selecting a cast member
in the cast window and then clicking the script button or by clicking
Script in the cast member’s Cast Info dialog box. Cast members that
have scripts assigned to them display a black “L” in the lower left
corner of their thumbnails in the cast window.

Concepts 69

Frame scripts

Frame scripts are assigned to the script channel in the score. A frame
script can be activated by the appropriate event whenever the playback
head is the script’s frame. Frame scripts are a good place for scripts that
you always want to run for an individual frame, without requiring
input from the user.

Movie scripts

Movie scripts are not explicitly assigned to a sprite or to the script
channel but are available to the entire movie while the movie plays.

Movie scripts can control what happens when a movie starts, stops, or
pauses. You can define more than one handler in a movie script.
Handlers in a movie script can be called from other scripts in the movie
as the movie plays.

70

Chapter 3

Introducing events, messages, and handlers

Lingo uses events, messages, and handlers to determine what occurs in
a movie and then carry out the proper instructions.

The following example demonstrates how Lingo sends a message that
an event occurred and activates the appropriate handler that contains
the instructions you want executed.

First, create a test movie by doing the following:
1. Create a new movie.

2. Select frame 1 in the script channel. Then choose New from
the Script pop-up menu to open a new window.
A new score script window appears.

3. Following the line on exit Framne, typegoto the frane
and then click the close box or press Enter.

You just created a simple movie that loops in the first frame. Now add
a sprite to which you will attach a handler:

1. Select the cell in frame 1 of channel 1.

2. Use the circle tool from the tools window to draw a circle.

Concepts 71

Now write handlers for the circle sprite:

1. With frame 1 in channel 1 still selected, choose New from
the Script pop-up menu.
A new score script window appears.
2. Type the following handler in the script window:
on nouseUp
change
end
Untitled Score
| Script on rnousellp change =]
I on mouseué I
. FrameEIIII|||||IIII||||||IIII||||||II_
TR 0 5 20 25 30 [%
2 - 14 Fili]
Ik + 24
Copy I e ?
1> 1 of
SIM=——— Score Script 3 =——M5
el =]
on mouselp
change
end
]
[=
3. Click the plus sign button in the script window to enter the
current script and open a new movie script window.
4. Type the following handler in the new script window:
on change
puppet Sprite 1, TRUE
set the foreColor of sprite 1 to =
random (256) - 1
updat eSt age
end
5. Press Enter or click the close box to enter the script.

72

Chapter 3

To see what the handlers you just wrote do:

1.
2.
3.

Open the message window and turn on the Trace option.
Rewind and play the movie.

Click the circle several times.

The circle changes color when you click it. (It is possible that
sometimes the circle turns the same color as the stage, in which
case it seems to disappear until the color changes again.)

Press Command-S to save your movie. Name it whatever you
like.

You just wrote a handler named change. The handler runs whenever
you click the sprite in channel 1—the sprite that you attached the
handler name to.

Some of the Lingo used in the handler script is probably new to you.
You will learn more about this Lingo later, but briefly you wrote a
script that:

O

Puts the sprite in channel 1 under direct control of Lingo by using
the puppet Sprite command.

Changes the sprite’s color to a color chosen at random from the
palette. The phrase set the forecolor of sprite 1
followed by a number changes the sprite to the color that the
number indicates on the current palette. The element r andom
generates a random number. In this case, the quantity (256)
specifies a number between 1 and 256. Therefore, the expression
random(256) - 1 gives a number between 0 and 255.

Redraws the stage by using the updat eSt age command.
Normally, Director redraws the stage only when the playback
head enters a new frame. The updat eSt age command redraws
the stage even though the playback head isn’t moving.

Concepts 73

Describing events

Events are occurrences in a movie. Some common types of events are
clicking sprites, pressing keyboard keys, starting a movie, entering a
frame, exiting a frame, or generating a certain result from a script.

Whenever an event occurs, Director generates a message describing
the event. The message is sent to a series of objects. At the first object
that has a handler with the same name as the message, Director
executes the instructions in the handler. After the handler is executed,
the message is no longer passed to other objects unless the handler
includes an explicit instruction that the message be passed on.

When no such handler is found, the message travels to the next
possible object until all possibilities are exhausted. If no script is found,
the message is ignored. As an example, the following figure shows the
series of objects that would receive the message that the mouse button
was clicked.

[Event e

Primary Event
Handler

ouseDown
l l Cl’it of Cast
Buttin [| M ;

1
|
1
T ool
1
|
I ‘I
1
1

1
|
1
- S
1
1
LI |
1
1

mouseDown

on mouseDown...

74

Chapter 3

Director has built-in message names for the common events that occur
in a movie. These are the built-in messages available in Lingo:

Message Event that occurred

ent er Frane Playback head entered the current frame
exit Frame Playback head exited the current frame
idle No event occurred while the movie is playing
keyDown A key was pressed

keyUp A key was released

nmouseDown A mouse button was clicked

mouseUp A mouse button was released

start Movi e The movie started

st opMovi e The movie stopped

ti meQut A specified amount of time passed without a

specified event occurring

You can have Lingo respond to these events by writing a handler that
uses the event name as the handler name and placing the handler at a
location that the message is sent to. For example, you can attach the
following script to a sprite:

on nouseUp

go to marker (1)
end
When you click and release the mouse button over the sprite, Director
automatically generates the message mouseUp and starts searching for
an on nouseUp handler. Because Director first looks for a sprite script

assigned to the sprite you clicked, the handler in this example is the
first one that Director finds and executes.

Concepts 75

You can also define your own messages and corresponding handler
names. In the test movie you just created, the term change—which
you attached to the sprite script—is sent as a message whenever you
click the sprite. After it is sent, the message looks for a handler that has
the same name as the message. In this case, the handler was the handler
you wrote as on change.

A statement that calls another script, another handler, or the
statement’s own handler is referred to as a calling statement. In the test
movie’s handler:

on nouseUp

change
end

the statement change is a calling statement.

The on nouseUp handler is activated when it receives the nouseUp
message. When Lingo encounters the term change in the script, it
looks through a series of locations for a handler called on change.
Provided that the handler is in the series of places Lingo looks, Lingo
executes the first on change handler, if any, it finds.

76

Chapter 3

How Director responds to messages

Lingo can send messages to cast members, sprites, cells, frames,
windows, the computer, and the movie itself. An object intercepts a
message when it has a handler script for the message unless the pass
command explicitly sends the message on to the next object in the
message hierarchy.

Messages follow a set order of objects when searching for a handler. In
general, the sequence is primary event handler, sprite script, script of a
cast member, frame script, and movie script.

Not all messages go to all these handlers. This is why understanding
where specific types of messages are sent is important for deciding
where to place scripts. The following sections, “Messages to primary
event handlers” and “Messages to objects,” describe where specific
types of handlers go.

Messages to primary event handlers

When an event occurs, the message describing the event is first sent to
a primary event handler. If a primary event handler exists for the
message, the script is executed and the event is passed on to other
objects, unless you explicitly stop the message by including the

dont PassEvent command in the script. For example, when an

on nouseDown primary event handler exists and the user presses the
mouse button, the on mouseDown script is executed and then the
nouseDown message passes to the next in the series of objects that can
respond to a nbuseDown message, unless the script includes the
dont PassEvent command. (Think of the dont PassEvent
command as equivalent to saying “don’t pass the event on to the next
location.”)

Concepts 77

This sample on mouseDown primary event handler has the movie
display a notice whenever the mouse button is pressed any time the
movie is playing. Because the handler doesn’t include the

dont PassEvent command, the nDuseDown message then passes on
to other scripts:

on nouseDown
alert "Thanks for using the nouse"
end
Occasionally you want to prevent a primary event handler from
executing (such as when the user holds down a modifier key during

the event). In this case, use the dont PassEvent command to
intercept the primary event handler.

For example, a regular nbuseDown event causes Lingo to look for the
sprite being clicked and then, if a sprite is clicked, to activate the
sprite’s script. Suppose you want to prevent the regular script from
executing when the Option key is pressed when the sprite is clicked.
You could use the following handler:

on nouseQption
if the opti onDown then
dont PassEvent
end if
end nouseQption

Activate the handler with the mouseDown primary event handler:
set the nmouseDownScript to "nmouseQption”

With the nbuseQpt i on handler, the mouse event also tests whether
the Option key is being pressed at the same time as the mouse button.
When it is not, the regular rouseDown event sequence is executed.
When the Option key is pressed, the dont PassEvent command
prevents the execution of the mouseDown primary event handler.

The dont PassEvent command applies only to the specific case
where it is used. It does not create a new global primary event handler.
Other event messages still pass to the proper handler. In other words,
it doesn’t have to be turned oft.

78

Chapter 3

Messages to objects

‘When an event has no primary event handler defined for it or the
primary event handler doesn’t include the dont PassEvent
command, the message is sent to a series of objects. The order of
objects depends on the individual message. The following illustrations
show the order for built-in system messages. Lingo stops at the first one
of these that has a handler defined for the message unless the script
explicitly uses the pass command to tell Lingo to go on. When the
handler contains the pass command, Lingo executes the statements
in the handler and then passes the message on to any other objects that
might also have a handler for the message.

The mouseDown and nouseUp messages are sent to a series of objects,
as shown in the following figure:

[Event [

Primary Event
Handler

Script of Cast
Member

on mouseDown...

Concepts 79

0 When the mouseDown or nouseUp occurs over a sprite, the
message goes first to the sprite script, then to the script of the cast
member, to the frame script, and finally to movie scripts. When
more than one movie script contains a handler for the event, the
handler in the script that has the lowest cast number is executed.

0 When the nouseDown or mouseUp doesn’t occur over a sprite,
the message goes to the frame script and then to the movie script.
‘When more than one movie script contains a handler for the
event, the handler in the script that has the lowest cast number is
executed.

The keyDown and keyUp messages are sent to the series of objects
shown in the following figure:

Primary Event
Handler

Score Script

Script of Cast

oo

Movie Script

on keyDown...
on keyUp...

80

Chapter 3

O Ifthe keyDown or keyUp occurs when the cursor is in an editable
text sprite, the message goes first to the sprite script, then to the
script of the cast member, to the frame script, and finally to movie
scripts. When more than one movie script contains a handler for
the event, the handler in the script that has the lowest cast number
is executed.

O Ifthe keyDown or keyUp doesn’t occur when the cursor is in an
editable text sprite, the message goes to the frame script and then
to the movie script. When more than one movie script contains a
handler for the event, the handler in the script that has the lowest
cast number is executed.

The ent er Frane, exi t Frane, i dl e, and ti neQut messages are
sent to a frame script and then a movie script.

If the current frame has no frame script when the event occurs, the
message goes to movie scripts.

The st art Movi e and st opMovi e messages go directly to movie
scripts only.

Messages that call handlers that you define yourself—for example, the
change handler in the sample movie—can be sent from any script in
Lingo. When this happens, Lingo searches for a corresponding handler
in the script from which it was called. If and only if no handler is
found, Lingo searches for a handler in one of the movie scripts.

If more than one movie script handles the same message, Lingo
searches the movie scripts according to their order in the cast window,
starting with the lowest numbered cast member. Lingo uses the first
handler it finds; other handlers for the message are ignored.

Concepts 81

The advantages of handlers

Handlers simplify script writing: you write a handler once and then call
it from different places in the movie by entering the handler name.
You can easily reuse the handler without copying or rewriting large
amounts of text. In addition, when you revise the handler, you revise
every instance where the handler is used in the movie. You don’t need
to repeatedly revise the handler in each place that can call it.

When you develop handlers you want to reuse in other movies, you can create
a library of handlers as scripts in a shared cast and reuse them in many movies.

Where to place handlers

You can put handlers in score scripts or movie scripts, or assign them
to a cast member:

0 Handlers in score scripts or movie scripts can be called from any
script in the movie.

0 Handlers in scripts assigned to a cast member can be called only by
an event that involves that cast member.

You can define as many handlers as you want within one script. It’s a
good idea to group related handlers in a single place, though, for easier
maintenance.

To call a handler in a score script or movie script, place the handler

name in the script that you want to have call the handler. This is what
you did when you entered the name of the handler as a script assigned
to sprite 1 in the section “Introducing events, messages, and handlers.”

You can also place calling scripts inside other handlers. When the
called handler stops executing, the handler that called it resumes.

82

Chapter 3

Defining handler names

A handler name must meet these requirements:
O Starts with a letter

0 Includes alphanumeric characters only (no special characters or
punctuation)

0 Is one word—no spaces are allowed

O Is not the same as a Lingo element.

Using Lingo keywords for handler names can create confusion. Although it is
possible to explicitly replace or extend the functionality of a Lingo element by
using it as a handler name, this should only be done by advanced users.

When you have more than one handler with similar functions, it is
useful to give them names that have similar beginnings so that they
appear together in alphabetical listing such as the listing given by the
Find Handler command in the Text menu.

Concepts 83

Strategies for placing handlers

Director follows a sequence of locations in which it searches for a
handler that corresponds to a message. The locations are different for
different messages, and the message typically doesn’t pass on to other

locations after the first script intercepts it.

The order of objects that messages travel through is important for
deciding where to place handlers. You want to put handlers where
Lingo can find them. Here are a few important points about placing

handlers:

O

Place on st art Mvi e and on st opMovi e handlers in movie
scripts only. Lingo can’t find these handlers if they are attached
anywhere else.

Place on ent er Frane, on exitFrame,on idl e, and on

ti meQut handlers in a frame script when you want the handler to
run in that frame only. When you want the same handler to run
in all frames, you can place the handler in a movie script.

You can still assign an individual frame a different handler from
the one in the movie script. Because these messages look for frame
scripts before they look for a movie script, the handler in the frame
script executes before the handler in the movie script and
intercepts the message. Of course, you could still have the message
go on to the movie script after the handler in the frame script is
executed by using the pass command in the handler in the frame
script.

Place on nmouseDown, on nouseUp, on keyDown, and on
keyUp handlers in a sprite script when you want to assign the
handler to that sprite only. When you want the same handler to
be available for every instance of a cast member, you can place the
handler in a script of the cast member.

84

Chapter 3

When a cast member has a handler assigned, you can still assign a
sprite a different handler. Because these messages look for sprite
scripts before they look for a script of a cast member, the handler
in the sprite script executes before the handler in the script of the
cast member. Of course, you could still have the message go on to
the handler in the script of the cast member after the handler in
the sprite script is executed by using the pass command in the
handler in the sprite script.

Putting one of these handlers in a frame script or movie script has
the handler execute any time the corresponding event occurs in
the frame or during the movie, unless there is a sprite or cast
member script that intercepts the message first.

Concepts 85

Describing conditions

Determining whether or not a condition exists is a common task for
scripts. Fortunately, the choices are simple: a condition exists or it
doesn’t:

0 To say that a condition exists, Lingo uses the term TRUE or the
number 1.

0 To say that a condition doesn’t exist, Lingo uses the term FALSE
or the number 0.

For example, the phrase t he noveabl eSprite of sprite 1 =
TRUE is one way that Lingo states that sprite 1 is draggable. An
equivalent expression, using 1 instead of TRUE, is t he

noveabl eSprite of sprite 1 = 1. (Using Lingo to make sprites
draggable is described in the section “Making sprites draggable,” in
Chapter 5.)

Lingo can also use the elements TRUE and FALSE to set a condition.
For example, the statement:

set the noveabl eSprite of sprite 1 to TRUE

makes sprite 1 draggable. The statement set t he noveabl eSprite
of sprite 1 to FALSE makes sprite 1 not draggable. If you want
to use numbers instead of the terms TRUE and FALSE, write the
statements Set the noveabl eSprite of sprite 1 to 1and
set the noveabl eSprite of sprite 1 to O.

86

Chapter 3

Scripts that make choices

In everyday conversation, you often say that an action will occur if a
certain condition exists. For example, the statement “if the light bulb
is oft, I will turn it on” bases the action “I will turn it on” on whether
the condition “the light bulb is oft” is true.

This section describes several ways that Lingo statements can be
combined to make actions in the movie dependent on movie
conditions.

An example of Lingo making a decision is at the end of scene 10 of the
sample movie Noh Tale to Tell. At this point, Lingo decides whether
to branch to the movie “NTBranch” based on a number generated at
random. In the following exercise, you’ll re-create the handler that
performs this action.

Concepts 87

To create a handler that makes an action dependent on a condition:

1. Open the movie “IfThen”” in the Tutorials: Learning Lingo:
Storybook folder.
“IfThen” contains scenes 9 through 12 of the title Noh Tale to Tell.

2. Open the score and play the movie.
The movie plays to scene 12 without branching.

Stop the movie.

Select the script channel in frame 149.

Choose New from the Script pop-up menu.
A new score script window appears.

Seript on exitFrame if random(Z) = 1 then play mavie "NT .
2 on exitFramme I
IE‘ ¥Randorn Wila ¥iz
#e®2 | Frame || [LLTLELTTOLTTOT P TETETTTT (] |08
150 1 9 170 1755
3 =] BB &
Inke = 1 5 olollslalllalalalalalal | | B8
[Copy ||» 2 Sﬁ_f oo ol ol fa 3 lalal | | 1318
Anti-Alias | F__3 §3 A s
4 [=
: = = Score Script 2 =———01=
_Trails I *
1 6 |*|e[*[i]
oveable -
- T on exi tFrame
_|Editable + B if randomi2 = 1 then play movie "MT.Other
end exitFrame
+ 9
-+ 10
| 0] +0 |
-

Chapter 3

Type the following handler in the score script window:
on exitFrame

if random(2) = 1 then play novie "I TOVM
end

The term r andomfollowed by a number is a Lingo element that
generates a random number between 1 and the number you
specify. The term r andom(2) generates either 1 or 2.

The movie “ITOM,” is the separate movie to branch to. It
contains a modified version of “NTBranch” for this exercise. The
movie “I'TOM” already contains a pl ay done command that
returns the playback head to the original movie.

Rewind and play the movie several times.
Sometimes the movie plays “ITOM” before playing scene 11a,
but other times it skips “I'TOM” and goes directly to scene 11a.

Close the movie.
You do not need to save the changes you made.

Which scene plays depends on what r andomn(2) generates:

O

O

When random(2) generates 1, Lingo plays “ITOM.”

When randon{ 2) doesn’t generate 1, Lingo ignores the

statement following t hen and the playback head goes to marker
11a.

The on exi t Fr arme handler includes an example of a Lingo statement
that decides to perform an action depending on whether a condition
exists. In this case, the action is playing the movie “ITOM.” The
required condition is that r andon(2) equals 1.

This handler is a simple example of a script structure that gives movies
the flexibility to respond to changing conditions that occur when a
movie plays. As the following sections explain, you can also create

script structures that choose from more than one condition or keep
repeating an action as long as a condition exists.

Concepts 89

if...then...else structures

Using i f with the elements t hen and el se, you can have Lingo test
whether a condition exists and respond accordingly. An everyday

example of a condition you could test for is whether the light bulb is
on or off. The statementif sprite 1 intersects 2 isa similar
test. Tests for a certain state usually begin with the Lingo element i f .

‘When the condition exists, Lingo executes one set of statements; if the
condition doesn’t exist, Lingo executes a different set of statements.
The following figure shows how a script branches one way or the
other depending on whether the i f statement is true or false.

Main Movie

v 10

420 / \ 530 545

v ¥

then else
play movie “NTBranch” play frame “11a”

Branch Movie

v | vub1 //)viib4

Frame

[
1 5 10 \\30 35

- y
: \
g {
6 N

90 Chapter 3

This is a simple structure with one branch. Use this structure anytime
you want to evaluate one condition and branch to one of two possible
sets of statements.

When you want a script to branch to one of several possibilities, use a
series of such tests.

For example, suppose you created an information kiosk about cities of
the world. You might want to let the user go to more information
about a specific city by clicking a familiar city landmark.

Every time the user clicks a landmark, the following handler would
run through the series of tests (each starting with the Lingo element
i) to check whether the click was on a sprite that was a landmark.
(The phrase t he clickOn isa Lingo element that indicates the
number of the sprite that was clicked last. Only sprites that have a
script assigned to the sprite or the sprite’s cast member register a
cl i ckOn. Lingo perceives clicking sprites that have no script assigned
as the same as clicking the stage.)
on nouseDown
if the clickOn = 1 then
go to "London"
else if the clickOn
go to "Paris"
else if the clickOnh = 3 then
go to "New York"
else if the clickOn
go to "Tokyo"

2 then

4 then

el se
not hi ng
end if
end
As soon as one of the tests is true (the click occurred on the sprite
whose number follows t he cl i ckOn =), the phrase then go to

followed by a marker label sends the playback head to the specified
frame of the movie.

Concepts 91

Note

> Tip

The previous situation is an example of a script that would probably best be
used as a movie script. This is because the mouseDown event used to click the
sprite has broad use and needs to be available throughout the movie.

This is how scripts that test for several possibilities can branch:

on mouseDown The mouse button was clicked.

if the clickon = 1 then Was sprite 1 clicked on? —» —} Go to previous marker.

go to marker (-1)

else

(—eé

if the clickon = 2 then ‘Was sprite 2 clicked on? - —} Go to next marker.

go to marker (+1)

else

eee

if the clickon = 3 then | Was sprite 3 clicked on? —p —} Return to sequence start.
play done

end if
end if
end if

ee«

Go on with the movie.

<

Lingo evaluates a series of tests like this in order. The first time a
condition is found to exist, Lingo performs the action that follows

t hen. Otherwise Lingo goes on to the next test. Finally, if the click
wasn’t on one of these sprites, Lingo reaches the end of the set of
statements and nothing happens.

To optimize your script’s performance, test for the most likely conditions first.

When writing if—then scripts, place the statement following t hen in
the same line as t hen or place it on its own line by inserting a Return
after t hen. For example, the statement:

if the clickOnh = 1 then go to "Paris"
is equivalent to:

if the clickOn
go to "Paris"

1 then

end if

92

Chapter 3

However, you must include an end i f statement at the end of the
if—then structure if its lines include a carriage return.

The script window automatically indents the statement that follows
t hen when you enter a carriage return. This indentation helps
organize the scripts visually and makes it easier to see the blocks of
Lingo involved in the if-then structure.

Concepts 93

Note

Repeating an action

Using ar epeat whi | e statement, you can repeat a set of instructions
as long as a specific condition exists. For instance, if you want a movie
to beep continually whenever the mouse button is held down, use the
following statements:

repeat while the nouseDown
beep
end repeat

Lingo continues to loop through the statements inside the repeat loop
until the condition is no longer true or one of the instructions sends
Lingo outside the loop. In the example, Lingo exits the repeat loop
when you release the mouse button; the nbuseDown condition is no
longer true when this occurs.

When executing a repeat loop, Lingo ignores any events that occur in the movie.
As a result, statements in the loop can be processed faster than they would be
otherwise. However, no other tasks can be petformed during this time.

If the condition is always true or you want the repeat to stop when
some other event occurs, use €xi t repeat to send Lingo out of the
repeat loop.

The following script uses exit repeat to make the movie beep
while the mouse button is pressed unless the mouse pointer is over a
specified sprite. When the pointer is over sprite 1, Lingo exits the
repeat and stops beeping. (The Lingo element t he rol | over
followed by a sprite number indicates whether the cursor is over the
specified sprite.)

repeat while the nouseDown
beep
if rollover (1) then exit repeat
end repeat
If the condition you are testing is always true and there is no exit,

usually the only way you can exit the loop is to press
Command-—period. Pressing Command-period stops the entire movie.

94

Chapter 3

Note

Because Director ignores all other events when it is in a repeat loop, it isn’t a
good idea to use repeat while statements for delays. It is best to create delays by
using the timer, putting a delay in the tempo channel of the score, or by adding
extra frames to the score. See the entry for the timer property in the Lingo
Dictionary for an explanation.

Repeating a specific number of times

Arepeat W th statement repeats an operation for a specified number
of times. The number of times to repeat is defined as a range following
the repeat w th element.

Suppose you want to change the foreground color of sprites 1 through
10. You can change the foreground color of a sprite using the Lingo
statement Set the forecol or of sprite n to followed by the
new color’s number on the palette. When you use this statement,
replace n with the number of the sprite whose color you want to
change. Because you must specify the sprite number in the statement,
you could write a separate statement for each sprite.

Alternatively, you can use the following repeat loop to change the
foreground color of sprites 1 through 10:
repeat with n = 10 down to 1
set the forecolor of sprite nto 90
end repeat

Concepts 95

The following figure shows how this repeat loop is equivalent to using
ten separate statements to change the foreground color of ten sprites:

repeat with n=10 down to 1
puppetsprite n, TRUE Is equivalent to puppetSprite 10, TRUE

end repeat puppetSprite 9, TRUE
puppetSprite 8, TRUE
puppetSprite 7, TRUE
puppetSprite 6, TRUE
puppetSprite 5, TRUE
puppetSprite 4, TRUE
puppetSprite 3, TRUE
puppetSprite 2, TRUE
puppetSprite 1, TRUE

The loop repeats the statement set the forecol or of sprite
n to 90 ten times. The first time, N equals 10; the second time n
equals 9; and so on until n equals 1. After the tenth time, the loop is
complete and Lingo goes on to the next event.

Note In actual practice, you should make the sprite a puppet before changing its
foreground color. Puppets are explained in Chapter 4, “Working with
Puppets.”

Chapter 3

Updating values

Director remembers and updates values by using variables. As the
name implies, a variable is an object in memory that contains a value
that can be changed or updated as the movie plays. By changing the
value of a variable as the movie plays, you can do things such as store
information the user enters, track the points in a game, or record
whether a specific event has happened.

The value assigned to the variable can be a whole number, a decimal
number (such as 1.56), a character string (such as “xyz” or a person’s
name), or the result of a calculation.

To experiment with variables, do the following:
1. Create a new movie.
2. Open the message window and type:
put 5+ 5 into nmySum
Press Return.

Type put nmySumand then press Return.
The message window displays the number 10, which is the sum of
5+5.

Now type put mySum + 1 i nto nmySumand press Return.
Type put nySumand press Return.

The message window displays the number 11, which is the sum of
10 + 1.

7. Press Return.

Notice that each time, the value that appears in the message window
is different. In the first case, it was 10: the value of 5 + 5. In the second
case, it was 11, the value assigned to my Sumin the previous statements
plus 1. However, you used the statement put mySumeach time. After
a variable has been assigned a value, the variable name, used alone,
provides the most recent value given the variable.

You just wrote scripts that created a variable and assigned values to it.
In this case, you made the mySumvariable contain different values at
different times.

Concepts 97

As in the Lingo Expo movies, it is a good habit (and common usage among

Lingo users) to use variable names that indicate what the variable is used for.
For example, the variable mySum indicates that the variable contains the sum
of numbers.

Assigning values to variables

You assign a value—such as a number or a string of text—to a variable
with the put ... into command. For example, the statement
put "Mary" into theNane assigns the text string “Mary” to the
variable vNane.

Values assigned to a variable (in this case t heNane) can be generated
in many ways. Some possible sources for variable values are text that
the user types, the result of an arithmetic operation that Lingo
performs, and the result of clicking a particular sprite.

For example, the following set of statements assigns one of three values
to t heNane, including the value EMPTY if the user doesn’t click either
of the two specified sprites:
if the clickOn = 3 then

put "Mary" into theNane
if the clickOn = 4 then

put "John" into theNane

el se

put EMPTY into theNane

end if

end if

In this example, the Lingo term EMPTY specifies an empty string that
has no characters.

98

Chapter 3

Tip

You can also use the set command to assign a value to a variable. For
example, these statements are equivalent ways to assign “Mary” to the
variable t heNane:

put "Mary" into theNane
set theNane = "Mary"
set theNane to "Mary"

However, it is standard practice among Lingo programmers to use
put ... into when assigning values to variables. The set
command is typically used to specify properties, as in the statement
set the forecolor of sprite 2 to 90.

Creating variables

A variable is created the first time you assign a value to it, which is also
called initializing a variable. You can then use the variable in other
expressions or change its value based on whatever criteria you want.
How long a variable exists depends on whether it’s a local or global
variable.

It’s a good idea to always assign a variable a known value the first time you
define it. This makes it easier to track and compare the variable’s value as the
movie plays.

Local variables

A local variable exists only as long as the script in which it is defined is
running. You can use a local variable in any script or handler. It is
subsequently available only while that script or handler is being
executed.

Any variable created in a handler or script that is defined without using
the term gl obal is automatically a local variable.

You can display all current local variables by using the showLocal s
command in the handler. This command can be used in the message
window or in handlers to help with debugging. The result appears in
the message window.

Concepts 99

Global variables

A global variable exists and retains its value for as long as Director is
running or until you issue the cl ear G obal s command. This gives
you the opportunity to use the value assigned to a variable throughout
the movie or among movies after the handler in which they were
defined is finished executing.

For example, to use someone’s name several times in your movie, you
could establish a global variable that is assigned a name typed by the
user at the beginning of the movie.

Global variables can be defined or assigned new values within a movie
script, score script, or in the message window.

You make a variable in a movie script or score script into a global
variable by using the term gl obal before the variable name the first
time you define it and in every handler that uses the global variable;
variables that you declare in the message window are automatically

global.

For example, the following statements makes t heNarme a global
variable and give it the value Mary:
gl obal gNane
put "Mary" into gNane
This handler could use the same global variable and change its value to
“John:”
on naneChange
gl obal gNane
put "John" into gNane
end

It is a good habit to start the names of all global variables with a small
letter “g.”'This helps identify which variables are global when you examine
Lingo code.

100

Chapter 3

A global variable that you’ve defined in a movie script or in the
message window can be referred to, and the value in it changed or
used, by any other script or handler.

Placing the gl obal command in front of several variables establishes
them all as global at the same time. The following statement defines
three global variables:

gl obal gNanme, gCapture, gHelp

When you define global variables this way, they are automatically
initialized as empty or 0. To assign other values to them, use set or
put .

You can display all current global variables and their current values
with the showd obal s command in the message window.

Because you usually want global variables to be available throughout the movie,
it is usually good practice to declare global variables in the on startMovie
handler. This ensures that the global variables are available from the very start
of the movie.

Concepts 101

Handlers that return results

Handlers that return a result are sometimes called functions.

You can define handlers that do not require arguments yet still return
some value. (Arguments, which let you pass values between objects in
the movie, are discussed in the next section, “Using arguments to pass
values.”) For example, the following handler returns the current color
of sprite 1.

on findCol or
return the forecolor of sprite 1
end

Even when you define a handler that returns a result but doesn’t
require arguments, you must still use the parentheses when you call the
function from another script. For example, this statement in the
message window would call the findColor handler and then display
the result in the message window: put findCol or ().

102

Chapter 3

Using arguments to pass values

Arguments are placeholders that let you pass values to types of
structures such as handlers and methods. You are already familiar with
handlers; methods, which are similar to handlers, are used in XObjects
and factories. For information about using methods, see Appendix B,
“XObjects,” and Appendix C, “Factories.”

By using arguments for values, you can give the handler exactly the
values that it needs to use at a specific time, regardless of where or
when you call the script in the movie. Arguments can be optional or
required depending on the situation.

You create arguments for a handler by putting them after the handler
name. Multiple arguments are separated by commas. For example, the
following handler, called addThem adds two values it receives in the
arguments a and b, stores the result in the local variable ¢, and uses the
Lingo term r et ur n to send the result back to the original handler.

on addThema, b
-- a and b are argunent placehol ders
set c=a+h
return c

end addThem

You provide specific values (called parameters) for the arguments that
the handler uses when you call the handler. Parameters can be any type
of value, such as a number, a variable that has a value assigned, or a
string of text. Parameters in the calling statement must be in the same
order that they have in the first line of the handler and be surrounded
by parentheses.

The following statement is a calling statement for the on addThem
handler described above: set nySum = addThem (4, 8).

In this example, 4 corresponds to the argument a and 8 corresponds
to the argument b. You can also use variables as parameters.

Concepts 103

After the calling statement sends these parameters to the handler, the
handler returns the value 12, which corresponds to the variable ¢
inside the addThemhandler. The variable my Sumis then set to 12.

104 Chapter 3

How Lingo flows

Lingo always executes statements in a script starting with the first
statement and continuing in order until a statement tells Lingo to go
somewhere other than the next statement or until the final statement
is reached. Some statements that can send Lingo to somewhere other
than the next statement are repeat loops, if~then—else structures, and
handler names placed within scripts.

The order in which statements are executed affects the order in which
you should place statements. For example, if you write a statement that
requires some calculated value, you need to put the statement that
calculates the value first. Or, as you did in the sample movie at the
beginning of this chapter, if you write a statement that changes the
display on the stage, the updat eSt age command needs to come after
the statement.

You can take advantage of the order in which Lingo executes
statements when you debug a script by tracing a script’s progress in the
message window as the movie runs. The most common use of this is
to see at which line of a problem script an error message is generated.
This is usually a good pointer to the problem.

Concepts 105

Working with values

A value is any quantity assigned to a variable, parameter, or symbol.
Some examples of values you encounter using Director are the name
or number assigned to a variable, the number generated by a function
such as randont() , and whether some property such as a sprite being
moveable is TRUE or FALSE. Use the set and put commands to test
and set conditions. Use operators to evaluate and manipulate numbers
and strings. The following sections describe both situations.

Testing and setting conditions

A property is any attribute of an object (such as a menu, cast member,
or field) or of the computer that can have one of several settings. Some
examples of properties used in Lingo are the cast member assigned to
a sprite, the monitor’s color depth, a sprite’s location on the stage, and
the time in Director’s timer.

Lingo can test and set properties for the system, for sprites, and for text
objects. Use the set and put commands to change and return the
values of properties.

For example, the statement:

set the castNum of sprite 2 to 113

changes the cast member assigned to sprite 2 by setting the sprite’s
cast Numproperty to a different cast number.

You can’t set all properties. Some property values can only be read.
Often these are properties that describe some condition that has
already occurred. For example, the property t i meout Lapsed, which
indicates the length of time since the last t i meQut , can only be read.

Default values and options for each predefined property are provided
in the Lingo Dictionary.

106

Chapter 3

Operators

Operators are elements that tell Lingo how to combine, compare, or
modify the values of an expression:

0 Arithmetic operators (such as +, -, and *)

0 Comparison operators (for example, >, >=, and =), which
compare two arguments

0 Logical operators (not , and, or), which combine simple
conditions into compound ones

0 String operators (& and &&), which join strings of characters.

When two or more operators are used in the same statement, some
operators take precedence over others in a precise hierarchy that Lingo
follows to determine which operators to execute first. This is called the
operator’s precedence order. For example, multiplication is always
performed before addition. However, items in parentheses take
precedence over multiplication. For example, without parentheses,
Lingo performs the multiplication in this statement first:

set total =2 +4 * 3
The result is 14.

When parentheses surround the addition operation, Lingo performs
the addition first:

set total = (2 + 4) * 3
The result 1s 18.

The operators and their precedence orders are described in the
following sections. Operators with higher precedence are performed
first. For example, an operator whose precedence is 5 is performed
before an operator whose precedence is 4. Operations that have the
same precedence are performed left to right.

Concepts 107

Arithmetic operators

Arithmetic operators add, subtract, multiply, divide, and perform
other arithmetic operations. Parentheses and the minus sign are

arithmetic operators.

Arithmetic operators

Operator Effect Precedence
@) Groups operations to control precedence 5
order
- When placed before a number, reverses the 5
sign of a number
* Multiplication 4
nod Modulo 4
/ Division 4
+ Addition 3
- When placed between two numbers, 3

performs subtraction

Comparison operators

Comparison operators compare two values and determine if the

comparison is TRUE or FALSE.

108

Chapter 3

You can compare strings or numbers with all the other comparison

operators. In the case of strings, “greater than” (>) means “later in
alphabetical order.” String comparisons ignore upper- and

lowercase.

Comparison operators

Operator Effect Precedence
sprite... TRUE if sprite 1 is entirely within 5
W t hin sprite 2

spr ite... TRUE if sprite 1 touches sprite 2 5
intersects

< Less than 1
> Greater than 1
<= Less than or equal to 1
>= Greater than or equal to 1
= Equal to 1
<> Not equal to 1
cont ai ns True if string 1 contains string 2 1
starts True if string 1 starts with string 2 1

Logical operators

Logical operators compare conditions and determine whether one
condition exists, all conditions exist, or the conditions are different.

Concepts

109

For example, the or operator allows you to create a condition which
is TRUE if either of two or more conditions is TRUE:

if (nunber <= 100) or (tinme > 180) then
set the text of cast 14 to "Do you want some hel p?"

Logical operators

Operator Effect Precedence
not Inverts the value of a condition 5
and Determines if all conditions exist 4
or Determines if one or more 4

conditions exist

Surrounding elements of a logical comparison with parentheses makes the parts
of the comparison easier to see, even though the parentheses aren’t required.

String operators

String operators join or concatenate strings together.

The & operator joins the text strings that appear before and after the &
operator.

The && operator joins text strings but inserts a space between them.
For example, the statement:
set the text of cast 14 to "Hello," && theNane

combines “Hello” and whatever name is assigned to the variable
t heNane to create one string with a space between the two. If the
value of t heName was “John,” the result would be “Hello, John”

String operators

Operator Effect Precedence
& Concatenates strings 2
&& Concatenates strings and inserts a 2
space

110

Chapter 3

Expressing literal values

A literal value is any part of a statement or expression that is to be taken
exactly as it is rather than as a symbolic value. Literal values that you
encounter in Lingo are text strings, integers, decimal numbers, cast
member names, cast member numbers, symbols, and constants.

Each type of literal has its own rules for how it can be expressed. The
following sections present the rules for each type of literal.

Text strings

Literal text strings are text that you want to treat as such instead of as
a variable. Literal text strings must be enclosed within quotation
marks. For example, in the statement:

put "Hello" into field "greeting"

“Hello” and “greeting” are both literal text strings. “Hello” is the
actual text being put into a field; “greeting” is the actual name of the
text cast member.

Similarly, if you test a text string, double quotation marks must
surround each string, as in the following example:

if "Hello M. Jones" contains "Hello"
then soundHandl er
Lingo treats spaces at the beginning or end of a string as a literal part

of the text. The following expression includes a space after the word
to:

put "My thoughts anopunt to

Concepts 111

Integers

An integer is always a whole number, without any fractional decimal
places.

Director works with integers between —2,147,483,648 and
+2,147,483,647. Enter integers without using commas. Use a
minus (-) sign for negative numbers.

Some Lingo commands and functions require a whole number
argument that’s within a given range. The requirements for specific
Lingo elements can be found in the Lingo Dictionary.

Decimal numbers

A decimal number—sometimes called a floating-point number—is
any number that includes a decimal point. (The f | oat Preci si on
property controls the number of decimal places used in numbers. See
the f | oat Preci si on entry in the Lingo Dictionary for information
about setting the number of decimal places used for decimal numbers.)

You can use decimal numbers in Lingo scripts. You can also use
exponential notation (for example: -1.1234e-100 or 123.4e+9).

You can convert an integer to a decimal number using the f | oat ()
function. For example, the statement

set theNunber = fl oat (3) changes the integer “3” to a floating
point number. If Director is set to display numbers to four decimal
places, the result would be 3.0000. (Use the f | oat Preci si on
function to specify the number of decimal places used to display
integers.)

112

Chapter 3

Cast numbers and names

Lingo can refer to bitmapped images, buttons, text, palettes, and
sounds in the cast in one of three ways: by literal cast number (cast
123 and so on), by cast number relative to another cast position
(cast 1 + 15), by cast name (" newFi gur e"), or as a number of cast
window slots relative to a named cast member

(cast "newFigure" + 10).

You can add and subtract cast numbers in an expression to refer to
different cast members. For example, cast (1 + 1) is equivalent to
cast 2. The phrase cast (211 +1) is equivalent to cast 212.

If you name more than one cast member with the same name and then
use the name in a script, Lingo uses the first lowest numbered) cast
member that has the specified name.

Symbols

A symbol is a type of data (like a string or other value) that begins with
the pound sign (#). Symbols are useful because they can be obtained
from memory more quickly than strings.

For example, the symbol #St eve in the statement:
put #Steve into userName

returns from memory more quickly than the string " St eve" in the
statement:

put "Steve" into userNane
Variables assigned symbols behave differently than other variables.

For example, the statement put #St eve i nt o user Nane followed
by put user Nane gives the result #St eve, because #St eve is the
actual value of the variable.

The statement put "My nane is" && user Name in the message
window displays the result My name i s Steve because in this case
Lingo looked for the text string assigned to the variable user Narre.

Concepts 113

However, the statement put user Name + 1 gives a number,
because in this case Lingo is performing an arithmetic operation and
treats user Name asa a numerical value.

Constants

A constant is 2 named value whose content never changes. For
example, TRUE, FALSE, and EMPTY are constants because their value
is always the same.

Refer to constants by their names. The constants BACKSPACE, ENTER,
QUOTE, RETURN, and TAB let you refer to these characters in your
scripts where needed. For example, to test whether the Return key is
pressed, use the following expression:

if the key = RETURN

114

Chapter 3

The elements of Lingo

Lingo communicates information through combinations of elements,
which are equivalent to words. Like words in English, Lingo elements
can be categorized by what these elements do and how they can be
combined. All Lingo elements are included in the Lingo Dictionary,
the Lingo menu, and in the online help.

Categories of Lingo elements include:

0 Commands: instructions that cause something to happen while a
movie is playing. For example, the command go t 0 instructs the
playback head to jump to a specified frame.

O Functions: elements that return some value. For example, the
function dat e tells the current date set in the computer. The
function key tells which key was pressed last. Other examples of
functions are abs(), randon{(), and sqrt ().

0 Keywords: reserved words that have a special meaning. For
example, t he is used to indicate that the next word is a property.

0 Operators: symbols or words that change the value of one or more
values. For example, the plus sign operator (+) adds two or more
values together and produces a new value.

0 Constants: elements that don’t change. For example, the constants
FALSE and EMPTY always have the same meaning.

O Properties: attributes of an object. For example, color depth is a
property of a bitmap.

Elements can be combined into statements, which are equivalent to
sentences in English. A statement is any valid instruction that Lingo
can execute. When a statement is executed, its instructions cause
Director to perform some action.

A script is any statement or group of statements that make up the
contents of a movie script or score script in the cast window or a script
of a cast member window. Handlers are the typical units, often called
routines by programmers, found within scripts.

Concepts 115

An expression is any part of a statement, meant to be taken as a whole.
For example, 2 + 2 is an expression but is not a valid statement all by
itself. The line go to frame 23 is a statement—go t O is the
command, and f rame 23 is the value that the command requires in
order to carry out the instruction.

116 Chapter 3

Using Lingo’s syntax

Like any language, Lingo has rules of grammar and punctuation that
you must follow. The following are general rules that apply to all
Lingo. Most Lingo elements also have their own individual
requirements about elements that they must be combined with. If you
want to know the rules for a specific Lingo element, refer to the
description of the element in the Lingo Dictionary.

Parentheses

Some Lingo functions require parentheses. The ones that do are clearly
marked as such in the Lingo Dictionary. When you define functions in
your own handlers, you need to include parentheses in the calling
statement.

You can use parentheses to override Lingo’s precedence or to make
your Lingo statements easier to read.

Character spaces

Words within statements are separated by spaces. Lingo ignores extra
spaces, so you can put them in if you want to use them for better
formatting and readability.

In strings of characters surrounded by quotation marks, spaces are
treated as characters. If you want spaces in a string, you must put them
in explicitly.

You can see Lingo that uses strings in Chapter 6, “Using the Keyboard
& Mouse.”

Concepts 117

Upper- and lowercase letters

Lingo is not case-sensitive—ryou can use upper- and lowercase letters
however you want. For example, the following statements are
equivalent:

Set the hilite of cast "Cat" to TRUE
Set the hilLite of cast "cat" to True
set the hilite of cast "Cat" to true
SET THE H LI TE OF CAST "CAT" TO TRUE
Set The Hlite O Cast "Cat" To True
However, even though Lingo is not case-sensitive, it is a good habit
to follow scriptwriting conventions, such as the ones that are used in

this manual. That way, it is easier to quickly identify names of
handlers, variables, and cast members when reading Lingo code.

Comments

Comments in scripts are preceded by double hyphens (- -). You can
place a comment on its own line, or after any statement. Lingo ignores
any text following the double hyphen on the same line.

Comments can be anything you want: notes about a particular script
or handler, or about a statement whose purpose might not be obvious.
Comments make it easier for you or someone else to understand a
procedure after you've been away from it for a while.

Use the Comment and Uncomment commands in the Text menu to

speed your entering and removing comments.

When debugging, it is sometimes useful to isolate one section of Lingo that you
want to focus on by temporarily commenting out other statements or handlers.

118

Chapter 3

Optional keywords and abbreviated commands

You can abbreviate some Lingo statements. Abbreviated versions of a
command are easier to enter but may be less readable than the longer
versions. The go command is a good example. All the following
statements are equivalent. The last one takes the fewest number of
keystrokes.

go to frame "This Marker"

go to "This Marker"

go "This Marker"

If a command can be abbreviated, the acceptable abbreviations are
shown in the Lingo Dictionary.

It is good practice to use the same abbreviations throughout the movie.

Concepts 119

The tracing symbols in the message window

This is a sample of the message window display that was made by
turning on the Trace option and then running a script for a few
moments.

E[=== Message

—— Helzcome to Director ——

== Mouwie: Hard disk:Desktop
Folder: Storybook : | fThen
Fromz: 1 Script: 503 Handler:
startHouvie

—=r ——szets initial wvalues for
pauseduration and pausema:x
——r =Zet pauseduration to 150
== pauseduration = 150

—=r if the colorbDepth <r 8
then

——r end if

== Mouselp Script

== Frame: 149 Script: 2
Handler: exitFrome

—=r if randomiZ’ then play
mowie " TOM"

== Mouwie: Hard disk:Desktop
Folder: Storygbook : I TOM Frame:
1 Script: 505 Hondler:

F
[<] Trace |

|
iis
| |

Notice that Lingo has placed difterent symbols at the beginning of each

line.

O An arrow (- - >) appears at the beginning of the line of the script

being executed.

0 A double equal sign (==) appears before the number of the script
and the name of the handler when a handler starts being executed,

any values displayed in the message window by the put

command, and the frame number when the playback head enters

a frame under direction from Lingo.

0 The greater than (>) pointer shows the nesting level of the script.
> for the first level, >> for a script called by a script, >>> for a script

called by a script called by a script, and so on.

120

Chapter 3

Chapter 4

Working with Puppets

This chapter introduces puppets—sprites, sounds, tempos,
palettes, and transitions that you control from Lingo instead of
from the score.

Puppets are dynamic. By using them, you can change a sprite’s
characteristics based on what the user chooses or the movie does.
Because you can make these changes without leaving the current
frame, puppets often let you use far fewer frames to achieve the
features and behavior that you want.

The material in this chapter tells you:
0 What puppets can achieve
0 How to create a sample puppet

O Specific commands that make sprites, sounds, tempos,
palettes, and transitions into puppets and the ways you can
control them.

121

What puppets offer

You’re familiar with using Director’s score to combine images, sound,
transitions, palettes, and tempos to create movies. Each time the
playback head enters a frame, Director checks the score to determine
the characteristics assigned to each element—sprites, sounds,
transitions, palettes, and tempos—used in that frame. By making a
score channel a puppet, you can tell Director to ignore the score’s
settings for items in that channel and change the channel’s contents
directly from Lingo. In a sense, the channel is a puppet and Lingo pulls
the strings.

When using the score, you have to plan for and implement segments
that allow for all possible combinations of events and conditions in the
movie. Puppets can use fewer frames to achieve effects that could
otherwise require many frames to achieve. For example, when the user
clicks the mouse, you could change what is on the stage by assigning
a sprite a different cast member without leaving the frame. Or you
could change the palette or play a sound other than one assigned in the
score in response to a user choice or some other movie event. By
making these changes from Lingo, you don’t need to add segments in
the score that provide for all possible combinations of animation,
palette change, or sound.

You are already familiar with making a sprite into a puppet from
working with the section “Introducing events, messages, and
handlers” in Chapter 3. The simple handler you wrote was able to
change a sprite’s foreground color because you first made channel 1 a
puppet by using the statement puppet Sprite 1, TRUE.

The next section, “Creating a sample puppet,” is a simple exercise that
demonstrates how puppets let you switch the cast member assigned to
a sprite. Sections later in this chapter give you details about the specific
things you can do with puppet sprites, sounds, transitions, palettes, and
tempos.

122

Chapter 4

Creating a sample puppet

You can make the contents of the tempo, palette, transition, sound,
and sprite channels into puppets by using the appropriate Lingo
commands. The following exercise shows you how to make the
contents of a sprite channel into a puppet and then change the cast
member that is assigned to the sprite channel using Lingo.

To create a puppet:
1. Create a new movie.

2. Use the tools in the paint window to create two bitmap cast
members numbered cast member 1 and cast member 2.

Use a different shape and color for each bitmap.
Place cast member 1 in frames 1 and 2 of channel 1.
Select the script channel in frame 1 of the score.

Click the script preview button at the top of the score.
A new score script window appears.

Working with Puppets 123

6. Type the following handler:

on enterFranme
set the puppet of sprite (1) to TRUE
end

When the playback head enters frame 1, this handler makes the
contents of channel 1 a puppet.

sample puppet Score

Seript on exitFrame set the puppet of sprite

B0 0=

=
HiliH
Lk + 1

S[I=——— Score Script 3 =——FI=

|+ [e[»[i][¢

oh exitFrame

sat the puppet of sprite 1) to

end

L
=]

7. Press Enter or click the close box in the script window to
enter the script.

You just created a script that makes the sprite in channel 1 a puppet.
Because sprite 1 is now a puppet, you can control the sprite directly

from Lingo. In the next procedure, you’ll write a script that uses Lingo
to switch the cast member assigned to the sprite. If the sprite was not
a puppet, this script would have no effect.

124

Chapter 4

To switch the cast member assigned to the sprite:

1.
2.

Select channel 1 in frame 2 of the score.

Choose New from the Script pop-up menu.
A new Script pop-up menu appears.

Write the following handler in the script window:
on nouseUp
set the castNum of sprite (1) to 2
end
Press Enter or click the close box to enter the script.

Make the movie loop in frame 2 by attaching the following
script to the script channel in frame 2.

on exitFrame
go to the frane
end
Rewind and play the movie.

Click the sprite.
The sprite changes to the other cast member.

You just created a movie in which you put the sprite in channel 1

under direct control of Lingo by making it a puppet. Because the sprite
was a puppet, you were able to use Lingo to switch the cast member
assigned to the sprite. Switching a sprite’s cast member is just one thing
you can do with puppet sprites. Examples of other uses for puppet
sprites are included in the description of Lingo features throughout this
guide.

Working with Puppets 125

Using puppets

As you saw in the sample movie you just created, you let Lingo control
a channel by making it a puppet:

O

For sprites and sounds, the channel remains a puppet until you use
a statement to return control to the score. The statement you use
depends on whether the channel is a sprite channel or a sound
channel. See “Using puppet sprites” and “Using puppet sounds”
later in this chapter for more information about turning oft puppet
sprites and puppet sounds.

For tempos and palettes, the puppet condition lasts until the
playback head enters a frame that has a new palette or tempo
setting. For transitions, the puppet condition applies only to the
specific instance in which the puppet transition is used.

The specific statements used to create and undo a puppet and what

attributes of a puppet you can control are different for different types
of puppets. The following sections explain the statements to use and
some of the attributes you can control for different types of puppets.

Using puppet sprites

When a sprite is a puppet, you can use Lingo to control any sprite
property that you can control from the score and some additional

properties. This includes controlling:

O

The cast member assigned to the sprite. This lets you switch the
cast members in response to conditions or create animation by
switching a series of cast members while the playback head stays
within one frame.

The location of a sprite. With this ability, you can control whether
a sprite is draggable or reassign it to a new location. Although you
can make a sprite draggable by selecting the Moveable checkbox
in the score, controlling the sprite from Lingo lets you change
whether it is draggable in response to movie conditions.

126

Chapter 4

O The size and shape of a sprite. This lets you adjust how individual
sprites move and change shape in response to other conditions in
the movie.

0 The color, ink, line thickness, and pattern assigned to a sprite.
With Lingo, you can modify any of these conditions to fit the
needs of your movie.

0 The ability to edit text sprites. Although you can make sprites
editable by selecting the Edit Text checkbox in the score,
controlling this from Lingo lets you turn editability on and off as
movie conditions require.

0 The height, width, font, and style of text.

You can specify whether a sprite in a channel is a puppet by using the
puppet Sprit e command, followed by the channel number, a
comma, and the value TRUE or FALSE:

0 TRUE makes the sprite in the specified channel a puppet.

For example, t he statement puppet Sprite 9, TRUE makes the
sprite in channel 9 a puppet. The statement puppet Sprite 35,
TRUE makes the sprite in channel 35 a puppet.

0 FALSE removes the puppet condition from the sprite in the
specified channel.

For example, t he statement puppet Sprite 9, FALSE
removes the puppet condition from the sprite in channel 9. The
statement puppet Sprite 35, FALSE removes the puppet
condition from the sprite in channel 35.

You can also turn puppet sprites on and off by setting the puppet of
sprite property to TRUE or FALSE:

0 Declaring a sprite’s puppet of sprite property to be TRUE
makes the sprite a puppet.

0 Declaring a sprite’s puppet of sprite property to be FALSE
undoes the sprite’s puppet condition.

For example, the following statement makes the sprite in channel 9 a
puppet by setting the puppet of sprite property to TRUE:

set the puppet of sprite 9 to TRUE

Working with Puppets 127

Tip

It is important to give control back to the score when it’s no longer
necessary for the channel to be a puppet. If you don’t turn off a puppet
when you are finished with it, unexpected results can occur when you
try to control that channel from the score later on.

A puppet’s initial properties are the same properties that the sprite has
when it is made a puppet. The puppet’s initial location, color, cast
member, and other properties are the location, color, cast member,
and other properties of the sprite. Subsequently, you can use other
scripts to change these properties.

The sprite channel must contain a sprite before you declare it a puppet. If you
declare a channel a puppet when the channel contains no sprite, the results can
be unpredictable.

When to make a sprite a puppet

Making the sprite channel a puppet is required for controlling sprite
properties from Lingo. Conversely, handlers that try to change any
sprite property have no effect unless the channel is a puppet.

In some cases, changes can be made to a sprite’s properties when the playback
head enters a new frame. This can seem to indicate that it isn’t necessary to
make a channel a puppet before changing the property. To avoid confusion,
always declare sprite channels puppets before trying to change sprite properties
from Lingo.

128

Chapter 4

The following sprite properties require the channel to be a puppet:

backColor locH

blend locv
castNum moveableSprite
constraint pattern
cursor scriptNum
editableText spriteBox
foreColor stretch
height trails
immediate top

ink visible
lineSize width

Using puppet sounds

Puppet sounds let you use Lingo to override the sound channels of the
score. Through Lingo you can:

0 Play a puppet sound by using the puppet Sound command
followed by the name of the sound cast member you want to play.

For example, assigning the handler:
on nouseUp
puppet Sound "Cri ckets"
go to "Scene 4"
end

to a button has the movie play the sound “crickets” whenever the
button is clicked. This could be useful as part of the transition

when the movie goes to a new scene.

Working with Puppets

129

0 Turn off a sound by using the puppet Sound command followed
by zero in the form puppet Sound 0.

As with puppet sprites, you must turn oft the puppet sound condition
when it is no longer appropriate. If you don’t turn the puppet
condition off, any subsequent sounds in the score won’t play. To turn
the puppet sound off and give control back to the sound channels of
the score, use the statement puppet Sound O.

You do not need to make a sound channel a puppet to use the sound
fadel n,sound fadeQut, orsound pl ayFi | e command or to set
the soundLevel .

Using puppet tempos

Puppet tempos let you use Lingo to set the tempo. This is useful when
you want to change the tempo of the movie in response to different
conditions such as a user’s action or the type of computer the movie is
playing on.

You make the tempo channel a puppet by using the puppet Tenpo
command followed by the new tempo, in frames per second. You can
specify any integer from 1 to 60.

For example, the statement puppet Tenpo 30 sets the tempo to 30
frames per second. The statement puppet Tenpo vTenpo sets the
tempo to the value assigned to the variable vTempo.

Using puppet transitions

Puppet transitions let you control transitions between frames. For
example, you could use puppet transitions to specify one of several
transitions depending on which sprites are on the stage when the
playback head enters a new frame. Or you could apply a transition
only to a new sprite when it appears on the stage.

130

Chapter 4

Tip

You create a puppet transition by using the puppet Transi ti on
command followed by values that specify the nature of the transition.
The parts of the statement are as follows:

puppet Transi ti on transition-type [,time] [,chunk-size| [,change-area]

The parameters in this statement let you specify the same options that
are in the Set Transition dialog box. When you write the actual
statement:

O Always put the puppet Transi ti on command first.

0 Replace transition-type with a code number that specifies the type
of transition.

0 Replace the optional parameter time with a value for the length of
time you want the transition to take.

0 Replace the optional parameter chunk-size with the desired chunk
size (number of pixels that change in each step of the transition).

0 Replace the optional parameter change-area with TRUE to make the
transition occur only in the areas of the stage that change during
the transition. Replace change-area with FALSE to apply the
transition to the entire stage. If you don’t include this parameter,
the transition occurs in the changing area only.

How to use the puppet Tr ansi ti on command is described in detail
in the Lingo Dictionary.

Use the updateStage command after the puppet Transition command to have the
transition appear on the stage.

The puppet Transi ti on command applies only to the frame in
which you issue the command. You do not need to turn off the
puppet condition for the transition channel after the transition occurs.

Working with Puppets 131

Using puppet palettes

Puppet palettes let you use Lingo to change the current palette. This
is useful when you want to change the palette to suit changing
conditions in the movie without entering a new frame. For example,
you could use a puppet palette to change the palette if you switch a
cast member assigned to a sprite as you did in the section, “Creating a
sample puppet’” earlier in this chapter.

999

You set a new palette by using the puppet Pal ett e command
followed by the cast member name or number of the new palette. If
you want, you can also specify how fast or over how many frames the
new palette fades in.

The form of the puppet Pal ett e command is

puppet Pal ette palette-name [, speed) [, number-of-frames]

The parameters in this statement let you specify the same options that
are in the Set Palette dialog box. When you write the actual statement:

0 Replace palette-name with the name of the palette.

0 Replace the optional parameter speed with a number from 1 to 60,
with 60 being fastest, to set the speed of the fade in.

0 Replace the optional parameter number-of-frames with the number
of frames over which the palette is to fade in.

For example, the statement puppet Pal ett e "Rai nbow' 15, 10
makes the rainbow palette the current palette. The transition to the
new palette occurs over ten frames at a relative speed of 15.

When the puppet palette condition is still in effect, any subsequent
palette changes in the score are ignored. As with puppet sprites, you
must turn oft the puppet palette condition when it is no longer
appropriate.

Palette eftects work fully only in 256 colors. You do not see palette
transitions in thousands or millions of colors.

To turn the puppet palette oft and give control back to the palette
channel of the score, use the statement puppet Pal ette 0.

132

Chapter 4

Chapter 5

Manipulating Sprites

Lingo gives you several ways to manipulate sprites while the
movie plays. This chapter describes how to utilize these features in
your movie. It tells you how to:

O Make sprites draggable

0 Check a sprite’s location

0 Compare the locations of sprites

0 Move a sprite to a new location by resetting its coordinates
0 Constrain a moveable sprite

0 Switch which cast member is assigned to a sprite.

133

Making sprites draggable

You might be familiar with using the Moveable option in the score
to make sprites draggable. However, setting the noveabl e of
Sprit e property, you can make sprites moveable independent of the
score.

You make a sprite moveable by setting the sprite’s moveabl e of
sprite property to TRUE in the sprite script for the sprite or a frame
script.

For example, the following handler, used in a frame script, makes
sprite 1 moveable when the user clicks the sprite:
on enterFrane
set the puppet of sprite 1 to TRUE
set the noveabl eSprite of sprite 1 to TRUE
end

The noveabl e of sprite property applies only in the frame in
which the command is used. The command has no effect after the
playback head enters another frame or loops and re-enters the current
frame. Therefore, to make the sprite unmoveable again, use the go

t 0 or pl ay commands to enter a new frame that doesn’t set the
puppet’s noveabl eSprite of sprite property to TRUE.

By setting moveabl e of sprite to TRUE in an if-then structure,
you can make the sprite moveable in response to some user action.

If setting the noveabl e of sprite property doesn’t work
properly in a script, make sure:

0 The statement is spelled properly

0 The statement is placed in the sprite script for the frame in which
you want the sprite to be moveable.

134

Chapter 5

Checking a sprite’s location

The ability to check, change, or restrict a sprite’s location and to
evaluate the cursor’s place on stage can have many uses in your movies.
With Lingo you can:

0 Determine the exact position of a sprite or the cursor on the stage

0 Determine the coordinates of locations on the stage so that other
handlers can use them

0 Check whether sprites overlap or how close together they are.

Combined with other Lingo, these features are the basis of much of
Director’s interactivity. This section explains how Lingo performs
these basic tasks. For more ideas about how you can use these features
in movies, see the sample movies.

Checking cursor and sprite locations

You can determine the location of the cursor or a sprite from Lingo
by using:

0 The elements nouseH and nouseV to measure the cursor’s
horizontal and vertical position

0O The elements | ocH of spriteandlocV of spriteto
measure the horizontal and vertical position of a sprite’s
registration point.

You can evaluate the cursor location using the statements
put the nouseHand put the nouseV.

To create a sample script that checks the cursor’s location:
1. Create a new movie.
2. Open the score.

3. Select the script channel in frame 1, and click the script
preview button.

A new score script window appears.

Manipulating Sprites 135

4. Type the following handler in the score script window:
on exitFrane
put the nouseH
put the nouseV
go to the frane
end
5. Press Enter or click the close box to enter the script.
To see the eftect of the script:
1. Play the movie.
2. Open the message window.

3. Move the cursor to different places on the stage.

Each time the playback head exits the frame, the message window
displays the number of pixels that the cursor is from the upper left
corner of the screen:

0 For nouseV, the value is the number of pixels the cursor is below
the upper left corner of the stage. Negative values are the number
of pixels above the top of the stage.

0 For mouseH, the value is the number of pixels the cursor is to the
right of the upper left corner of the stage. Negative values are the
number of pixels to the left of the stage.

Similarly, you can evaluate a sprite’s location by using | ocV of
spriteand !l ocH of sprite.

To create a sample handler that evaluates a sprite’s location:

1. Create a new movie.

Open the message window and turn on the Trace checkbox.
Select frame 1 in channel 1 of the score.

Click the Moveable checkbox in the score window.

a ~ N

Use a tool from the tools window to draw a shape on stage.

136 Chapter 5

6. Include the following handler in the frame script for frame 1:
on exitFrane
put the locH of sprite 1
put the locV of sprite 1
go to the frane
end

This script has the message window display the sprite’s horizontal
and vertical location and then has the playback head re-enter
frame 1.

7. Play the movie and drag the sprite on the stage.
You don’t need to save the movie after you are done.

As you drag the sprite, the message window displays the new values
for the sprite’s location. This is a typical message window display that
could result from dragging the sprite:

Untitled Score
| Seript on exitFrame put the locH of sprite 1=
[zon exrrrame]
|°°°E Frame IENNNNERRNNNEEEENN
Message ——11| 5 1] 5 20 (5]
——r put the locH of sprite 1 Efd
405
—=> put the l[ocl of sprite 1
232
——r go to the frame
——* enhd
—=> put the locH of sprite 1
149
——r put the [ocl aof sprite 1
=13
—=r go to the frame
—=r end
——r put the locH of sprite 1
j=i=3 6
—=r put the l[ocl of sprite 1
1w i < o
——r go to the frame
—-=> and g
[] Trace =)

Manipulating Sprites 137

The elements | ocHand | ocV tell you the position of the sprite’s
registration point. Similarly, you can refer to the location of the sprite’s
bounding rectangle by using the following elements:

The element Refers to

the left of The left edge of the sprite’s bounding box
sprite

the right of The right edge of the sprite’s bounding box
sprite

the top of The top of the sprite’s bounding box
sprite

the bottom of The bottom of the sprite’s bounding box
sprite

For example, the statement put the top of sprite 1 displaysthe
number of pixels from the top of sprite 1’s bounding rectangle to the
top of the screen.

Comparing sprite locations

You can determine whether a sprite intersects another sprite or is
contained within it. For example, you might want to check for this
when the user drags a sprite to a certain location as part of assembling
pieces of a puzzle.

The element sprite...intersects tells you whether the
bounding rectangle of one sprite touches the bounding rectangle of
another sprite. The proper syntax for this element is as follows:

sprite spritel i ntersects sprite2

When you use this element, replace sprite? with the channel number
of one sprite you want to compare and sprite2 with the channel
number of the other sprite. The order in which you put the sprite
numbers doesn’t matter. The phrase sprite 1 intersects 2 has
the same effectas sprite 2 intersects 1.

138

Chapter 5

To see how to use i nt er sect , first create a movie that contains two
simple sprites:

1.

® N o g s 0N

Choose New from the File menu.
A new movie opens.

Select frame 1 in channel 1 of the score.
Open the tools window.

Draw a QuickDraw rectangle on the stage.
Click the Moveable checkbox in the score.
Select frame 1 in channel 2 of the score.
Draw a QuickDraw circle on the stage.

Click the Moveable checkbox in the score.

When you are finished, you should have a one-frame movie that
contains a rectangle and a circle.

Now, write a handler that checks whether the two sprites are in
contact:

1.
2.

Select the script channel for frame 1.
Enter the following handler into the frame script:
on exitFrame
if sprite 1 intersects 2 then beep
go to the frane
end

Manipulating Sprites 139

Intrsect Score |
_Scrift
=
Frame [[[][[TQTPTITITTL] [o
1 5 5 20 [%
+ =12 ks
Ink + 1o
Copy | [+ 2 @2
dnti-Aliaz |+ 3 |_
S[I=———— Score 5Script 3 EE
rlelo[ill S
oh exitFrame
if sprite 1 intersects 2 then beep
go to the frome
end 3
=

Rewind and play the movie.

Drag the moveable rectangle over the circle.

The computer beeps when the bounding rectangle of one sprite
intersects the other. Notice that the computer beeps even when
you drag the rectangle over a corner of the circle but not the circle
itself.

5. Press Command-S to save the movie and name it “Intrsect”
when you are done.

You will use this movie again in the section “Constraining a
moveable sprite,” later in this chapter.

140 Chapter 5

Controlling sprite locations

The score normally assigns sprite locations on the stage. Lingo lets you
change sprite location properties while the movie plays. This section
shows you how to relocate a sprite and how to constrain a sprite that
is moveable.

Changing a sprite’s location

Using the set command, you can change a sprite’s location.
Remember that since you want Lingo to override the score, the sprite
must be a puppet before Lingo can change its location.

To put a sprite at a specific location, set the vertical and horizontal
location of the sprite to the location you want. You can specify
coordinates on the screen or the position of some other sprite.

For example, this handler sets the vertical location of sprite 1 to 250
and its horizontal location to 300 when the movie enters a new frame:
on enterFrane
puppet Sprite 1, TRUE
set the locV of sprite 1 to 250
set the locH of sprite 1 to 300
updat eSt age
end
Attaching this handler to the script for sprite 12 moves sprite 12 to the
same location as sprite 8 when sprite 12 is clicked:
on nouseUp
puppet Sprite 12, TRUE
set the locV of sprite 12 to the locV of sprite 8
set the locH of sprite 12 to the |locH of sprite 8
updat eSt age
end

Manipulating Sprites 141

To locate a sprite where a mouse click occurs, set the sprite’s location
to the location of the mouse click. For example, attaching this handler
to a frame script moves sprite 9 to the location of the mouse click:
on nouseDown

puppet Sprite 9, TRUE

set the locV of sprite 9 to the nouseV

set the locH of sprite 9 to the nmouseH

updat eSt age
end

Place this handler in a frame script because you want to detect that the
mouse click anywhere on the stage, not just on specific sprites.

Constraining a moveable sprite

Sometimes you want a sprite to be moveable but restrict it to a certain
region. For example, you could let someone drag furniture within the
floorplan of a house but restrict motion to stay within the walls, or you
could create a draggable slider with an indicator that moves across a

gauge.
Using t he constraint of sprite property, you can restrict a
moveable sprite to stay within the area of a second sprite.

To write a sample handler that constrains a sprite to the area of another
sprite:

1. Open the movie “Intrsect’ that you created in the section
“Comparing sprite locations,” earlier in this chapter.

2. Open the script window for the frame script assigned to
frame 1.

The script contains the handler you wrote in the section
“Comparing sprite locations.” In this exercise, you replace that
handler with a handler that constrains the circle (sprite 2) to the
area of the rectangle (sprite 1).

142

Chapter 5

3. Replace the frame script’s on exitFrame handler with the
following handlers:

on exitFrame
go to the frane
end
on nousebDown
set the constraint of sprite 2 to 1
end

Intrsect Score

| Script on exitFrame go to the frame
= on exitFrame I

TonE IRRNRRNNRRNNRNANNEN
5 5 120 [
B A
Ink - 1 |
copy Jle 2 |3
At Alias |23
——— [+
=—— Score Script 3
[+[e[»]i][
oh exitFrame
go to the frame
ed |
on mouselp Lk
s;t the constraint of sprite 2 to 1 E:>
=

4. Rewind and play the movie.

5. Drag the circle over the rectangle.

When you first click the circle, it jumps to the nearest part of the
rectangle. As you drag the circle, the registration point of the draggable
sprite stays within the bounding rectangle of the other sprite. If the
circle doesn’t move, make sure the Moveable checkbox is selected for
the circle sprite. (For any QuickDraw cast member, the registration
point is the upper left corner of the cast member's bounding rectangle.)

Manipulating Sprites 143

Switching a cast member assigned to a sprite

Lingo can switch the cast member that is assigned to a sprite while the
movie plays. This lets you animate a sprite by cycling through a series
of cast members and lets you use far fewer frames to change objects on
the stage as movie conditions change. Without sprites, you would
need many frames connected by go t 0 and pl ay commands to allow
for all the possible combinations of sprites in a movie.

To write a handler that switches cast members in a movie:

1. Make the sprite a puppet using the puppetSprite command.

2. Use the phrase set the cast Num of sprite, followed by
the sprite’s channel number, the termt 0 or =, and the new
cast member’s name or number.

For example, the following handler switches sprite 2 to cast member
15 when the user clicks sprite 2:
on nouseDown

puppet Sprite 2, TRUE

set the castNum of sprite 2 to 15

updat eSt age
end
Alternatively, you could refer to the cast member by name. If a cast
member had the name “Night Sky” you could use a handler similar to
the following:
on nouseDown

puppet Sprite 2, TRUE

set the castNum of sprite 2 to =

t he nunber of cast "N ght Sky"

updat eSt age
end

144

Chapter 5

You can create animation from Lingo by using a series of such
statements in succession to switch a series of cast members. For
example, you could reverse a sprite’s image when it is clicked by
switching the sprite’s cast member. For sprite number 1, if the original
cast member is number 1 and the reversed image is number 2, the
following handler makes the image appear to reverse on a rouseDown
and then returns to the original image when the nouseDown is over:
on nouseDown

set the castNum of sprite 1 to 2

updat eSt age

repeat while the still Down

not hi ng

end repeat

set the castNum of sprite 1 to 1

updat eSt age
end

Manipulating Sprites 145

146 Chapter 5

Chapter 6

Using the Keyboard & Mouse

Lingo lets you create movies that use the keyboard and mouse to
interact with the user. This chapter shows how, by placing the
right scripts in the right places, you can:

O Make text on the stage editable or noneditable
0 Check which keys are pressed

0 Check and combine text strings

0 Modify text

0 Detect when the cursor rolls over a sprite

0 Check for timeouts.

147

Editing text

Director lets you create text that users can edit while the movie plays.
This lets you use text that the user enters from the keyboard or update
text by inserting text strings into a text cast member.

The score lets you make a text sprite editable in selected frames by
selecting the Editable checkbox. The Text Cast Member Info dialog
box lets you make a text cast member editable everywhere that the cast
member is used as a sprite by selecting the Editable Text checkbox.

Lingo’s edi t abl eText of sprite property lets you turn on or off
whether text is editable as you need to during the movie. For example,
suppose you want to give users 60 seconds to enter responses to a
question but then make the text uneditable when time runs out. The
edi t abl eText property lets you turn editability on and off without
using the score.

To turn editable text on or off, use the statement
set the editabl eText of sprite, followed by the sprite
channel number, the word t 0, and then either TRUE or FALSE.

For example, to make the text sprite in channel 5 editable, use the
statement set the editabl eText of sprite5 to TRUE.
To make the same text sprite uneditable use the statement

set the editabl eText of sprite 5 to FALSE.

When you set the edi t abl eText of sprite property, place the
statement in the text’s sprite script. If you want the text cast member
to always be editable, it is easier to do this by selecting the Editable
Text checkbox in the Text Cast Info dialog box. If you want the text
sprite to always be editable in specific frames of the movie, it is easier
to do this by selecting the Editable checkbox in the score.

148

Chapter 6

Checking keys

Often, you want a movie to perform a certain action when a specific
key is pressed. Lingo uses the element t he key to identify the last key
that was pressed. Using t he key as part of a script, you can check
which key was pressed and specify an action in response to pressing
certain keys.

Examples of checking which key is pressed appear in the bid entry
section of the Luck segment of Furniture + Philanthropy. When users
type their name and bid, what they type appears in the fields.
However, pressing Return has no effect and pressing Option-T enters

the bid.

In this section, you re-create the Lingo that detects when the user
presses Return or Option-T and defines how the movie responds
when this happens.

Using the Keyboard & Mouse 149

First, see how the finished movie responds when Return or
Option-T is pressed:

1. Open and play the movie “UserKeys” in the
Tutorials:Learning Lingo:Kiosk folder.
A screen used to enter a bid appears.

furniture philanthropy earning luck help

Andrew Belschner -

Richard Brayton
Glenn Gee

Brian Kenneth Graham
Brian Kane

Alan & Joy Ohashi

bid form
First name:

11 . Last name:
: Bid amount:

Press Option- T to enter bid.

Type your first name in the ““First name”” field.
Press Return.

Type your last name.

Your last name doesn’t appear on the stage. This is because the
Return was actually entered as part of the “First name” field and
the field expanded out of sight. A typical user who had pressed
Return at this point might expect the cursor to move to the next

field.

5. Delete the text you typed in steps 2, 3, and 4, and then press
Option-T.
The character for Option-T () appears, because the handler that
detects whether Option-T has been pressed and tells the movie to
display a thank you message hasn’t been written yet.

150 Chapter 6

Now add the handlers that check whether the user pressed Return and
filter it out if he or she did. The handler that checks for Return and
Option-T will be named whi chKey.

First, make whi chKey the primary event handler that responds to a
key being pressed:

Rewind the movie ““UserKeys.”

Open script cast member 1, Movie Script.

Scroll to the end of the on startMovie handler.

P W0 NP

Insert the cursor immediately before the line
end st art Movi e, and then type the following statement:

set the keyDownscript to "whi chkey"
When you are done the last three lines of the on st art Mvi e
handler should look like this:
put "" into cast "Bid display"
set the keyDownscript to "whi chkey"
end
The statement set t he keyDown scri pt to "whi chKey" makes

whi chKey the first handler that responds each time the user presses a
key when the movie is playing.

Now, add the whi chKey handler that checks whether Return was
pressed and tells Director to ignore it if it was:

1. Scroll to the end of the movie script and type the following:
on whi chkey
if the key = RETURN t hen
dont PassEvent
end if
end
Press Enter or click the close box to enter the script.

Press Command-S to save your work so far.

Using the Keyboard & Mouse 151

To see the whi chKey handler’s effect on the movie:

Rewind and play the movie.
Type your first name.

Press Return.
Nothing happens when you press Return; the cursor remains
visible in the “First name” field.

4. Press Tab.
The cursor advances to the “Last name” field.

Whenever the user presses a key, the phrase if t he key = RETURN
checks whether the key is the Return key. When the key is the
Return key, the phrase t hen dont PassEvent prevents the message
that the Return key was pressed from being passed on to anywhere else
in the movie. As a result, the text cast member never knows that
Return was pressed and does not include it in the text field.

You can advance to the next field by pressing Tab or clicking the field.

Next, add Lingo that has the whi chKey handler also check whether
the user presses Option-T and calls a handler that enters the user’s
name and bid amount into the auction.

Stop the movie “UserKeys.”
Open the cast window if it is closed.

Double-click cast member 1, Movie Script, to open it.

P w0 N P

Scroll to the end of the whichKey handler.

152

Chapter 6

5. Insert the cursor between the statementend i f and the
statement end whi chKey.

6. Add the following statements to the whichKey handler:
if ((the keyCode = 17) and (the opti onDown)) then
dont PassEvent
t hanksDi spl ay
end if
When you are finished, the whichKey handler should look like
this:
on whi chkey
if the key = RETURN t hen
dont PassEvent
end if
if ((the keyCode = 17) and -
(the optionDown)) then
dont PassEvent
t hanksDi spl ay
end if
end
7. Press Enter or click the close box to enter the script.
The second statement
if the (the keyCode = 17) and (the opti onDown) then
checks whether the Option and “t” keys are being pressed at the same
time. When they are, the statement dont PassEvent prevents the

fact that Option-T was pressed from passing on to anywhere else in
the movie and t hanksDi spl ay calls the handler t hanksDi spl ay.

Next, write the handler t hanksDi spl ay. The section “Modifying
text fields,” later in this chapter, shows you how to write Lingo that
has this handler include the user’ s name and bid amount in a
personalized message on the screen. For now, write a handler that
displays the message “Thank you for entering a bid.”

Using the Keyboard & Mouse 153

To write the t hanksDi spl ay handler:

Open cast member 1, Movie Script, if it is closed.

2. Place the cursor at the end of the script and type the
following:

on t hanksDi spl ay
put "Thank you for entering a bid." into =
field "Bid display"
go to the frane + 1
end
3. Press Enter or click the close box to enter the script.
The put statement changes the content of text cast member “Bid
display field” to the phrase “Thank you for entering a bid.” The

go t o statement sends the playback head to frame 4, in which the text
cast member “Bid display field” is on the stage.

The section “Modifying text fields,” later in this chapter, explains
more about how you can change the content of text cast members. For
now, you only need to see the result of pressing Option-T.

To see what happens when the user presses Option-T:

Rewind and play the movie

2. Enter your first name, last name, and bid in the appropriate
fields.

3. Press Option-T.
The message “Thank you for entering a bid.” appears.

4. Press Command-S to save your work.

The handlers you just wrote are examples of ways you specify
responses that occur when certain keys are pressed. The element
t he key indicates which key was pressed.

154

Chapter 6

Naturally, a common place for using t he key isin an on keyDown
handler. This has Lingo only check the value of t he key when a key
is actually pressed. For example, the following handler in a frame script
sends the playback head to the next marker whenever the Return key
is pressed:
on keyDown

if the key = RETURN then go to marker (1)
end

You can also assign actions to more than one key. For the following
handler, pressing s, h, or q gives different results:

on keyDown

if the key "s" then go to "Start"
if the key "h" then go to "Hel p"
if the key = "q"

then quit
end

Using the Keyboard & Mouse 155

Checking text

Lingo can check whether text contains a specific string such as a
correct answer to a question, a specific name, or a letter within a set of
numbers.

Three Lingo elements—f i el d, cont ai ns, and the equals

sign (=) —are useful for checking text. Fi el d refers to the text in a
text cast member. Cont ai NS compares two strings to see whether one
string contains the other. The equals sign can determine whether a
string of text is exactly the same as the contents of a text cast member.
Using these lets you check whether a specified string is present in a text
cast member.

For example, suppose you want people to enter “Einstein” as an
answer to a question and then press Return when they are done. The
following handlers offer a possible strategy for checking the answer.
The first handler calls the checkNane handler when the user presses
Return. The checkName handler checks whether the answer is the
string “Einstein.” If “Einstein” is the string in the cast member named
“answer,” the playback head goes to the next marker. If “Einstein” is
not the content of “answer,” the playback head goes to the marker
“Try again.”
on keyDown

if the key = RETURN t hen checkNane
end
on checkName

if field "answer" = "Ei nstein" then
go to next
el se

go to marker "Try again"
end if
end

156 Chapter 6

Because the first handler is activated by pressing a key and the only
time you would probably want this script to run is when the movie is
in this frame, it is best to put this handler in a frame script. You could
put the second handler in the same script or in a movie script. Putting
it in a movie script makes it easier to find the script if you want to copy
it later.

Notice that the way the checkName handler is written, the user
would need to type “Einstein” exactly. Slightly different answers—
such as “Albert Einstein” or “Dr. Einstein”—would be treated as
incorrect. Using cont ai ns to check for a string of text allows the
string to contain characters in addition to the string you are checking
for.

For example, the statement i f field "answer" contains

"Ei nstei n" checks for the name “Einstein.” However, this would
also correctly detect “Einstein” when the user types “Albert Einstein.”
Notice, however, that cont ai ns could treat “Feinstein” or
“Einsteiner” as correct answers.

The cont ai ns element also lets you search for a text string—such as
a name—within text. For example, suppose the text cast member
“Scientists” contains the names of noted scientists. The following
handler would check for the name Maria Skoldowska and send the
playback head to the marker “Radium.”
on test Nane
if the field "Scientists" contains "Skol dowska" -
then go to marker "Discoveries"”
end

Using the Keyboard & Mouse 157

Modifying text fields

As conditions change in an interactive movie, you often want to
change and update text. For instance, you might want to frequently
update the score of a game, people’s names, or notes that the user has

typed.

You can change the content of a text cast member by using the put
commands and the field property. You can also combine more
than one text string using the text operators & and &&:

0 The field property specifies the text contained in a text cast
member.

0 The & operator, used between two strings, has Lingo attach the
second string to the end of the first string. The && operator
includes a space between the two strings when they are combined.

In the section “Checking keys,” earlier in this chapter, you created a
handler that displayed the message “Thank you for entering a bid”
when the user pressed Option-T. In this section, you replace that
handler with one that puts the user’s first and last name in the message.

You create this handler in the movie “UserKeys” that you worked
with in the section “Checking keys.” The exercise in this section
requires that you have already completed the handlers in the section
“Checking keys.”

The movie “UserKeys” contains four text cast members: “First name,”
“Last name,” “Bid,” and “Bid display.” The first three are for the first
name, last name, and bid that the user enters. You use the contents of
these text cast members in the text cast member “Bid display,” which
contains the message that appears after the user presses Option-T.

158

Chapter 6

To write the handler that combines text strings:

1.

Open the movie “UserKeys” that you saved from the section
“Checking keys.”

Open the cast window and double-click cast member 1,
Movie Script.

Scroll to the end of the thanksDisplay handler.

Replace the statement that starts
put "Thank you ... with the following:

put field "First nane" && -
field "Last nane" into full Nane

This statement uses && t0 combine the text in “First name” and
“Last name” and assigns the combined string to the variable

“ful | Nare.”
On the next line, type:
put field "Bid" into bi dAmount

This statement assigns the content of Bi d to the variable
bi dAnount .

On the following line, type:
put "Thank you," && full Name & -

", for bidding $" & bi dAmount & ". Your bid has
been entered." =
into field "Bid display"

This statement creates a new string by combining the characters
you have typed here within quote marks and the strings that are
assigned to the variables f ul | Name and bi dAnount .

To see the effect of the handler:

1.

Rewind and play the movie.
Enter your first name, last name, and bid.

Press Option-T to enter the bid.

Using the Keyboard & Mouse 159

After you press Option-T, a message that includes the name and bid
you entered appears. For example, if you entered the name Lotte
Lenya and bid $500, the message would be:

“Thank you, Lotte Lenya, for bidding $500. Your bid has been

entered.”

The handler you created uses the put command to put text into a text
cast member or variable.

The handler also used the text operators & and && to combine strings
of text. Some strings were text that you typed in the statement. (These
were surrounded by quotation marks.) Other strings were text in
variables or cast members.

Notice that a space comes after the comma following “Thank you”
because the && operator inserts a space between strings. No space
appears after the dollar sign ($) because you used the & operator.

Additional ways to update text fields

You can also update text by using the set , put after,put before,
and the text of cast elements.

You can also use the set command similar to the way you used put
to assign text to a cast member or other string, only the syntax is
different. Instead of using set and an equal sign or the term t 0, you
use put and the term i nt 0. For example, these statements do the
same thing:

set the text of field "Geeting” to "Hello"
put "Hello" into field "G eeting"

You can use the term cast similar to the way you used fi el d. For
example, these statements do the same thing:

put "Hello" into field "G eeting"
put "Hello" into cast "Greeting"

160

Chapter 6

Using put . . . after and put. .. bef ore, you can insert a string of
text or some other expression into a specific location within another
string:

0 The put...after command puts the string or expression at the
end of the item you specify.

0 Theput. .. beforecommand puts the string or expression at the
beginning of the item you specify.

For example, if you used a variable named t hePri ce to record the
price of an item, the statement put "$" before thePri ce inserts
a dollar sign before the price. (Note also that inserting a non-numeric
character in a string of numbers, as in this example, also converts a
numeric value to a string.)

You can also insert variables or other expressions. For example, if the
text in text cast member number 10 is “Answer: ” the statement

put 3 * 4 after field 10 multiplies the expression 3*4 and
updates the text to “Answer: 12.”

The elements char, i tem | i ne, and wor d you identify specific
characters, items, lines, or words in an expression that you can insert
items before or after. For example, wor d followed by a number
specifies a word in a string; char followed by a number specifies a
character in a string. For more information about these elements, see
the Lingo Dictionary.

For example, suppose the variable desi gner s contains the designers’
names “Gee Ohasi”; you can insert the name Kaye in the middle by
using the statement put " Kaye" before word 2 of designers.

The result would be “Gee Kaye Ohashi.”

Using the Keyboard & Mouse 161

Detecting a rollover

Many times, you want something to occur when the user rolls the
cursor over a particular place on the screen. For example, you might
want the cursor to change when it is over a hot spot or animate a sprite
when the user passes the cursor over it.

You can easily detect which sprite the cursor rolls over by using the
Lingo element r ol | Over followed by the number of the sprite. This
is usually done in a frame script, but it can also be done within other
scripts.

The movie Furniture + Philanthropy uses t he rol | Over to detect
when the cursor is over certain regions of the stage and changes the
cursor to a magnifying glass when it is. In this exercise, you use one of
the screens from Furniture + Philanthropy but instead use

the roll Over to detect which designer’s name the cursor is over.
The names are in sprite channels 23, 24, and 25. A go t 0 command
then sends the playback head to a segment that displays the designer’s
work.

You create this handler in the movie “Rollover.”

162

Chapter 6

To write the handler that checks for rollovers and sends the playback
head to the appropriate marker:

1. Open the movie ““Rollover’ in the Tutorials:Learning
Lingo:Kiosk folder.

2. Open the score and notice the three markers, BelO, BrayO,
and GeeO.
Each of the segments for these markers displays a different
designer’s work in the area on the right of the stage. Also, each
segment has script cast member 1 assigned to it as a frame script.

3. Open the cast window and double-click cast member 1.
The score script window opens.

furniture philanthrae carning luc

Andrew Belschner

Richard Brayton Score Script 1

| Glenn Gee n : #I‘I‘Ii” 1

Brian Kenneth Graham

Brian Kagz
Rollover Score

Alan & J ’@%

4]

WE=10 WBrayl ¥iGeel

IERINRNANEE NEEN
1 5 5

o B

nti-Alias

B (M= (= M)

=

T (PR e I = e)

[T (e (s (e =))

E

(K= (N [(= (=))
(R (T [(T (=)

o
i
ol
El
&l
=)
o
k=
o
=

T=E =1 = (T)

S | D [|| P | =

S (M)

_IMarveable

Using the Keyboard & Mouse 163

4. Type the following in the score script window:

on enterFrame
if rollOver (23) then go to "Bel 0"
if rollOver (24) then go to "Bray0"
if rollOver (25) then go to "CGeeO"
end

on exitfrane
go the frame
end

To see the effect of the handler:

1. Rewind and play the movie.

2. Move the cursor over the names Andrew Belschner, Richard
Brayton, and Glenn Gee.
The display to the right of the list of names changes when you roll
over a different name.

3. Close the movie “Rollover.”
You do not need to save changes.

The on ent er Fr anme handler checks whether the cursor is over sprite
23, 24, or 25 and sends the playback head to the appropriate segment
ifitis. The on exi t Fr ame handler has the movie loop in whichever
segment it is currently in.

To detect a rollover in an area that is different from the bounding rectangle of a
sprite, you can place an invisible QuickDraw shape over the area of the screen
that you want to test for a rollover.

164

Chapter 6

Checking for timeouts

It’s often important to check whether anybody has used the keyboard
or the mouse for a specifed period of time. Possibly, the user is having
difficulty or has just gone away. If you want, you can tell your movie
what to do when the user does nothing. You do this by specifying a
ti meQut primary event handler.

For example, in the movie Noh Tale to Tell, the user is asked to
choose a sound level from the Volume menu before the story starts.
However, you could have the story start anyway after a specified time
by writing Lingo that has the movie go to the start of the story when
the user does nothing for the specified time.

In this section, you see how to specify a timeout handler by adding this
Lingo to the movie “Timeout,” which is based on the first segments

of Noh Tale to Tell.

Specifying a t i meQut primary event handler requires three things:

O Settingt he ti meQut Lengt h to the length of time you want to
pass before Director decides that a timeout has occurred

0 Creating a handler that tells Director what to do when the timeout
occurs

0 Defining the t i meQut Scri pt so that it calls the handler that tells
Director what to do when the timeout occurs.

To sett he tinmeQutLengt h for the movie “Timeout”:

1. Open the movie “Timeout” in the Tutorials:Learning
Lingo:Storybook folder.

2. Open the score and notice that the script cells for frame
17already has a script assigned to it.

3. Open the cast window and double-click script cast member
20 to open its script window.

Movie script window 20 appears.

Using the Keyboard & Mouse 165

4.

Type the following on startMovie handler:
on startMvie

set the timeoutlLength to 6 * 60
end

The ti meQut Lengt h is measured in ticks (1/60 of a second).
This handler sets the length time for a timeout to 6 seconds.

Director automatically sets the timeout length to 3 minutes unless
you set it otherwise. This means that the user would have to do
nothing for 3 minutes before the timeout sequence takes effect.
This handler shortens the timeout to 6 seconds.

Now write the handler that tells Director what to do when the
timeout occurs:

1.

2.

In the same movie script (cast member 20), add the
following handler:

on continueWthout dick
go to frane "Start"
beep

end

Press Enter or click the close box to enter the script.

This handler sends the playback head to the frame labeled “Start”
whenever it is called. You can make Lingo call this handler when a
timeout occurs by setting t he ti meQut Scri pt to a calling statement
for cont i nueW t hout d i ck.

Tosetthe timeQutScript to call the handler
conti nueWt hout i ck:

1.
2.

Select the script channel in frame 16.

Choose New from the Script pop-up menu.
A new score script window appears.

166

Chapter 6

3. Type the following:
on exitFrame
set the tineoutScript to "continueWthoutdick"
end
Because the movie actually loops in frame 17, setting
the ti meQut Scri pt inanon exit Frane handler in frame 16
setst he ti meout Scri pt the way you want before the playback

head enters frame 17. The ti meQut Scri pt is now available
when the movie is in frame 17.

4. Press Enter or click the close box to enter the script.

Because the mouse has a different use after the story starts, you need
toresett he timeQut Script so that it does nothing after the story
has started. Otherwise, the playback head would return to the marker
“Start” every time 6 seconds passes without someone using the
keyboard or mouse.

Tosetthe timeQutScript to do nothing after the story starts:

1. Select the script channel in frame 18.

2. Choose New from the Script pop-up menu.
A new score script window appears.

Using the Keyboard & Mouse 167

3. Type the following:
on enterFrame
set the timeoutScript to EMPTY
end

Timeout Score

Script on enterFrame set the timeout: =
15 on enterFrame I
[¥] ¥Start
ser= (| Frame |][I LTI
i) 1] a 20 [5G
B Al EEEEE c
Ink + 14
Copy | [20
Anti e | =] EH
+ 1 gggoooooooooooo'ﬁ"{'ﬂ'ﬁr
= % 2 EO=———— Score Script 15
Trails
_IMarveatle S 3 | +I ‘I *I 1 I|]5”
HEE
. + 4 ololol on enterFrame |
_|Editab1e |0 bsls] set the timeoutScript to EMPTY
+ 6 ololo] =hd
Display 2lajo

rEEED

4. Press Enter or click the close box to enter the script.
5. Rewind and play the movie.

After 6 seconds at frame 17, the movie goes to the marker “Start”
when you do nothing with the keyboard or mouse.

The handlers you wrote set t he ti neQut Scri pt to perform a
specific action when the user does nothing for a specified time. When
the reason for the timeout script no longer applied, you removed the
action by setting t he ti meQut Script to EMPTY.

168 Chapter 6

Because you usually want the action that t he ti nmeQut Scri pt
specifies to occur in more than one frame of the movie, it is usually a
good idea to define t he ti meQut Scri pt in a movie script. When
you always want the same response to a timeout everywhere in a
movie, the on st art Myvi e handler is a good place to specify what
happens in a timeout.

Like all primary event handlers, conditions in this script are in effect
unless and until you specifically deactivate it.

Using the Keyboard & Mouse 169

170 Chapter 6

Chapter 7

Controlling Sound

This chapter describes the following ways that Lingo can control when
and how a sound plays:

0 Using puppet sounds that play when a particular event, such
as a user clicking a button or a certain length of time passing,
occurs when the movie plays

0 Playing sound in a specific channel

0 Checking whether a sound channel is currently playing a
sound and making the movie respond accordingly

0 Turning sound off

0 Controlling sound volume from the movie instead of from the
computer’s volume setting and adjusting sound transitions by
controlling how sound fades in and out

0 Stopping a sound when a specific condition occurs in the
movie

171

Playing puppet sounds

Puppet sounds let Lingo play sounds in response to events and
conditions in addition to directions from the score. For example,
putting a puppet sound statement in an on nmouseDown handler could
have a brief click sound play when the user clicks the mouse button;
putting a puppet sound statement in an on nouseUp handler could
have a sound play after the user clicks the mouse button. Or, you could
have a puppet sound play when a sprite is in a specific location or a
specific length of time passes.

Puppet sounds can be preloaded into RAM for faster access when the
puppet sound plays. Because they can continue to play from RAM
after Director leaves a movie, puppet sounds make useful transitions
between movies, especially when the time required to load the next
movie is noticeable.

To create a puppet sound, use the puppet Sound command followed
by the name of the sound you want to play. For example, this handler
named addThemadds several values and plays the sound “Winner”
when the total exceeds 100:

on addThem vFirst, vSecond, vThird
set vTotal = vFirst + vSecond + vThird
if vTotal >100 then
puppet sound "wi nner"
updat eSt age
end if
end
If puppet sounds fail to play, check that there is enough RAM available

to hold the sound. The sound doesn’t play unless it is loaded into
RAM.

172

Chapter 7

To turn off a puppet sound and return control to the score’s sound
channels, use the statement puppet Sound 0. For example, the
following script attached to a button could make a button that turns
the current sound off when the button is clicked:

on nouseUp
puppet Sound 0
end

If sounds in the score’s sound channel fail to play after you use a puppet
sound, make sure that the earlier puppet sound condition is turned oft
by using the statement puppet Sound O.

Controlling Sound 173

Playing sound in a specific channel

Lingo uses the sound pl ayFi | e command to direct specific channels
to play specific sounds. The sounds must be AIFF sounds playing from
disk. Playing sounds from disk gives you the advantage of playing
sounds without being limited by available RAM. However, since the
computer can read only one item from disk at a time, you cannot load
cast members or play more than one sound from disk when using the
sound pl ayFi | e to play sounds.

When you enter the sound pl ayFi | e command, follow the term
sound pl ayFi | e with the channel number and sound file you want

to specify.

For example, use this statement to play the sound “wind” in the first
sound channel:

sound playFile 1, "wi nd"

Use this statement to play the sound “thunder ” in the second sound
channel:

sound playFile 2, "thunder"

174

Chapter 7

Checking for sound conditions

You sometimes want to make actions in a movie dependent on
whether a sound is playing. Using the Lingo elements

t he soundEnabl ed and t he soundBusy, you can determine
whether a sound is playing and have the movie respond the way you
want. For example, you could display certain sprites on stage when a
sound is playing or check whether a sound is playing and have
animation continue until the sound finishes.

Checking sound anywhere in the movie

The soundEnabl ed property specifies whether the sound is on in
Director’s control panel:

0 Itis TRUE (or 1, Lingo’s numeric equivalent to TRUE) when sound
is turned on in the control panel.

0 Itis FALSE (or O, Lingo’s numeric equivalent to FALSE) when
sound 1s turned off in the control panel.

You can test and set the soundEnabl ed property.

For example, the following statement checks whether sound is turned
on or off and displays the result in the message window:

put the soundEnabl ed

If a sound is turned on, the message displays the number 1, which is
Lingo’s numeric equivalent to TRUE. If sound is turned off;, the
message displays the number 0, which is Lingo’s numeric equivalent
to FALSE.

This statement turns off the sound in the movie:

set the soundEnabl ed to FALSE

Controlling Sound 175

Checking sound in a specific channel

The soundBusy function tells whether a specific channel is playing a
sound:

0 It is TRUE when a sound is playing in the specified channel.
0 It is FALSE when no sound is playing in the specified channel.

When you use the soundBusy function, follow the term soundBusy
with the number of the sound channel you are checking.

For example, this statement checks whether sound is playing in sound
channel 1:

put soundBusy(1)

This statement turns oft any sound in channel 2 when there is a sound
playing in channel 1:

i f soundBusy(1) then sound stop 2

The sound st op command, which turns off the current sound in the
specified sound channel, is described in the following section
“Turning sound off.”

When soundBusy is used immediately after a sound starts playing, there might
not be enough time for the sound to register before the soundBusy test. To avoid
getting false results in this situation, use the updateStage command immediately
after issuing the command that makes the sound start playing. The updateStage
command also updates the speaker in this situation.

176

Chapter 7

Turning sound off

Sometimes you might want to use Lingo to turn off all sound in the
movie or turn off a sound in a specific channel. For instance, when
Director switches from one movie to another, you might want to turn
off the sound from the first movie at a diftferent time than the score
would otherwise.

To turn off all sound in the movie, set t he soundEnabl ed to
FALSE, as explained in the previous section.

To turn off the current sound in a specific channel, use the
sound st op command followed by the number of the sound channel
that contains the sound you want to turn off.

For example, this statement turns off the current sound in channel 2:

sound stop 2

This statement turns off the sound in channel 2 when there is a sound
playing in channel 1:

i f soundBusy(1) then sound stop 2

Controlling Sound 177

Measuring a sound’s time

AIFF sound files have no way to measure time. As a result, when a
sound is stopped before it finishes, it has no way to tell where the
sound stopped and resume play later. It can also be very difficult to
synchronize sounds and animation.

By treating sounds as audio-only QuickTime movies, you can gain
greater control over how the sound plays:

0 The novi eTi ne of sprite property can determine where a
sound stops playing and re-start the sound at that or any other
point in the movie.

0 The nmovi eRat e property controls whether the sound plays
slowly, fast, or in reverse.

For information about the novi eTi ne of spriteandnovi eRate
properties, see the entries for these elements in the Lingo Dictionary.

You can synchronize movie events to specific points in a sound file by
issuing the st art Ti mer command just before the sound starts. As the
sound plays, you can use the value in t he ti nmer to cue other events
in the movie. For example, the statement i f the tinmer < 180
then go to the frane hasthe playback head loop in the current
frame for three seconds before going on.

178

Chapter 7

Controlling sound volume

Sounds played from the score’s sound channels play at the volume set
in the computer’s sound level control. Using Lingo, you can modify
the computer’s sound level to suit the needs of your movie:

O Setting and testing the sound level for a specific sound channel
using Lingo’s soundLevel property.

0 Fading sound in and out using Lingo’s sound f adel n and
sound fadeQut commands.

Setting and testing the sound level

The soundLevel property refers to the computer’s volume in a
sound channel. Possible values are from O to 7, which correspond to
the settings in the Macintosh Sounds control panel. Using this
property, Lingo can change the sound volume directly or perform
some other action when the sound is at a specified level.

The beginning of Noh Tale to Tell provides a Volume menu from
which the user can choose the movie’s volume. In this section, you see
how to write the statements that set the sound level. How you can
create the custom menu itself is discussed in Chapter 8, “Creating
Interfaces.” The sample movie you use here has the Lingo for custom
menus already included.

To see where you will add statements that set the sound level:

1. Open the movie “Sound” in the Tutorials:Learning
Lingo:Storybook folder.

2. Open the score and look at the segments that have markers
Loud, Medium, Soft, and Mute.

Controlling Sound 179

The custom menu is designed to send the playback head to one of
these markers, depending on which command the user chooses from
the Volume menu. The frame script assigned to each frame already
contains Lingo that turns checkmarks in the Volume menu on and off.
For each script, you will write Lingo that sets the sound level to the

level indicated by the marker label.

To add a statement that has the frame script at the marker Loud set the
sound level to 7:

1.
2.

4.

Select the script channel in frame 27.

Click the script preview button.

Script window 16, which is already assigned to this cell, appears.
Statements that set checkmarks for the menu have already been
included in the script.

Insert the cursor in the first line under on exi t Fr ame and
type the following:

set the soundLevel to 7

This sets the sound level to the maximum.

Press Enter or click the close box to enter the script.

To add a statement that has the frame script at the marker Medium, set
the sound level to medium:

1.
2.

4.

Select the script channel in frame 31.

Click the script preview button.

Script window 17, which is already assigned to this cell, appears.
Statements that set checkmarks for the menu are already in the
script.

Insert the cursor in the first line under on exi t Fr ane and
type the following:

set the soundLevel to 5

This sets the sound level to medium.

Press Enter or click the close box to enter the script.

180

Chapter 7

To add a statement that has the frame script at the marker Soft, set the
sound level to soft:

1.
2.

Select the script channel in frame 37.

Click the script preview button.

Score script window 18, which is already assigned to this cell,
appears. Statements that set checkmarks for the Volume menu are
already in the script.

choose a sound level.

Use the Yolume menu to | Seript on exitFranme
I_18 on exitFrame

Sound Score

[¥] Joud wMedium ¥Soft whute

018 Frame

INNNNNEN NANEAN
30 35 40 45

|
&
m

+ Bl
ok -+ 1o

Score Script 18

[+]e]o[i] 5]

ot exi tFrame

end

|
beep
et the checkMark of metwltem "LOUD" of merw "WOLUME" to FALSE
Set the checkMark of menultem "MEDIUM" of menu "WOLUME" to FALS
Set the checkMark of menultem "SOFT" of menu “"UILUME" to TRLE
Set the checkMark of menultem "HUTE" of merw "WOLUME" to FALSE
go to frame “Stay”

I

- + 10 H H H
Display]

[t J[SBT+B]2u]o 5
N S

Insert the cursor in the first line under on exi t Fr ame and
type the following:

set the soundLevel to 3
This sets the sound level to soft.

Press Enter or click the close box to enter the script.

Controlling Sound 181

To add a statement that has the frame script at the marker Mute set the
sound level to mute, which is no sound:

1.
2.

4.

Select the script channel in frame 41.

Click the script preview button.

Script window 19, which is already assigned to this cell, appears.
Statements that set checkmarks for the Volume menu are already
in the script.

Insert the cursor in the first line under on exi t Fr ame and
type the following:

set the soundLevel to O
This sets the sound level to mute.

Press Enter or click the close box to enter the script.

To see the effect of the statements you added:

1.

Rewind and play the movie several times.
Each time the movie starts, choose a different command from the
Volume menu. The sound plays at a different volume each time.

Press Command-S to save your work when you are done.

182

Chapter 7

The Lingo you just wrote demonstrates a way to set the sound level.
Suppose you want a particular sound, such as thunder, to play as loudly
as possible but then have the computer’s sound level return to its
original setting when the thunder is done. You could do this with a
handler similar to the following:
on pl ayThunder

set soundRecord = the soundLevel

set the soundLevel =7

puppet Sound "t hunder"

updat eSt age

repeat while soundBusy(1)

not hi ng

end repeat

set the soundLevel = soundRecord
end

This handler first records the current sound level, and then sets the
sound to the maximum value of 7. When the sound is done playing in
channel 1, the handler resets the sound to its original level. The repeat
loop allows the sound to finish before the sound level is returned to its
original value.

You could also control the sound level from a button, which gives
users a way to turn sound volume up or down as the movie plays. This
button handler increases the sound volume one level every time the
button is clicked unless the sound level is already at 7:
on nouseUp

if the soundLevel < 7 then -

set the soundLevel to the soundLevel + 1
end
This button handler lowers the sound by one level every time the
button is clicked unless the sound level is already at 0:
on nouseUp

if the soundLevel > 0 then -

set the soundLevel to the soundLevel - 1
end

Controlling Sound 183

Fading sound in and out

Because sounds normally play at the same volume for the duration of
the sound, the beginning or end of a sound is sometimes more abrupt
than you want in your movie. Lingo lets you gradually increase sound
volume as the sound begins or decrease the sound volume as the sound
ends. In both cases, you can specity how long the change in volume
takes:

0 To gradually increase sound volume as the sound begins, use the
command sound f adel n followed by the sound channel
number.

0 To gradually decrease sound volume as the sound ends, use the
command sound fadeCut followed by the sound channel
number. (Be sure to allow enough time for the sound to fade out
completely before issuing another command that controls sound.
Other sound-related commands might not give the expected
result unless the sound fadeQut statement is finished.)

Both commands let you include an optional parameter that specifies

the amount of time the transition takes in number of ticks (one tick is
1/60th of a second). If you don’t include this parameter, the transition
takes the time required to play 15 frames at the current tempo setting.
(You can calculate the transition time by dividing the current tempo
by 15.)

In the following exercise, you add Lingo that fades sound in and out
in the movie “Sound.”

To see how the sound plays without fading in and out:

1. Open the movie “Sound” that you worked with in the
section, “Setting and testing the sound level.”

2. Play frames 46 through 124.
The wind and cricket sounds start and end abruptly.

3. Rewind the movie.

184

Chapter 7

Now, add Lingo that fades in the cricket and wind sounds:
1. Open the score.

2. Select the script channel in frame 67, the frame before the
sound begins.

3. Choose New from the Script pop-up menu.
A new script window appears.

Script on exitFrame sound fadein 1, 1=
>0 EE E
Frame | [[[[[[[[[]]]]] L
bk} 60 b5 rie
+ L[]
+ 14 HeE
Score Script 23 + 2 Ee
+ '[23 + E B
| I" ’I E | " + 1 FEFEEEEEREFEEREEE T
ah exitFrame o oo | 2 | | o o o |
sound fadein 1, 1 % &0 + 2
sound fadein 2, 1 #* &0 + 3
&t
G B 114 A
+ 0
+ 6
+ 7
+ 8
+ 9
+ 10
Display '
IEEEE o

4. Type the following handler:
on exitFrame
sound fadeln 1, 1 * 60
sound fadeln 2, 1 * 60
end

This handler fades in the sound of the wind and crickets over 1
second.

5. Press Enter or click the close box to enter the script.

Controlling Sound 185

Now, add Lingo that fades out the cricket and wind sounds:

1. Open the score.
2. Select the script channel in frame 107.
3. Choose New from the Script pop-up menu.
A new script window appears.
4. Type the following handler:
on exitFrane
sound fadeQut 1, 2 * 60
sound fadeQut 2, 2 * 60
end
This handler fades out the sound of the wind and crickets over 2
seconds.
5. Press Enter or click the close box to enter the script.
To see the effect of the sound f adel n and sound f adeCut
commands:
1. Rewind and play the movie.

The sound fades in starting at frame 67 and fades out starting at
frame 107.

Stop the movie when you are finished.
You do not need to save the changes you made.

186

Chapter 7

Chapter 8

Creating Interfaces

Lingo can create familiar computer interfaces with custom menus,
buttons, and cursors. This chapter tells you how to:

0 Create custom menus
0 Create custom cursors

0 Create and set buttons.

187

Creating menus

Lingo can create custom pull-down menus that let the user choose
from items that you provide. When the user chooses a menu item,
Director runs a handler that implements the menu command.

Use the i nst al | Menu command to install pull-down menus. You
define the actual items in the menus in a text cast member.

The Volume menu that appears in the first section of Noh Tale to Tell
is a custom menu that lets the user choose a sound level for the movie.
The volume menu disappears after the user chooses a sound level and
the story begins. In this section, you will re-create the Volume menu’s
behavior in a movie named “MyMenus” by writing Lingo that:

0 Installs a custom Volume menu
0 Defines what each menu item does when the item is selected

0 Removes the Volume menu when it is no longer needed.

Installing a menu

The i nst al | Menu command tells Director to install the menu
described in a specific text cast member. In this exercise, you write a
statement that installs the menu. In the next section “Defining what’s
in the menu,” you define the menu’s contents by adding Lingo to the
text cast member.

188

Chapter 8

To install the Volume menu in the movie “MyMenus”:

1. Open the movie “MyMenus” in the Tutorials: Learning
Lingo:Storybook folder.

Open the score.

Select the script channel in frame 5.

Frame 5 is the first frame of the segment in which users set sound
level and how long the movie pauses at the end of each scene.
Script cast member 11 is already assigned to this cell and already
contains the comment “--instal |l the sound nenu.”

4. Click the script preview button at the top of the score.
The script window for script cast member 11 appears.

MyMenus Score

| Script

[¥]
Frame | || [[[({1T(1]/
115 0 NS
S0 back g [Ig..._ ! 2 [l
Ink + 1 LhilEEEkkERRRkkR
Copy [+ 2 H
S - 3
g‘.’: T BRAAARERAR
= [ET= Score Script 11 =E3} |
Trails
JMoveah]e-l +I‘I ’I iI] ”" 1
IEditable I] ——install the sound meru &l |

Display

Creating Interfaces 189

Note

5. Type the following in the script window:
on enterFrane
instal |l Menu 17
end
Number 17 is the number of the text cast member in which you

will define the menu’s contents in the next section “Defining
what’s in the menu.”

6. Press Enter or click the close box to enter the script.

7. Press Command-S to save your work.

The statement i nst al | Menu 17 tells Lingo to use the text in cast
member number 17 for the menu’s items and their definitions. You
write this Lingo in the next section.

You can put menu definitions in any text cast member. Choosing cast
member number 17 is just one possibility.

When you specify the text cast member to use for menu item definitions, you
must refer to the cast member by number—as in the statement
installMenu 17—not by name.

The menus that you create with the i nst al | Menu command appear
at the top of the screen only after you play the movie and execute the
i nst al I Menu command. Remember that custom menus appear only
while the movie is playing.

If you want a menu to be available during the entire movie, define it in an
on startMovie handler in a movie script.

190

Chapter 8

Defining what’s in the menu

You define the actual content of a menu in a text cast member.

To define the content of the Volume menu in the movie
“MyMenus”:

1. Open the movie “MyMenus” if it is closed.
Open the cast window.

3. Double-click text cast member 17 to open it.
Text cast member 17 is the cast member you specified earlier in
thei nstal | Menu 17 statement as the cast member that contains
the definitions for the Volume menu. The text window for cast
member 17 appears.

MyMenus Score

| Seript —-inztall the sound menuon ente IF
11 ——in=tall the soundl

serr | Frame ||| (@ ICITITILTT]
0 5

ool

|
h“"
EEED

i
EEIGTD
Xz C
E
E
E
E
E
=
=
=
E
B
EE
E
E
E

Anti-Aliaz
|Trails ——
_IMoveab) | 1:" + ‘

_|Editably

o
Il

[risplay
[Seript

i
]

Creating Interfaces 191

4. Type the following in the text window. (Press Option-X to
create the “=”” character):

menu: Vol une

Loud = go to frame "Loud"
Medi um = go to frane "Mediunt
Sof t
Mut e

0

go to frame "Soft"

0

go to frame "Mite"

5. Press Enter or click the close box to enter the script.
To see the eftect of the Volume menu that you installed:

1. Rewind and play the movie.

2. When the Volume menu appears, choose different
commands from the menu.

The computer beeps each time you choose a menu item. The
sound level of the beep corresponds to what you choose.

Loud
Medium

Soft
Mute

ke the Yolume menu to
choose a sound level.

Drag to shorten or lengthen
the pause hetweeh pages.

|
Click to go back. —@t______ [m— Click to continue.

The pause hutton highlights
when the pause is in effect.

Start Story

3. Stop the movie.

4. Command-S to save your work when you are done.

192 Chapter 8

The menu: command establishes the menu’s name as Volume. Text
that you type on each new line after that creates a new item in the
menu. The “=” sign (created by typing Option-X on the keyboard)
does not appear in the menu item. However, the statement that comes
after the =sign is the Lingo that runs when you choose that item from
the menu. The menu item can be only one line long. You can use
more than one statement for the menu item by making the line a
calling statement for a separate handler.

In this example, the statements that you wrote send the playback head
to the segment Loud, Medium, Soft, or Mute. The set the
soundLevel command that has already been included in the frame
script assigned to each segment is the same Lingo that you used in the
section “Setting and testing the sound level,” in Chapter 7 to set the
sound level.

You can install additional menus by adding more sets of menu
statements, either before or after existing ones, in the same text cast
member. The menus appear at the top of the screen in the order that
you define them.

When you append a slash (/) followed by a letter to the end of the
Lingo statements that define the menu items, the letter automatically
appears with the Command key symbol in your menu. Like other
command key equivalents, pressing these Command keys executes the
same commands as choosing the menu items themselves. For example,
putting “/P” at the end of the Lingo statement makes Command-P a
keyboard shortcut for the menu item and displays the Command-P
symbol after the item in the menu. Note that if your custom menu uses
keyboard shortcuts, your Director shortcuts don’t work while the
custom menu is in effect.

There are other special symbols that you can use in defining menus (for
example, to make items bold or disabled) or placing checkmarks next
to items that are selected. Refer to the menu: keyword and
checkMar k of menul t emproperty in the Lingo Dictionary for
more information.

Creating Interfaces 193

Removing a menu

You can remove a menu when you no longer require it by using the
command i nstal | Menu 0. For example, in Noh Tale to Tell, there
is no need for the Volume menu to appear after the story starts.

To remove the Volume menu from the movie “MyMenus” when the

StOI'Y starts:

1.
2.
3.

Open the movie “MyMenus” if it is closed.
Open the score.

Select the script channel in frame 46.
Frame 46 is the first frame of the actual story. Script 19 has already
been assigned to the script channel in frame 46.

Click the script preview button at the top of the score.
The script window appears.

MyMenus Score

| Script on exitFrame pause =
19 on exitFrame I
[¥] [Jium wSoft ¥Mute wStart
#er® i Frame | [TTTIEICT T ITTL T
35 4 45 9 E
- 14 7
Ink + 24
Copy | g o
= antranas | * | IEI 2 H
t —— Tt e
2=l off E== Score Script 19 =23
_|Trails | +I ‘I ‘I i I| 19” HH
_IMaveat H
_|Editat1
|

194

Chapter 8

5. Type the following in the script window:
on enterFrame
install Menu O
end

on exitFrane
pause
end
6. Press Enter or click the close box to enter the script.
To see the effect of the script:
1. Rewind and play the movie.
2. Choose a sound level from the Volume menu.

3. Click the Start Story button.
The Volume menu disappears after the story starts. The pause
command pauses the movie at the end of the last frame.

4. Press Command-S to save your work when you are done.

Creating Interfaces 195

Creating cursors

Tip

Lingo lets you replace your computer’s standard cursors with custom
cursors. The cursor can be any 1-bit black-and-white bitmap or
combination of overlaid 1-bit black-and-white bitmaps that are at least
16X16 pixels. When the bitmap’s length or width is greater than 16
pixels, Director crops the bitmap to 16X16 pixels from the upper left
corner of the bitmap:

0 Using the cur sor command, you can change the cursor for the
entire movie.

0 Usingset the cursor of sprite followed by a list
containing the bitmap or bitmaps used for the cursor, you can
have the cursor change when the cursor is over specified sprites.

The bitmap images are available as cast members in the cast window.
This is a simpler way to provide custom cursors than was used in earlier
versions of Director, which treated custom cursors as external resource

files.

You can use an image that is smaller than 16X16 pixels for a custom cursor
by making the bitmap’s bounding rectangle at least 16X16 pixels. The
invisible boundary doesn’t appear on the stage.

In Furniture + Philanthropy, the cursor changes to a magnifying glass
when it is over certain areas of the stage. In this section, you work with
a movie named “Cursors” to write Lingo that changes the cursor to a
magnifying glass when it is over specific sprites. Later you’ll write
Lingo that changes the cursor for the entire movie.

196

Chapter 8

To change the cursor to a magnifying glass when it is over certain

sprites:

1. Open the movie ““Cursors” in the Tutorials:Learning
Lingo:Kiosk folder.

2. Open the cast window.

The bitmap that you will use for the cursor is cast member 16.

3. Double-click cast member 1, the Movie Script.
The movie script window appears.

furnitbur

Andrew Belschner -

Richard Brayton
Glenn Gee
Brian Kenneth Graham

Brian Kane

Alan & Joy Ohashi

Creating Interfaces 197

4. Type the following in the Movie Script:
on startMvie
set nyCursor to [16]
set the cursor of sprite 22 to nyCursor
set the cursor of sprite 23 to nyCursor
set the cursor of sprite 24 to nyCursor
set the cursor of sprite 25 to nyCursor
set the cursor of sprite 26 to nyCursor
end
The first statement after on st art Movi e creates the variable
myCursor and sets it equal to a list that contains the bitmap used
as the cursor. If you were overlaying two bitmaps to create a mask,

you would list them all in the list, with the matte cast member
second in the list.

The statements that start with set the cursor change the
cursor to the bitmaps in the list myCursor whenever the cursor is
over the specified sprites. Sprites 22 to 26 are the regions that are
outlined in white in the movie “Cursors.”

5. Press Enter or click the close box to enter the script.
To see the effect of the script:
1. Rewind and play the movie.

2. Pass the cursor over different regions of the movie.
The cursor changes to a magnifying glass when it is over the
regions that are outlined in white.

You just wrote a script that changes the cursor to a custom cursor
when the cursor is over sprites that you specified. You set the cursor
to the bitmap contained in the list. In this case, the bitmap was cast
member 16. Placing this Lingo in an on st art Movi e handler had
the cursor change to a magnifying glass any time after the movie
started. You could have had the cursor change only in selected frames
by placing this Lingo in an on ent er Fr ame or on exi t Franme
handler.

Next, you replace this handler with a handler that uses the magnifying
glass everywhere on the stage by using the cur sor command.

198

Chapter 8

To use the magnifying glass as a cursor everywhere on the stage:
1. Re-open the movie “Cursors” if it is not open.
2. Open the cast window.

3. Double-click cast member 1, the Movie Script.
The movie script window appears.

4. Delete any existing handlers that are in the movie script.

furniture philanth
Andrew Belschner -
Richard Brayton

Glenn Gee

Brian Kenneth Graham

Movie Sl:ript I:ume Script
| +I ‘I ’I i Il 1||M0\r'ie Seript

Brian Kane

Alan & Joy Ohashi

Creating Interfaces 199

5. Type the following in the movie script window:
on startMvie
set nyCursor to [16]
cursor mnyCursor
end

The first statement after on St art Movi e creates the variable
nmyCur sor and sets it equal to a list that contains the bitmap used
as the cursor. If you were using an overlay of two bitmaps, you
would put both of them in the list.

The second statement declares that the bitmap assigned to the
variable myCur sor is the cursor.

6. Press Enter or click the close box to enter the script.
To see the eftect of the script:
1. Rewind and play the movie.

2. Pass the cursor over different regions of the movie.
The magnifying glass is the cursor over the entire stage.

You just wrote a script that changes the cursor to a custom cursor. You
set the cursor to the bitmap contained in the list. In this case, the
bitmap was cast member 16. As when you used the

set the cursor of sprite, placing this Lingo in an

on start Myvi e handler had the cursor change to a magnifying glass
any time after the movie started. You could have had the cursor
change only in selected frames by placing this Lingo in an

on enter Frame or on exit Frame handler.

To create a mask for a cursor, make a duplicate of the cursor cast member. Use
the no shrink rectangle when you cut and copy the original bitmap in the paint
window. Set the duplicate cursor’s ink effect to transparent.

200

Chapter 8

Creating buttons

The button, checkbox, and radio button tools in the tools window are
designed to automatically behave the way that interface buttons
typically work:

O A checkbox toggles between empty and selected (marked
with an X)

O A radio button toggles between an empty circle and a bull’s-eye

0 A button highlights on nbuseDown and returns to its original state
on mouseUp.

You can use Lingo to react to these button clicks. In addition, you can
control the properties associated with buttons.

To make a button:

1. Click the tool you want to use.

2. Drag a rectangle on the stage.

3. Type the text you want to appear on or next to the button.
4

If desired, set the font, style, size, and foreground and
background color.

The button is placed in the cast as a button cast member. Add it to the
movie by dragging it onto the stage.

Director automatically duplicates the standard change in a button’s
appearance that occurs when the button is clicked. All you need to do
is provide the Lingo that tells Director what to do when the button is
clicked. You can change the appearance of any checkbox or radio
button (selected or deselected) through Lingo.

Creating Interfaces 201

Controlling buttons

Lingo lets you check whether buttons are clicked and write handlers
that respond accordingly and control the buttons’ appearance.

Reacting to a clicked button

For a button placed on the stage over several frames, nothing happens
if the user does not click the button. When the user clicks the button,
the button toggles and any script associated with the button is
executed:

0 When the script is in an on nouseDown handler, the script
executes when the button is pressed.

0 When the script is in an on nouseUp handler, the script executes
when the button is released.

You can put just about any script in the button, including one that calls
other handlers defined in a movie script, score script, or the button’s
own cast script. The text associated with a checkbox can be made

editable.

Reacting to a clicked checkbox or radio button

The hilite of cast indicates whether a checkbox or radio button
is selected or deselected:

0o Ifthe hilite of cast is TRUE, the radio button or checkbox
is selected.

0o Ifthe hilite of cast is FALSE, the radio button or checkbox
is deselected.

In your scripts, you can test the state of the checkbox or radio button
and then cause some action based on the result. In Lingo, you refer to
a button by its cast name or number. For example, the following script
tests whether the button cast member “Button Choice” is selected:

if the hilite of cast "Button Choice" = TRUE then =
go to frane "new sequence"

202

Chapter 8

Abutton’shi l i te of cast property stores whether or not the user
selected it. Each button click causes the value to switch between TRUE
and FALSE (a 1 or 0). In the preceding example, if

the hilite of cast is TRUE the statement sends the playback head
to the frame that has the marker “New sequence.” If

the hilite of cast is FALSE, nothing happens.

Selecting a checkbox or radio button

You should not depend on the user to set the state of a checkbox or
radio button. For example, if you provide a set of radio buttons, you
need to make sure that the user can select only one at a time. Your
script needs to establish that all the buttons except the one selected are
set to FALSE.

To select a checkbox or radio button, you would use a set statement
similar to this one:

set the hilite of cast "Button Choice" to TRUE

If you set the hi | i t e property to FALSE, the checkbox or radio
button is deselected.

The checkBoxAccess property

By default a user can select or deselect a checkbox or radio button.
There are two more restricted types of access:

0 Setting the checkBoxAccess property to 1 allows the user to
select but not deselect the checkbox or radio button.

O Setting the checkBoxAccess property to 2 allows the user to
neither select nor deselect the checkbox or radio button.

To change the kind of access the user has to checkboxes and radio
buttons, you use the checkBoxAccess property. The following
statement prevents the user from changing any checkbox:

set the checkBoxAccess to 2

Creating Interfaces 203

A checkBoxAccess setting of 0 allows the user to select and deselect
checkboxes and radio buttons. A setting of 1 allows the user to only
select checkboxes and radio buttons, and prevents a selected checkbox
or radio button from being deselected.

The checkBox Type property

By default a selected checkbox displays an X in the box. You can
change this box to a small black square or a filled checkbox.

Use the checkBoxType property to change this setting:

set the checkBoxType to 2

A checkBoxType setting of O displays a standard X check. A
checkBoxType setting of 1 displays a small square within the
checkbox. A checkBoxType setting of 2 displays a filled checkbox.

The checkBoxType is a movie property. Its setting affects all
displayed checkboxes.

204 Chapter 8

Chapter 9

Movies in a Window

This chapter tells you about how to play fully dynamic and
interactive movies in conjunction with your primary movie, by
creating windows that can play movies. The material describes:

0 Important background information about how to create and
use lists

0O How to create windows and specify the characteristics you
want

0 How to assign a movie to play in the window

0 How to close the window when you are done.

205

Using lists

Note

Lists give you an efficient way to keep track of and update an array of
data. Some types of data that you might want to track in a movie
include the names that users enter in a kiosk, the current windows and
the movies assigned to them, the coordinates of a sprite, or the current
child objects. (Child objects are described in Chapter 10, “Parent
Scripts and Child Objects.”)

Director offers two types of lists:
0 Linear lists, in which each element is a single value

0 Property lists, in which each element consists of a property and a
value separated by a colon.

Both linear and property lists can be unsorted or sorted in alphabetic
order.

Lists are an alternative to factories and mGet and mPut. You do not have to
worry about explicitly disposing of lists. Lists are automatically disposed of
when they are no longer referred to by any variable.

In the section “Creating cursors,” in Chapter 8, you used a simple list
in the statement set myCursor to [16] . The term [16] is actually
a one-element list that includes the cast number of the bitmap you are
using as a cursor. If you had used a second bitmap as a mask, you would
have listed the cast number of the second bitmap following the first
cast number. The new list would be [16, 17].

Lingo can create, sort, add to, reorder, or substitute a list’s contents.
Before studying the Lingo that does this, look at a simple movie that
uses Lingo to create and manipulate lists.

In earlier versions of Director, you might have handled a set of items by making
them strings in a text cast member and then referring to them by item number.
Using lists is an easier approach that allows Lingo fo execute faster.

206

Chapter 9

To see an example of a linear list:

1. Open and play the movie ““Lists” in the Tutorials:Learning
Lingo: Simulation folder.
The movie appears. The left side contains two sets of fields where
you type entries and buttons for entering and sorting. The right
side contains fields that update to display the list’s contents after
you type entries.
2. Click the Linear List Entry section and type the name
“Ohashi”” in the Value field.
Linear List Entry * of items in list
Value []
["Belschner”, "Gee",)
"Ohashi”]
[
Property List Entry i i i
List with formatting
mylinearlist K]
Pmperty I:I (1) Eelschner
(2} Gee
Value |:| {3) Dhashi
|
[
3. Click the Enter button.
The name appears in the List and “List with formatting” fields at
the right.
Type the name Bel schner, and click the Enter button.
Type the name Gee, and click the Enter button.
The names appear in the List field in the order you type them.
Each element in the list is surrounded by quotation marks. The
names appear in the “List with formatting” field with their list
indexes.
6. Click the Sort button.

The names now appear in alphabetical order.

Movies in a Window 207

To see an example of a property list:

1. Stop, rewind, and play the movie ““Lists.”
The movie appears with the Value and Property fields clear.

2. Click the Property List Entry section and type the name
Chashi in the Property field.

3. Type a number in the Value field, and then click the Enter
button.
The name “Ohashi”, followed by a colon and then the number
you typed appears in the List field. The number of the position in
the list, the name, a comma, and the number you typed appear in
the “List with formatting” field.

Linear List Entry * of items in list

List
Value [
[#Gee: 500, *Belschner: (¥
750, *#0hashi: 500]
]
Property List Entr
perty Y List with formatting
mypropertylist 7
Property [| (1) Gee, 500
{2 Belschner, 750
Value [] (3) Ohashi, 600
i
[r

4. Type the name Bel schner in the Property field, a number in
the Value field, and then click the Enter button.

5. Type the name Gee, and click the Enter button.

208

Chapter 9

6. Type several more property names and number values. Click

the Enter button after each property and value you enter.
The names and numbers appear in the List field in the order you
type them.

Click the Sort button.
The names now appear in alphabetical order in both lists.

The movie you just explored uses several Lingo commands to record
and modify the lists of values and properties that you typed.

Creating lists

You specity which items are in a list by enclosing the items in square
brackets. You can also use the | i st () function with the list items
within the parentheses to create the list:

O

Each item in a linear list consists of one value. Text strings used as
an element in a linear list must be surrounded by quotation marks.
Text not surrounded by quotation marks is treated as a variable. If
the text has no value assigned to it, Lingo treats the item as void
in the list.

For example, the names that you entered in the linear list could be
defined as list elements by using [" Chashi ", "Bel schner",
"Cee"] orlist("Chashi", "Belschner", "Gee").

Each item in a property list consists of a property followed by a
colon and then the value associated with the property. Properties
can appear more than once in a property list. The symbol
operator (#) must precede each text string that you use as a value
in a property list or Lingo treats the element as an empty or void

entry.

For example, the names and numbers in the property list could be
defined as list elements by using

[Chashi : 500, Bel schner: 750, Gee: 600] . If the numbers
were properties and the names were values, you could declare the
items to be list elements by using

[500: #Chashi, 755: #Bel schner, 600: #Cee].

You create a list by assigning the list’s definition to a variable.

Movies in a Window 209

To create a sample linear list:

1.

Type the following in the message window:
set nyList =Ilist("b", "a", "d", "c")
Press Return and then type:

put myLi st

Press Return.

The message window displays [" b",
is the list you defined.

a", "d", "c"], which

To create a sample property list:

1.

Create a new movie.

Open the message window.

Type the following:

set nmyList =[b:1, a:2, d:3, c:4]
Press Return and then type:

put myLi st

Press Return.
The message window displays [#b: 1, #a: 2, #d:3, #c:4].

A linear list or a property list can contain no values at all. An empty
linear list consists of two square brackets ([]). An empty property list
consists of two square brackets surrounding a colon ([:]). Clear a
linear list by setting the list to [] . Clear a property list by setting the
listto[:].

For example, the statement set nmyLi st = [:] clears the contents
of myLi st , which is a property list.

210

Chapter 9

Sorting lists

Lists can be sorted in alphanumeric order. A sorted linear list is ordered
according to the values in the list. A sorted property list is ordered
according to the properties in the list.

To sort a list:

>

Use the sort command followed by the list’s name.
For example, these statements create and then sort a list:

set nyList =["a", "e", "c"]
sort nylLi st

put myLi st

-- ["a", "c", "e"]

Checking items in a list

You can determine the values at locations in a list and how many items
the list contains.

To determine how many items are in a list:

>

Use the count function.

For example, if nyLi st contains three items, the statement
put count (nmyLi st) displays the number 3 in the message
window.

Movies in a Window 211

The following functions tell you characteristics of a list:

To check a list’s Use this function
Type ilk

Maximum value max

Minimum value mn

Value at a specific get At

position in a list

Property associated get Pr opAt
with a specific position
in a property list

Position of a specific fi ndPos, findPosNear,
property or getQOne

Adding items to a list

You can add items to the end of a list or in a specific place within the
list. The commands used to add items have the following different

uses:

To add an item at Use this command
The end of a list append

Its proper order in a add

sorted list

A specific place in a addAt

linear list

A specific position in a addPr op

property list

212

Chapter 9

Changing items in a list

You can replace or delete items in a list.
To delete an item from a list:

» Use the del et eAt or del et ePr op command.

To replace an item in a list:

» Use the set At command.

Copying lists

Assigning a list to a variable and then assigning that variable to a second
variable does not make a separate copy of the list. For example, the
statement put |ist("Asia", "Africa") into |andLi st
creates a list that contains the names of two continents. The statement
put |andList into continentList assigns the same list to the
variable cont i nent Li st . However, then adding “Australia” to

| andLi st using the statement add | andLi st, "Australia"
automatically adds “Australia” to cont i nent Li st also.

You can make a copy of a list by using the val ue and string
functions to treat the list’s contents as a text string and copying the
string. For example, the statement:

put val ue(string(landList)) into continentlList

makes a copy of | andLi st and assigns it to cont i nent Li st .

Movies in a Window 213

What a movie in a window is

A movie in a window is a fully functional, distinct movie that can be
opened by the current movie.

In one sense, the movie in a window is a child of the current movie:
the current movie opens and can dispose of the window. However,
each movie in a window plays like any other Director movie, with all
its Lingo intact and capable of interacting with other movies. Because
the parent and child movies are fully functional, movies in a window
let you play two or more movies simultaneously.

The Lingo Expo is an example of a movie that plays other movies in a

window. The interface—which you use to select and control a
movie—is actually the movie named “Navigator,” the parent movie.
The sample movies play in a window within “Navigator.” Notice that
as the sample movie plays, you can interact with the sample movie the
same as when it plays on its own. In this figure, the movie MECH is
playing within the Navigator.

214

Chapter 9

The typical “life” of a movie in a window involves creating the
window by assigning a movie to the window; opening the window
and playing the movie; and deleting the window when the reason for
playing the movie no longer applies.

Any time after you assign a movie to a window, you can specify the

window’s appearance—whether it is visible, has a frame and title, or is
in front of or behind other windows on the screen. For convenience,
you can assign these values to a variable and then refer to the variable.

You achieve each of these behaviors by using the appropriate Lingo,
as described in the following sections. You see how this Lingo is
implemented by re-creating it in the tutorial movie “MIAW.” The
movie plays a digital video in the simulated monitor screen.

Movies in a Window 215

Creating a sample movie in a window

You create a window by specifying the screen rectangle for the
window and then specifying the movie assigned to the window. You
can also make the window visible, change its type, set its title, or set
the window’s size and location.

In this section, you’ll write handlers for “MIAW” that create and play
a movie in a window when the playback head enters frame 10. This is
the frame that the movie enters when you click the Movie in a
Window button.

The frame script for frame 10 already has an on ent er Fr ane handler
that contains a calling statement for the handler named

begi nMyMovi e. You will write the begi nMyMovi e handler in a
movie script.

216 Chapter 9

To start writing the begi nMyMovi e handler:
1. Open the cast window.
2. Double-click cast member 11, Movie Script.

3. The movie script window appears.

Muovie Script 11

1]

To write statements that create the window:

1. Insert the cursor at top of the script window and type the
following:

on begi nMyMovi e
gl obal nyW ndow
i f object P(myWndow) then
forget nyW ndow
end if
set horzOrigin to 127
set vertOrigin to 66

Movies in a Window 217

The first statement declares myW ndow a global variable. The
if—then structure tests whether an object named myW ndow already
exists and deletes it if it does. (This is done to ensure that no window
exists if the movie has played previously. The f or get command is
explained in the section “Closing windows,” later in this chapter.) The
last two statements define variables that you use to specify stage
locations for the window.

2. On the following line, type:
set nmyW ndowRect to rect(horzorgin, =
vertorgin, horzorgin + 256, vertorgin + 192)
This statement creates a variable named nyW ndowRect thatis a
rectangle with the four coordinates you specified in step 1. The
rect function defines these coordinates as a rectangle.

3. On the following line, type:
set myW ndow to wi ndow "wal | Movi e"
This statement assigns the phrase Wi ndow "wal | Movi " to the
variable myW ndow. Lingo refers to a specific window using the
term Wi ndow followed by the window’s name. Making the entire
phrase a variable makes it easier to manipulate.

4. On the following line, type:
set the rect of nyWndow to myW ndowRect

This statement makes the rectangle described by the variable
nyW ndowRect the rectangle for the window.

The Lingo you just wrote specifies the coordinates of a rectangle and
then tells Director to use that rectangle as the window named

wal | Movi e. By setting many of the values to variables and then using
the variables, you made it easier to update the statements you are
writing and to re-use them for other windows and movies by
redefining variables instead of writing new handlers.

218

Chapter 9

Next, tell Director which movie to play in the window, whether to
make the title visible, and to open a window:

1.

On the line following the statementset the rect of
myW ndow t o nyW ndowRect , type the following:

set the fil eNane of nyWndow to "I NTERACT"

This statement makes the movie “INTERACT” the movie that
plays in the window.

On the following line, type:

set the titleVisible of nyWndow to FALSE
ThetitleVisible of wi ndowproperty specifies whether the
window’s title bar appears. Setting it to FALSE makes the title bar
invisible.

On the following line, type:

open nyW ndow

end

The statement open nyW ndow opens the window and plays the
specifed movie.

Press Enter or click the close box to enter the script.

Movies in a Window 219

You just wrote the handler that plays a Director movie in a window
within another Director movie. When you are finished the handler
should look like this:
on begi nM/Movi e

gl obal nyW ndow

i f objectP(myWndow) then

forget nyW ndow

end if

set horzOrigin to the stageleft + 127

set vertOrigin to the stageTop + 66

set nyWndowRect to rect(horzGrigin, vertOigin, -

horzOrigin + 256, vertOigin + 192)

set nmyW ndow to wi ndow "wal | Movi e"

set the rect of nyWndow to myW ndowRect

set the fil eNane of nyWndow to "I NTERACT"

set the titleVisible of nyWndow to FALSE

open nyW ndow
end
Finally, write the handler that closes the window when you no longer
need it. In this exercise, the handler is named f i ni shibvi e. The
calling statements for this handler have already been written for you.

The handler is called when the playback head goes to the segment that
plays digital video or the movie stops.

220 Chapter 9

To write the fi ni shMovi e handler:
1. Open cast member 11, Movie Script, if it is closed.

2. Type the following at the bottom of the script window after
the on stopMovie handler:

on stopMvi e
fi ni shMovi e
end

on finishMvie
gl obal nyW ndow
i f objectP(nyWndow) then
forget nyW ndow
end if
end

The on st art Myvi e handler calls the fi ni shMovi e handler
when the movie stops, The fi ni shMovi e handler tests whether
there is window named myW ndow and disposes of it if there is.
You do not need to close the window’s movie before you close
the window. (The f i ni shbvi e handler can also be called when
you click the Digital Video button. This Lingo has already been
included in “MIAW.”)

3. Press Enter to enter the new script.

Movies in a Window 221

To see the eftect of the handlers you wrote.
1. Rewind and play the movie.
2. Click the Movie in a Window button.

3. The movie “INTERACT” plays in the simulated monitor
screen.

“Interact” is the filename of the interactive Director movie about
wallcoverings.

The World of
Wallcoverings

3

{Cliclc a wallcovering}

4. Click the Brick, Wood, and Tile buttons.
The movie responds to each button click.

5. Click the Digital Video button.
The movie window closes and the digital video plays.

You have just performed the series of basic steps to implement a movie
in a window. The remaining sections in this chapter provide further
information about each aspect of playing movies in windows.

222

Chapter 9

Controlling windows

Lingo lets you control many aspects of the window you play a movie
in. Besides specifying which movie plays in the window and when the
window opens and closes, you can control the behavior of the window
itself and how movies in windows interact with the movie on the
stage.

The following sections describe how Lingo can control windows. The
features appear in the order you would typically perform them.

Setting the window type

Before the window opens, you can specity the window’s type by
assigning a Standard Macintosh Toolbox value for the wi ndowType
property. The following are the available values and the window type
each specifies (the numbers 6, 7, 9, 10, 11, 13, 14, and 15 have no
effect when specifying window type):

Moveable, sizeable window without zoom box
Alert box or modal dialog box

Plain box, no title bar

Plain box with shadow, no title bar

Moveable window without size box or zoom box

Moveable modal dialog box

o o~ W N +—, O

Standard document window
12 Zoomable, nonresizable window

16 Rounded corner window

Movies in a Window 223

Tip

For example, the statement set the wi ndowType of w ndow
"Sanpl e" to 2 sets the frame of window “Sample” to a plain box
without a frame, which is the style that the number 2 specifies in the
Standard Macintosh Toolbox.

It is possible to change the window type after the window is open, but
this can cause a delay while the window redraws to the new type.

When you don’t specify a window type, Director uses a plain box.

When you use windows as part of an interface in your movie, it is a good idea
to use the same window style throughout for consistent appearance.

Opening the window

Use the open command to open the window any time after the
window has been created. For example, the statement

open wi ndow " Noh_Tal " opens the movie “Noh_Tale”, which
is the first movie of Noh Tale to Tell, in a window.

If the movie for the window is not in the same folder as the parent
movie, you can include the element pat hNamne to refer to the movie’s
pathname.

For example, the statement set vMovi e = the pat hName -
& "| NTERACT" creates a variable named vMovie that contains the
pathname and filename for the movie “INTERACT.”

The movie is not loaded into memory until the window is first
opened, which could result in a noticeable pause.

You can specify the window’s appearance before or after you open the
window.

224

Chapter 9

Moving the window to the front or back

You can control whether a movie appears in front of or behind other
windows by using the noveToFr ont and noveToBack commands:

O The noveToFr ont command moves the window to the front.
For example, the statement moveToFr ont wi ndow -
"Denb" moves the window named Demo to the front of all other
open windows.

0 The noveToBack command moves the window to the back. For
example, the statement moveToBack w ndow " Denp" moves
the window named Demo behind all other open windows.

Making the window visible

The window’s vi si bl e of w ndow property specifies whether the
window is visible.

When the window opens, the window exists within the parent movie
and is visible. You can hide a window without closing it by setting the
vi si bl e of w ndow property to FALSE. You can also make a
window visible by setting the vi si bl @ of w ndow property to
TRUE.

For example, the statement set the visible of w ndow
"Sanpl e" = TRUE makes the window Sample visible. The statement
set the visible of window "Sanple" = FALSE makes the
window Sample invisible.

To avoid a noticeable time lag when the window opens, set the fileName of the
window before it’s needed and then open the window when it needs to be
visible.

For example, set the fil eNane of wi ndow "Sanpl e" = the-
pat hNane & " Sanpl e" loads the movie into memory and
open w ndow " Sanpl e" makes the window visible.

Movies in a Window 225

Displaying a window title

You can assign a title to the window and specify whether the title is
visible. This allows you to play movies in windows that look like
standard interface windows.

To assign a title to the window, set the title of w ndow
property to the title you want. For example, the statement

set the title of wi ndow "Sanple" = "Noh Tal e" sets the
window’s title to “Noh Tale.”

You can make the title appear by setting the tit| eVi si bl e of

W ndow property to TRUE. For example, the statement

set the titleVisible of window "Sanple" to TRUE
makes the title appear in the window named Sample. In our example,
the title would be “Noh Tale,” because you assigned that title to the
window. Setting it to FALSE makes the window title invisible.

Interaction between windows

Movies can interact with each other using the t el | command, which
can send instructions to a separate movie. When using the t el |
command, make sure to specify which window the instructions are
directed to.

For example, “Navigator” can control the playback head in the movie
in the Sample window. By issuing the statement t el | W ndow
"Sanmple" to "go to frame 27", “Navigator” sends the playback
head to frame 27 in Noh Tale to Tell when Noh Tale to Tell is playing
in the Sample window.

When you want a movie in a window to send instructions to the
primary movie, use the element t he st age to refer to the primary
movie. For example, the statement tel | the stage to go to
"Hel p" lets the movie in a window tell the primary movie to go to
the marker named “Help.”

226

Chapter 9

You can prevent Director from responding to any events that occur
outside the window by using the nbdal of wi ndowproperty. When
the nodal of w ndowis TRUE, Director responds to no events
outside the window, including the message window.

For example, at certain times you might want only one window to be
able to respond when the user clicks the mouse or types something on
the keyboard. A common case could be when you provide a help
system as a movie in a window and want to make sure that nothing
happens to the primary movie when the help system is playing. You
can achieve this by preventing all other movies from responding when
the mouse is clicked.

The statement set t he nodal of w ndow "Sanple" to TRUE
does this for the Sample window. When this statement is in effect,
Director responds only to events in the Sample window.

For the “Navigator,” the statement Set t he nodal of the st age
t o TRUE lets only events in “Navigator” have effect. When this
statement is in eftect, Director responds to events only in “Navigator”
itself but not to events in the movie playing in the Sample window.

The nodal of wi ndow property persists after the movie stops
playing. You can always close the window by pressing
Command-period or clicking the window’s close box after the movie

is finished.

Setting the window size and location

You can control how large the window is and where the window
appears by setting the window’s screen coordinates. A window’s
coordinates are given in a list in the order left, top, right, and bottom.
This type of list is called a r ect .

Setting the coordinates before the movie appears controls the initial
position of the window. Setting the coordinates after the window
appears moves the window.

Movies in a Window 227

Set the coordinates of a window by setting the rect of window
property to the coordinates at which you want the window to appear.
You can define the coordinates as a list or by using the rect function.
For convenience, assign the coordinates to a variable and then use the
variable in the statements you write.

For example, these statements set the variable aRect to a set of
coordinates, and then apply that position to the window. The items in
the list aRect are the rectangle’s four coordinates:

set aRect = (0, 0, 200, 300)
set the rect of w ndow "Sanple"” = aRect

Alternatively, you could use the rect function to define the rectangle’s
four coordinates, as in the following statements:

set aRect = rect(0, 0, 200, 300)
set the rect of wi ndow "Sanple" = aRect
When the area defined by the coordinates assigned to r ect of

W ndowis smaller than the movie that plays in the window, the movie
is cropped.

You can pan or scale a movie by setting t he dr awRect property to
coordinates smaller than the movie’s original size.For example, these
statements set the variable drawRect to a set of coordinates, and then
apply that position to the window:

set aRect = [0, 0, 200, 300]
set the drawRect of wi ndow "Sanple" = aRect

Now, if the movies that play in the Sample window are larger than this
rectangle, the window appears in the upper left corner and compresses
the movie to fit within the rectangle.

228

Chapter 9

Closing windows

Using the ¢l ose command closes the window and makes it invisible.
You can reopen the window by using the open command.

For example, the statement ¢l ose wi ndow " Sanpl e" closes the
window Sample.

Using the f or get command, you can specify that the window is no
longer in use. This has the advantage that when the movie is no longer
in use, Director discards the movie and removes it from memory.

For example, the statement f or get wi ndow " Sanpl e" has Director
discard the movie when it is no longer referenced by any other
window.

When the user could possibly reopen a window by clicking on something,
simply closing the window instead of forgetting it can prevent the performance
loss caused by the time it would take to reload the window. Of course, closing
rather than forgetting the window continues to use space in memory.

Listing the windows

You can obtain a list of all known windows in the movie by using the
wi ndowLi st property. For example, the statement put -

the wi ndowlLi st displays a list of current window names in the
message window.

Movies in a Window 229

230 Chapter 9

Chapter 10

Parent Scripts & Child Objects

This chapter introduces parent scripts, child objects, and the ways
you create them. This material is an introduction to the subject.
After you understand it you should be able to go on, study, and
understand the parent scripts used in MECH.

This chapter tells you:

O What child objects and parent scripts are

0 How to create a child object from a parent script

0 How to create many child objects from a parent script

0 How to assign and control properties of child objects.

231

Why use child objects

Sometimes, you might want to create a set of objects that share
characteristics but can still behave independently of each other. You
also might want to create these objects “on demand” as the movie calls
for them.

For example, you might want to create sets of interface buttons that
look and behave similarly but differ in the actions they perform. You
would probably also want each button in each set to be on or off
independent of what happens to other buttons. You might also want
to create and dispose of buttons as the movie plays.

Other times, you might want to create sprites as the movie plays and
display or remove them from the stage as movie conditions require.

The sprites could all look the same but move in different directions at
difterent speeds. If two sprites collide, each could respond differently
to the collision: one might reverse direction, the other might shatter.

232

Chapter 10

The tools in the sample movie MECH, as shown below, are examples
of child objects. Each item is a child object created from the same
parent script. Each gear is created from the same parent script, as is
each ramp and each chute. Notice that when several of the same type
of item are on the pegboard, they can perform differently from each
other.

As an introduction to creating child objects, this chapter shows you

how to write a simple parent script to create one child object: a simple
ball that you can move to the left or right by clicking buttons. In the
section, “Creating multiple child objects” later in this chapter, you’ll
learn how to write Lingo that creates two sets of related child objects.

Parent Scripts & Child Objects 233

Notes for experienced programmers

Parent scripts, child objects, and ancestor scripts are a simpler
alternative to factories, which were used in earlier versions of Director.
They are similar to classes, class instances, and inheritance used in
object-oriented programming languages such as C++.

Terms that refer to ancestor scripts, parent scripts, and child objects in
this guide and other Director documentation correspond to the
following terms used in object-oriented programming:

Lingo term Equivalent term
Property variable Instance variable
Parent script Class

Child object Class instance
Handler Method

Ancestor script Super class

Using child objects, you use handlers instead of methods to define
behaviors. Methods are still used by XObjects and factories.

234 Chapter 10

Looking at a simple child object

Before you start writing Lingo that creates one child object from a
simple parent script, look at a finished example of what you are going
to make.

To see a finished example of a movie that creates a child object from
a parent script:

1.

Open and play the movie “SimpDone” in the Tutorials:
Learning Lingo: Simulation folder.

Click the Birth button.
A ball containing an image of a script appears on the stage.

Click the Left and Right buttons.
The ball moves to the left or right, depending on which button
you click.

Stop the movie and open the cast window.

Look at the content of cast member 8, Ball Parent Script.
Notice that the script contains a line that starts with the pr operty
keyword and the handlers named on bi rt h and on noveBal | .

Look at the script assigned to cast member 4, the Birth
button.

The script calls the cr eat eBal | handler.

Look at the createBall handler in cast member 9.

The second statement in the handler declares balll a global
variable. The fourth statement issues a bi rt h statement. You will
learn more about the bi rt h statement in the next section,
“Writing a parent script.”

Close the movie when you're finished. Click Don’t Save to

avoid saving any unintentional changes you might have
made to the movie.

The movie you just played uses a simple parent script to create the ball,
which is a child object. The image of the parent script in the ball
illustrates that the ball child object is actually an occurrence or instance
of the set of handlers in the parent script. Clicking the Left and Right
buttons activates the handlers that instruct the ball to move to the left
or right.

Parent Scripts & Child Objects 235

Now see the next section “Writing a parent script,” for an explanation
of what a parent script contains and how to write the simple parent
script used in this example.

236 Chapter 10

Writing a parent script

Creating child objects requires issuing a bi r t h statement—which
contains the name of the parent script and any arguments that specify
the child object’s characteristics—to a parent script. The bi rth
statement can be issued from anywhere in the movie.

Bi rt h statements can continue to produce many child objects from
the same parent script. When it creates a child object, Director actually
creates an object that includes an identification number for the child
object, a reference to the parent script, and the values assigned to any
property variables that the object has. The child object is stored in
RAM.

The number of objects that you can create and maintain is limited only
by the amount of RAM available in the computer. The number of
child objects that can be displayed on the stage is limited to the number
of available sprite channels. Director maintains each child object as an
item in a list.

After a child object is created, the handlers within the child object can
be executed just like any other handler. Each child object can maintain
its own values for its property variables and respond to messages
independently of related child objects.

This section describes what to include in a parent script and shows you
how to create a simple parent script of your own for the movie
“Simple.” Later, you’ll use the parent script to create a child object:
the image of the ball in the movie “SimpDone.”

Parent Scripts & Child Objects 237

What’s in a parent script

The parent script contains three types of Lingo:

0 A birth handler that creates a child object each time it is called
and assigns the child object its initial values

0 Optional handlers that control the child object’s behavior after the
child object is created

O An optional statement that declares which variables are pr operty
variables—variables for which each child object can maintain
individual values regardless of the values for other child objects.

A special type of property variable that you can include is the
ancest or property. The ancest or property lets a child object
use handlers in an ancestor script, which is a parent script other
than the one used by the child object. Ancestor scripts are
discussed in the section “Creating multiple child objects,” later in
this chapter.

In the movie “SimpDone” that you just played, the first line declares
which variables are property variables. Variables listed after pr operty
become property variables for the child object. In this case, the bi rt h
handler sets the initial values for the child object that is created. (It is
generally good practice to set initial values for a child object when the
child object is created.) The noveBal | handler controls how much
the ball moves to the left or right when the user clicks the Left or
Right buttons.

Before you create child objects, first analyze how you want the child
objects to behave. Then write a parent script that declares any
appropriate property variables, includes the bi r t h handler that sets up
the child objects’ initial values and parameters, and contains additional
handlers that you decided to use.

238

Chapter 10

Note

Declaring property variables

Each child object created from the same parent script contains the
same set of variables. Because individual child objects can receive
different messages and behave differently after they are created, you
often want each child object to maintain its own values for some of
these variables, independently of what happens in a different child
object. You can do this by making the variable a property variable.

You declare which variables are property variables at the beginning of
the parent script by using the pr operty keyword. In the movie
“SimpDone,” the parent script declared the variable hor i zPos to be
a property variable.

To declare this a property variable in the parent script you are writing:

1. Open the movie “Simple” in the Tutorials: Learning Lingo:
Simulation folder.

2. Double-click cast member 8, Ball Parent Script, in the cast
window to open it.
Cast member 8 has already been named Ball Parent Script. The

first time you open this script cast member, the script should be
empty.

3. Type the following at the first line of the script:
property hori zPos

4. Click the close box in the script window to close the window
and enter the script.

5. Choose Save from the File menu to save your work when
you're finished.

Each property variable and its value persists as long as the object itself
persists.

You can access and refer to property variables from outside the child object by
using the Lingo element the followed by the name of the variable. For example,
the movie can issue the statement “set the horizPos of myBall to 200,” which
sets the ball’s horizontal location to 200. This was not possible in earlier
versions of Director.

Parent Scripts & Child Objects 239

A property variable belongs only to the child object it is associated
with. The initial value of a property variable should be set in the
bi rt h handler.

240 Chapter 10

Creating a birth handler

Each parent script requires a birth handler—a handler that creates the
new child object and sets its initial values when the handler is called.
The bi rt h handler always starts with the phrase on bi r t h, followed
by the optional ne variable, and any arguments being passed to the
new child object.

In the bi r t h handler for the movie “Simple,” you use the on birth
syntax to create a new child object and include statements that set the
child object’s initial location.

To write the bi rt h handler for the parent script:

1. Open cast member 8, Ball Parent Script, in the cast window
of the movie “Simple” if it is closed.

The Ball Parent Script cast member already contains the property
variable statement that you wrote earlier.

Parent Scripts & Child Objects 241

2. Type the following after the first line of the script:
on birth ne

set the horizPos of ne to 256

set the locH of sprite 2 to the horizPos of ne
set the locV of sprite 2 to 192

return me

end

E[1=—= Mownie Script 8:Ball Parent Script
| -|-| * | ’| i || 8[[an Parent Seript

property horizPos

oh birth me
=et the horizPos of me to 256
=et the locH of sprite 2 to the horizPos of me
set the locW of sprite 2 to 192
returt me
=t

[Left | [Birth | [Right |

When the ball is created, this handler:

&

O

O

Creates a new object when the handler is called

Assigns a value to the variable my Speed, which controls how
much the ball moves each time you click a Left or Right
button

Sets the coordinates of sprite 2, the ball
Makes sprite 3, the Birth button, invisible

Tells Director whether the child object has been created. If
the child object was created, it is added to a list of child objects
that is held in memory.

242

Chapter 10

3. Click the close box in the script window to close the window
and enter the script.

4. Press Command-S to save your work when you're finished.

The ball is assigned to sprite 2 because the ball cast member is assigned
to sprite 2 in the score. This is a very simple way to assign the new
child object to a sprite channel. More complex parent scripts that you
write later on use more flexible ways to assign sprite numbers.

About the me variable

The e variable is a common term that can be used to identify a child
object When e is used as it is in the bi r t h handler in Ball Parent
Script, each child object assigns its identification number and pointer
to the parent script to its version of the me variable. Because the me
variable is a common term present in each handler of the child object,
the me variable identifies each handler as part of the same child object.
In a sense, it is like a family name that identifies several people as
members of the same family.

You can write Lingo to assign the current instance of the child object
to me. As a result, the ne variable can be used to refer to whichever
handler is being executed at the time, just as any person in a group of
people could use the word “me” to refer to himself or herself.

The ne variable is useful for calling a handler when you have more
than one child object using the same parent script. By using ne, you
don’t have to specify the individual child object each time a child
object calls a handler.

The term ne itself is used by convention. You could use any term as
a common term among handlers, as long as you use it consistently. It
is good practice to use Me, because it is a simple term that is quickly
identifiable by other Lingo users.

Handlers that you write here and that are used in other movies such as
MECH are good examples of how to use the me variable.

Parent Scripts & Child Objects 243

Using additional handlers

You determine the child object’s behavior by including the handlers
that give the behavior you want in the parent script. In the movie
“SimpDone,” the noveBal | handler moved the ball each time the
handler was called when you clicked the Left or Right button. You
can add this feature to the movie you’re writing by including a similar
handler in the parent script.

To add the noveBal | handler to the parent script you’re writing:
1. Open the movie “Simple” if it is closed.

2. Double-click cast member 8, Ball Parent Script, in the cast
window to open it.

The Ball Parent Script cast member already contains the property
variable statement and birth handler that you wrote earlier.

3. Type the following after the last line of the script:
on noveBal |l me, direction
set the horizPos of me to direction * 50 + -
t he horizPos of ne
set stageWdth to the stageR ght - the stagelLeft
if the horizPos of me > (stageWdth + 187) then
set the horizPos of ne to O
end if
if the horizPos of me < - 187 then
set the horizPos of ne to stageWdth
end if
set the locH of sprite 2 to horizPos
end

244

Chapter 10

When this handler is called, the handler moves the ball to a new
location by setting the ball’s | ocH to the value of hori zPos:

¢ The first statement calculates the value for hor i zPos from
the current value of the variables hor i zPos and di rect i on.
The value for di r ecti on comes as an argument from the
handler attached to the Left or Right button.

< The second, third, and fourth statements check whether the
value for hori zPos puts the ball entirely beyond the left or
right edge of the screen and resets hor i zPos so that the ball
enters from the opposite edge of the stage if it is.

The last statement moves the ball by setting its | ocH to the
value of hori zPos.

E[[=——= Movie Script 8:Ball Parent Script ==—=—"{¢
| +| - | Ql il 5{|Ban Parent Soript

property horizPos

on birth me

set the horizPos of me to 256

=et the locH of sprite 2 to the horizPos of me
Fouie Sripl i set the locl of sprite 2 to 192

return me
end

an mowveBal | me, direction
set the horizPos of me to direction * S0 + the horizPo
=et stogellidth to the =tageRight - the stogeleft
if the horizPos of me * Cstagelidth + 1872 then
set the horizPos of me to O
end if
if the horizPos of me < - 187 then
set the horizPos of me to stagelidth
end if
set the locH of sprite 2 to horizPos
end

4. Click the close box in the script window to close the window
and enter the script.

5. Press Command-S to save your work when you're finished.
This handler is a simple example of the types of behavior you can
assign to a child object by including various handlers.

Parent Scripts & Child Objects 245

Creating child objects

Note

You create a child object from a parent script by issuing the bi rt h
statement, which assigns a name to the child object and specifies the
object’s parent script and initial parameters. The parent script and
initial parameters are defined in the bi rt h function.

The bi rt h statement can be issued from any script. The birth
function has the following syntax:

birth(script "scriptName", argumentl, argument2, =
argument3. . .)

‘When you use the bi rt h function, replace scriptName with the name
of the parent script. Replace argument1, argument2, argument3. . .

with any arguments you are passing to the child object’s bi rt h
handler.

Using the birth_function differs from using mNew to create a new object using
factories, although the results are similar. For information about using methods
with factories, see Appendix C, “Factories.”

For the movie you’re building, write a handler cr eat eBal | that
contains the bi rt h statement for the ball. The Birth button already
contains the calling statement for cr eat eBal | in an on npuseUp
handler.

246

Chapter 10

To write the handler that uses the bi rt h statement to create a child
object:

1. Double-click cast member 9, Movie Script, in the cast
window of the movie “Simple” if it is closed.
The movie script window appears.

E(I=——— Mouie Script 9 ==—"—-—-:°N15
BRI HEE

on startMovie
puppetSprite 2, TRUE

set the visible of sprite 3 to TRUE

set the visible of sprite 1 to FALSE

set the visible of sprite 4 to FALSE
end

an stopMowvie
puppetSprite 2, FALSE
end

2. Beneath the on startMovie handler, type the following:
on cr eat ebal

gl obal ball1l
set balll to birth(script "Ball Parent -
Script")

set the visible of sprite 3 to FALSE
set the visible of sprite 1 to TRUE
set the visible of sprite 4 to TRUE
updat eSt age
end
When this handler is called, it creates a child object named bal | 1.

The child object is one occurrence of the parent script “Ball
Parent Script” that you wrote earlier:

© The first statement sets up a global variable named bal | 1 that

the movie uses to refer to the ball after it is created.

Parent Scripts & Child Objects 247

© The second statement uses the bi r t h statement to create the
child object from the parent script and uses the set command
to assign the name bal | 1 to the child object.

¢ The third statement makes sprite 3, the Birth button, invisible.

¢ The fourth and fifth statements make sprites 1 and 4, the Left
and Right buttons, visible.

& The last statement updates the stage without waiting for the
playback head to enter another frame.

3. Click the close box in the script window to close the window
and enter the script.

Rewind and play the movie.

Click the Create button.

A ball, the child object, appears on the stage. (The Left and Right
buttons appear but do not work yet. You will add the Lingo that
makes these buttons work in the next section, “Controlling a child
object.”)

E=—— Movie Script Y =—————0F
[e|e[a[i o

on stariMovie
puppetSprite 2, TRUE
set the wisible of sprite 3 to TRLE
set the wisible of sprite 1 to FALSE

set the wisible of sprite 4 to FALSE
Mauie Seript 8 ehd

on createBal |
global ball1
set balll to O
set ball1 to birthiscript "Ball Parent Script]
set the wvisible of sprite 3 to FALSE
set the wisible of sprite 1 to TRLE
set the wisible of sprite 4 to TRLE
= end

on stopMouie
puppetSprite 2, FALSE
end

6. Press Command-S to save your work when you're finished.

248 Chapter 10

You just wrote a handler that creates a child object from a parent
script, changed the appearance of buttons, and then updated the stage.

Unless the child object has been assigned to t he act or Li st, you can
remove a child object from the movie by setting the child object to
zero. For example, the statement set bal | 1 = 0 would remove the
child object bal | 1 from the movie. For information about t he

act or Li st see the Lingo Dictionary.

Parent Scripts & Child Objects 249

Controlling a child object

Lingo can control a child object by sending messages to handlers the
same way it sends messages to handlers anywhere else in the movie.

In the movie “SimpDone,” clicking the Left or Right button moves
the ball to the left or right. This occurs because scripts attached to the
buttons call the noveBal | handler that is in the parent script. In turn,
the noveBal | handler moves the child object each time the user
presses the mouse button.

For the movie you are building, the noveBal | handler is already
written in the parent script. You will write the calling statements for
the noveBal | handler and assign them to the Left and Right buttons.
When one of these buttons is pressed, it calls the noveBal | handler
in the parent script and passes it the appropriate value for the variable
direction.

Whether the value of the argument di recti onis 1 or -1 determines
whether motion is to the left or right.

To write the handler for the Left button:

1. Open the movie “Simple” in the Tutorials: Learning Lingo:
Simulation folder.

2. Double-click cast member 10, Left, in the cast window to
open its button window.

3. Click the script button in the button window.
The script of cast member window appears.

4. Delete the line on nouseUp and then type the following
before the line end:

on nousebDown
gl obal ball1l
noveBal |l ball1, -1

5. Click the close box in the script window to close the window
and enter the script.

6. Rewind and play the movie.

Click and hold the Left button.
The ball moves to the left when you click the Left button.

250

Chapter 10

To write the handler for the Right button:

1.

Double-click cast member 7, Right, in the cast window to
open its button window.

Click the script button in the button window.
The script of cast member window appears.

Delete the line on nmouseUp and then type the following
before the line end:

on nmouseDown
gl obal ball1l
nmoveBal |l ball1l, 1

S[[E———= Script of Cast Member } ==ie—F="°15
klelofill

on mouseloun
global ball1
moveBal | balll, 1
end

Mnuie Siript o

Click the close box in the script window to close the window
and enter the script.

Rewind and play the movie.

Click and hold the Right button.
The ball moves to the right each time you click the Right button.

Press Command-S to save your work when you're finished.

Parent Scripts & Child Objects 251

You just wrote two handlers that move the ball to the left or right.
When the Left or Right button is clicked, the sprite’s

on nouseDown handler calls the moveBal | handler in the parent
script. As a result the ball moves according to the instructions in the
nmoveBal | handler. The ball moves left or right depending on
whether the variable di r ecti on is positive or negative.

252 Chapter 10

Looking at multiple objects

The movie that you built earlier in this chapter was a very simple
example meant to show you how create a child object from a parent
script. In normal use, you would not use a parent script to create just
one child object.

The advantage of parent scripts and child objects comes from their
ability to:

0 Create many child objects on command as the movie plays. You
create a child object each time you issue a bi rt h statement.

0 Maintain individual behaviors for each child object.

This and later sections show you how to write sample Lingo that
creates similar sets of objects from different parent scripts.

Parent Scripts & Child Objects 253

To see a finished version of the movie you’ll build:

1. Open and play the movie “PareDone” in the Tutorials:
Learning Lingo: Simulation folder.

2. Click the Birth Color and Birth B & W buttons several times.
Each time you click a button, a new ball appears on the stage.
Clicking the Birth Color button makes a color ball; clicking the
Birth B &W button creates a grayscale ball. The balls fall unless
they hit the blue rectangle. If the balls hit the blue rectangle, they
reverse direction.

3. Click different places on the stage several times so that the
rectangle is under different balls.
The rectangle moves to where you click. Each time a falling ball
strikes the rectangle, the ball changes direction. This is what a
typical screen looks like after clicking the buttons several times:

Birth Color Eirth B &

4. Close the movie when you’re finished.
Click Don’t Save to avoid saving any unintentional changes you
might have made to the movie.

254 Chapter 10

The movie you just played used a parent script to create bouncing
balls, which are child objects. Unlike the movie “Simple” that you
played earlier in this chapter, “PareDone” creates more than one child
object and allows the child objects to have individual behaviors
because they maintain their own property variables. The similarities in
the balls come from an ancestor script. (Ancestor scripts are described
in the next section, “Creating multiple child objects.””) The
differences—color, in this case—come from different parent scripts:

0 All balls follow the same rules for motion because this
characteristic is inherited from the ancestor.

0 Each ball can have a different velocity, direction, and sprite
number because these are declared to be property variables in the
ancestor script.

0 The balls are either color or grayscale, depending on which parent
script they have.

Parent Scripts & Child Objects 255

Creating multiple child objects

You create a child object each time you issue the bi rt h statement.
But when you have more than one child object, it is very important
to identify which child objects have been created and assign them
sprite numbers when you want them to appear on the stage.

For simple situations, you can often track child objects and assign them
sprite numbers by maintaining a list of child objects and developing a
straightforward routine that assigns sprite numbers. The movie
“PareDone” maintains a list that can track up to ten child objects. This
is the approach that you use here. For examples of how you can track
child objects in more complex movies, see the movie MECH.

Sets of child objects can also differ from one another, the way a group
of automobiles can share characteristics but differ from each other in
some ways. For example, all automobiles in a group could have four
wheels and a windshield. However, some automobiles could have four
doors instead of two doors. Each automobile could be painted a
different color. Of course, when it is being driven, each automobile
can be driven at different speeds, regardless of how fast the other
automobiles are going.

In the automobile example, four wheels and a windshield are common
characteristics. These are similar to the types of characteristics set by
ancestor scripts. The number of doors is a characteristic that could be
assigned by different parent scripts:

0 Using the ancestor script with the parent script that specifies four
doors creates an automobile with four doors, four wheels, and a

windshield.

0 Using the ancestor script with the parent script that specifies two

doors creates an automobile with two doors, four wheels, and a
windshield.

Color and speed resemble property variables, which are individual
values for each child object.

256

Chapter 10

Lingo lets you create similar situations for groups of child objects by
using ancestor scripts, which are an additional source of handlers
available to a child object. The child objects of different parent scripts
can share characteristics defined by the ancestor script. You assign a
child object a different behavior than the one in the ancestor script by
giving the child object’s parent script a handler that overrides the
equivalent handler in the ancestor script.

For example, suppose a group of cousins all inherit baldness from a
common ancestor on one side of the family. All cousins would be bald
if no opposing trait came from the other parent. However, one group
of brothers and sisters could still inherit full heads of hair if that trait
was a characteristic of the other parent. In this case, baldness is similar
to a characteristic received from an ancestor script. Full heads of hair
in one group of brothers and sisters is similar to a characteristic
received from a parent script: the parent script “intercepts” or
overrides baldness received from the ancestor script.

In this section, you re-create Lingo that creates multiple child objects
from the same ancestor script in the movie “PareDone.”

The child objects are balls that can move according to the same rules
but each responds to collisions independently of the other. The balls
receive the same set of rules that govern their motion in handlers from
an ancestor script. They also have the same property variables. Rules
that determine their color are in handlers that come from separate
parent scripts. The balls can have different colors and change their
motion independently of the other balls.

By adding more handlers to a parent script or ancestor script, you
could control additional behaviors of the balls. After you master the
technique of producing balls from the simple parent script, analyze the
ancestor and parent scripts in the movie MECH for ideas about
additional uses for child objects.

However, before you start, look at the existing handlers in “Parents,”
the movie you are going to add Lingo to, to see how the Lingo has
been structured for this movie.

Parent Scripts & Child Objects 257

Understanding the parent scripts

The parent scripts are already written for you.
To study the parent scripts:

1. Open the movie “Parents” in the Tutorials: Learning Lingo:
Simulation folder.

2. Double-click cast member 4, BW Parent, in the cast window
to open it.
This is the parent script for the grayscale balls.

3. Open script cast member 3, Color Parent.
This is the parent script for the colored balls.

4. Study the Lingo and the comments in the parent scripts.
Each parent script contains:

& The property ancestor statement, which lets the child
object use handlers in the ancestor script in addition to
handlers in the parent script.

< A bi rt h handler that contains its own bi r t h statement that
calls the ancestor script.

& Statements that assign a color to the ball.

5. Close the movie when you’re finished. Click Don’t Save to
avoid saving any unintentional changes you might have
made to the movie.

Setting a behavior in the parent script overrides the behavior’s setting
in the ancest or script. This hierarchy is similar to the way a sprite
script takes precedence over the script of a cast member.

For example, in the Color Parent and BW Parent scripts, foreground
color is set in the parent scripts. These child objects would receive the
foreground color assigned by the parent script regardless of what the
ancestor script specified. Using parent scripts this way lets you make
groups of child objects that share some characteristics but difter in
others, similar to shared traits among cousins as described in the section
“Why use child objects,” earlier in this chapter.

258

Chapter 10

Understanding the ancestor script

The ancestor script has already been written for you.
To study the ancestor script:

1. Open the movie “Parents” in the Tutorials: Learning Lingo:
Simulation folder.

2. Double-click cast member 2, Ancestor Ball Script, in the cast
window to open it.

This is the ancestor script for the balls.

Movie Script 2:Ancestor Ball Script

| +I ‘ I ’I i Il 2||Ancestor Ball Script
- -&ncestor for Ballg

property velocity, previousFlag, mySprite

on birth me, listPosition
set myListPosition to listPosition
set mySprite to mylistPosition + 9
puppetSound “boing”
sef previousFlagto O
set welocity to 10
set the castMum of sprite mySprite to the number of cast "ball”
sef the TocY of sprite mySprite to 100
zet the locH of sprite mySprite to random (432} + 40
return me
end

on ani mateBall me

if not{sprite mySprite within 6) then
set flagto O

else

set flag to 1

end if

if flag=1 and previousFlag=0 then
st welocity to (welocity ¥ - 13
puppetSound “bounce boing”

end if

set flag to previousFlag

et currentPosition to the Tocy of soeite rouSorite + welocity

Parent Scripts & Child Objects 259

3. Study the Lingo and the comments in the ancestor script.
The ancestor script contains two handlers:

¢ The on bi rth handler creates the child object and assigns it
a list position, sprite number based on the list position, a cast
member for the sprite, and an initial location.

¢ The on ani mat eBal | handler controls the ball’s motion.
The ani mat eBal | handler is called when the ball strikes the
blue paddle.
4. Close the movie when you’re finished. Click Don’t Save to

avoid saving any unintentional changes you might have
made to the movie.

260 Chapter 10

Understanding the movie script

Much of the needed movie script is already written for you.
To study the movie script:

1. Open the movie “Parents” in the Tutorials: Learning Lingo:
Simulation folder.

2. Double-click cast member 1, Movie Script, in the cast
window to open it.

3. Study the Lingo and the comments in the movie script.
The movie script for the movie “Parent” contains:

< The on startMvi e handler, which initializes the movie’s
global variables and turns off any puppet sprites. Later, you’ll
add a line that initializes the list that contains ball child objects.

< The whi chBut t on handler, which determines whether the
user clicked the Birth Color button, Birth B&W button, or
the stage, thus moving the blue paddle. Clicking one of the
Birth buttons executes the createBall handler and sends
createBall the argument O or 1, which identifies the button
that was clicked.

¢ The pl acePaddl e handler, which relocates the blue paddle
to the place that the user clicks on the stage.

© The creat eBal | handler, which uses the argument
whi chType to indicate which button was clicked and issue a
birth statement to the appropriate parent script.

O

The ani mat e handler, which determines whether balls are in
the list and then calls the ani mat eBal | to motion for any
balls that are in the list.

4. Close the movie when you’re finished. Click Don’t Save to
avoid saving any unintentional changes you might have
made to the movie.

Parent Scripts & Child Objects 261

Setting up a list for child objects

A list 1s a useful way to track the child objects that are currently in a
movie. The movie “Parents” tracks the balls in a list called bal | Li st .

To set up the list in the movie you’re building:

1. Double-click cast member 1, Movie Script, in the cast
window for the movie ““Parents” to open the script window.

The script window appears.

2. Type the following lines immediately following the line
on startMvi e:

gl obal ballList, paddleSprite
set ballList to []

Movie Script 1

BODHEE

- -Main Mowvie Script T

on startmovie

set paddlesprite to 4

puppetSprite paddlesprite, TRUE

puppetSprite 6, TRUE

repeat with currentchannel = 10to 19
puppetSprite currentchannel, TRUE
set the stretoh of sprite currentchannel to TRUE

end repeat

end

on whichbutton
if the mouseCast = the number of cast "Birth Color Button™ then
createball{1) kb
elae

Birth Color Birth B & W

3. Click the close box in the script window to close the window
and enter the script.

4. Press Command-S to save your work when you're finished.

262 Chapter 10

You just wrote statements that declare bal | Li st and
paddl eSpri t e to be global variables and then define bal | Li st asa
list that has no elements yet.

Parent Scripts & Child Objects 263

Adding the handler that creates the balls

Clicking Birth Color or Birth B&W in the movie “PareDone” created
a new ball by first calling the handler whi chBut t on when the user
clicks the stage. If one of the buttons was clicked, the cr eat eBal |
handler in the movie script was called.

To add the creat eBal | handler to the movie you are building:

1. Double-click cast member 1, Movie Script, in the cast
window for the movie ““Parents” to open the script window.
The script window appears.

2. Type the following handler in the movie script:
on createBall whichType
gl obal balll, balllList
i f count(ballList) >=10 then
beep
el se
i f whichType = 1 then
add(bal I List, birth(script -
"Col or Parent", count(ballList) + 1))
el se
add(bal I List, birth(script "BWParent", =
count (bal I List) + 1))
end if
end if
end

264 Chapter 10

This handler first declares bal | 1 and whi chType to be global
variables. The handler then checks whether there are ten or more
elements in the list named bal | Li st :

¢ When there are more than ten child objects, the computer
beeps and adds no more elements to the list. Limiting the size
of the list restricts the maximum number of child objects to

ten. For larger numbers of objects, you could use approaches
similar to those used in MECH.

© When there are fewer than ten child objects, the handler uses
the value of whi chType to determine whether the Birth
Color or Birth B&W button was clicked. Then the handler
adds a new child object to the appropriate list by using the add
command. The bi rt h function defines the child object being
added. The value count (bal | Li st) + 1 isan argument
passed to the bi rt h handler.

3. Click the close box in the script window to close the window
and enter the script.

4. Press Command-S to save your work when you’re finished.

Parent Scripts & Child Objects 265

Testing what you have written

You have just written several examples of Lingo that create more than
one child object from the same parent script and use a list to track
which child objects exist in the movie.

To test what you have done:

1. Rewind and play the movie “Parents.”

2. Click the Birth Color and Birth BW buttons several times.
Each time you click the button, a new ball appears on the stage.
Clicking Birth Color produces a colored ball; clicking Birth BW
produces a grayscale ball. The balls fall unless they hit the blue
rectangle.

3. Click different stage locations to relocate the rectangle so
that it is under different balls.

Each time a falling ball strikes the rectangle, the ball changes
direction.

4. Close the movie when you’re finished.

The Lingo you added creates the balls from the parent script and gives
the movie a way to track which objects are currently in the movie.

266 Chapter 10

Studying MECH

This chapter exposed you to ways that you can create and track
multiple child objects. For examples of advanced uses for parent scripts
and child objects, see the parent scripts in MECH.

Ancestor and parent scripts in MECH produce child objects that have
more complex behavior and occur in greater numbers than the parent
scripts you studied in this chapter. For an explanation of what the

handlers in MECH do, study the comments that are part of the scripts.

MECH sometimes uses t he act or Li st property to support
animation for child objects by sending each object attached to the list
a st epFr ame message when the playback head advances. This is a
simpler alternative to the per Fr ameHook property that was used in
previous versions of Lingo. For more information about t he

act or Li st see the act or Li st entry in the Lingo Dictionary.

Parent Scripts & Child Objects 267

268 Chapter 10

Appendix A

Using XCMDs and XFCNs

This appendix tells you:

0 What XCMDs and XFDCNs are and how they difter from
XObjects

0 How to use XCMDs and XFCNs
0 How to use callbacks for XCMDs.

269

Using XCMDs and XFCN5s in Director

Lingo lets you use HyperCard’s XCMDs and XFCNs in your movies.
Using XCMDGE ue—part of Director’s * St andar d. x| i b library of
XObjects— you can access XCMDs and XFCNs from Lingo scripts.
This lets you can extend Director’s capabilities by using the many
XCMDs and XFCNs available from HyperCard.

Most XCMDs and XFCNs work automatically with XCMDG ue, but
some may not.When the XCMD’s primary purpose is to perform a
HyperCard-specific action—such as handling cards, HyperTalk
scripts, or other parts of the HyperCard interface—the XCMD or
XFCN might generate an error message when used in Director.

XCMDs and XFCNs are closely related. For convenience, this
appendix refers to them collectively as XCMDs.

Note XCMDs provide an intetface to external code modules but are not capable of
ensuring that the external code modules themselves perform as intended. You
must make sure that the external code modules perform correctly to have them
produce the desired results in Director.

270 Appendix A

Differences between XObjects and XCMDs

XCVDA ue works differently from XObjects. You don’t create
instances of XCMDA ue to work with specific XCMDs. Instead,
XCMDA ue acts as an interpreter between Lingo and the XCMD.

A major difference between XCMDs and XObjects is that an XObject
can have multiple instances:

0 One XObject can be used to create a number of independent
objects, each capable of performing different operations.

0 An XCMD cannot create new instances, so it can perform only
one function at a time. For more information about XObjects and
instances, see Appendix B, “Using XObjects.”

For these cases, you can use Lingo to create a special mechanism which
may solve the problem. For further information, see the section
“XCMDs and callbacks,” later in this appendix.

Using XCMDs and XFCNs 271

Learning to use XCMD:s

Like using XObjects, using an XCMD involves three basic steps:
1. Opening the XCMD

2. Exchanging messages with the XCMD to perform some
function

3. Closing the XCMD.

One of the best ways to learn about XCMDs is to use them in
Director’s message window. In this section, you’ll see how to open,

view the contents of an XCMD resource by exchanging a message
with the XCMD, and close an XCMD.

Opening XCMD resources

XCMDs can be located in two places: in an external file or in a
Director movie.

When an XCMD resource is stored in the current movie’s resource
fork, the XCMD is automatically opened when the movie is opened.
This is similar to the way * St andar d. x| i b is automatically opened
when you launch Director. You can copy XCMD resources into your
Director movie using a resource editor like ResEdit.

When an XCMD resource is stored in an external file such as a
resource file or stack, you can open it with the openXl i b command.
If the file is in another folder, you must specify a full pathname to the
folder. The easiest way to access the file is to place it in the same folder
as your Director movie or the Director application.

To open an XCMD using the openXl i b command:
1. Launch Director.

2. Open the message window and type openXl i b followed by
the name of the XCMD resource file.

3. Press Return.
The resource file you specified opens.

272

Appendix A

One resource file can contain multiple XCMDs. When you use the
openXl i b command, all XCMD:s stored in the specified XCMD
resource file are opened. The XCMD resource file can be a
HyperCard stack, a resource file, or even a TeachText document
containing XCMD resources. Notice that this is the same command
used to open regular XObjects.

Viewing XCMD resources

After you've opened the XCMD, you can use the showXl i b
command to display all open resource files that contain XCMDs as
well as XObjects.

To display a list of all open resource files that contain XCMDs and
XObjects:

» Type showXl i b in the message window, and then press
Return.

To display the contents of a specific XCMD resource file:

» Type showXl i b followed by the name of the resource file,
and then press Return.

Closing XCMD resources

The cl oseXl i b command lets you close all open resource files that
contain XCMDs and XObjects.

To close all open resource files that contain XCMDs and XObjects:

» TypecloseXl ib in the message window, and then press
Return.

To close a specific resource file that contains XCMD:s:

» Type closeXl ib followed by the name of the resource file
in the message window, and then press Return.

Using XCMDs and XFCNs 273

Using an XCMD or XFCN

In many cases, once you open an XCMD, you can use the XCMD in
your Lingo scripts the same way you would use it in a HyperTalk
script. XCMDA ue does everything else by converting the XCMD for
you. For example, the following handler would let you use the
M DI pl ay XCMD (from Opcode Systems) to play a MIDI file from
Director:
on startM Dl pl ayback

openXlib (the pathnane & "M Dl pl ay")

-- opens the M DI play XCWVD

-- Use Lingo's "pathnanme" function to find

-- resource files

-- in the sane folder as your novie

M Dl pl ay "open","MDrive: MyFol der:nyM DI file"

-- opens the MDI file to be played

M DI play "start"

-- starts playback of the MD file
end startM Dl pl ayback
This handler stops the playback of the MIDI file:
on stopM Dl pl ayback

M DI pl ay "stop"

closeXlib (the pathnanme & "M DI pl ay")
end stopM Dl pl ayback

274 Appendix A

XCMDs and callbacks

Not all XCMD:s can be used with XCMDA ue in a completely
transparent manner. Occasionally, XCMDA ue is unable to properly
convert the XCMD. When you attempt to use an XCMD’s syntax in
a script, an error message is displayed.

Certain XCMDs may call on HyperCard to internally perform some
tasks while the XCMD is executing. Most of these are conversion
routines and are used to conveniently convert information to and from
different formats. The remaining callbacks either involve the
HyperTalk interpreter or access information stored in HyperCard-
specific entities such as fields, or they do both. The table of HyperCard
callback requests at the end of this appendix lists specific technical
information regarding these callbacks.

Lingo automatically supports all callbacks that are not overly specific
to HyperCard. Still, some HyperCard-specific callbacks are supported
when Lingo provides a direct equivalent. The remaining callbacks that
are not automatically supported (a total of nine) are so specific to
HyperCard that they cannot be resolved automatically unless the
application calling the XCMD is virtually identical to HyperCard.
Even in such cases, it is still possible to use an XCMD by using a user-
defined mechanism called a callback handler.

Using a callback handler

A callback handler uses a Lingo factory to accept and respond to
messages that correspond to HyperCard callback requests. A factory is
a set of scripts that can be used to create an object. In Director 4.0, the
functionality of factories has largely been replaced by parent scripts.
For more information on parent scripts, see Chapter 10, “Parent
Scripts and Child Objects.” In this specific case, however, a factory
provides the best way to respond to callbacks. This section shows you
the steps necessary to create a callback factory, and to call that factory
from a handler.

Using XCMDs and XFCNs 275

Essentially, a callback handler provides a mechanism that some
XCMDs already expect to be available. The XCMD expects that
when it sends or receives a callback message, something will be there
to receive it and possibly return another message. (Usually HyperCard
does this.) A callback handler defined in Lingo simply intercepts and
returns these messages when appropriate. Whether you choose to use
this information depends on your understanding of the purpose of the

callback.

Fortunately, when XCMDA ue does not understand a callback request,
it indicates the name of the callback in the error message. Once you
know which callback your XCMD needs to deal with, you can create
a callback handler for it. There are three basic steps to creating a

callback handler:
1. Defining a callback factory
2. Creating the callback object

3. Specifying the XCMD to be used with the callback object
(with the setCallBack command that is part of XCMDGIlue).

Defining the callback factory

The first step in creating a callback factory is to define it. The
following example factory includes methods for all the callbacks that
are not supported by XCVDQ ue. This factory does not attempt to do
anything with the callback requests other than create a record of them
in the message window. As you’ll see later, you can use this
information to process callbacks. This factory should be placed in a
movie script:

factory cal | BackFactory

met hod niNew

me(nPut, 1, "SendCardMessage")
me(nmPut, 2, "Eval Expr")
me(nmPut, 3, "StringlLength")
me(nPut, 4, "StringMatch")
me(nPut, 5, "SendHCMessage")
me(nPut, 6, "ZeroBytes")
me(nPut, 7, "PasToZero")

276

Appendix A

me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,
me(mPut ,
me(nPut ,
me(nPut ,

" ZeroToPas")
"StrToLong")
"StrToNunt')
"StrToBool ")
"StrToExt")
"LongToStr")
"NunmToStr™)
"NunmroHex")
"Bool ToStr")
"Ext ToStr")
"CGetd obal ")
"Set d obal ")
" Get Fi el dByNane")
"Cet Fi el dByNuni')
"Get Fi el dByl D")
" Set Fi el dByNane")
"Set Fi el dByNuni)
"Set Fi el dByl D")
"StringEqual ")
"Ret urnToPas")
"ScanToRet urn")
"Format Script")
"ZeroTer mHandl e")
"Print TEHandl e")
" SendHCEvent ")
" HCWor dBr eakPr oc")
" Begi nXSound")
"EndXSound")
"RunHandl er ")
"ScanToZer 0")
" Get XResl nf o")
"Get Fil ePat h")
" Fr ont DocW ndow")

Using XCMDs and XFCNs 277

me(mPut, 43,

me(nPut, 44,
me(nPut, 45,
nme(nPut, 46,
me(nPut, 47,
me(nPut, 48,
me(nPut, 49,
me(nPut, 50,
me(nPut, 51,
me(nPut, 52,
me(nPut, 53,
me(nPut, 54,
nme(nPut, 100,
me(nPut, 101,
me(nPut, 102,
nme(nPut, 103,
me(nPut, 104,
me(nPut, 105,
nme(nPut, 106,
me(nPut, 107,
me(nPut, 108,
nme(nPut, 109,
me(nPut, 110,
me(nPut, 111,
nme(nPut, 112,
me(nPut, 113,
me(nPut, 200,
nme(nPut, 201,
me(nPut, 202,
me(nPut, 203,
nme(nPut, 204,
me(nPut, 205,
me(nPut, 206,

"Point ToStr")
"Rect ToStr")
"StrToPoint")
"StrToRect")
"CGet Fi el dTE")
" Set Fi el dTE")
" Get Obj ect Namre")
"Cet hj ectScript")
" Set Cbj ect Script")
" St ackNanmeToNunt')
“"Notify")
" ShowHCAl ert ")
" NewXW ndow/ Get NewXW ndow")
" oseXW ndow")
" Set XW dl eTi ne")
" XWHas| nt er r upt Code")
"Regi st er X\Wenu")
" Begi nXVEdi t / EndXVWEdi t ")
" SaveXWBcri pt")
" Get CheckPoi nts")
" Set CheckPoi nt s")
"XWAl | owReENt rancy™)
" SendW ndowvessage")
"H deHCPal et t es")
" ShowHCPal et t es™)
" XWAl waysMoveH gh")
"CoScript")
"StepScript")
"Abort Script")
" Count Handl ers")
" Get Handl er I nf o")
"CGet Var | nfo")
" Set Var Val ue")

278

Appendix A

me(nPut, 207, "GetStackCraw ")
me(nPut, 208, "TraceScript")

met hod nEval Expr X
put "mEval Expr:" && x

met hod nBSendHCMessage X
put "mBendHCMessage: " && X

met hod nSendCar dMessage X
put "mBendCar dMessage: " && x

met hod net Fi el dByNane card, nane
put "mGet Fi el dByNanme:" && card && name

met hod nCet Fi el dByNum card, num
put "mCGet Fi el dByNum" && card && num

met hod nCet Fi el dByI D card, id
put "mGetFieldBylD:" &% card & id

met hod nBet Fi el dByNanme card, nane, val ue
put "nBet Fi el dByNanme:" && card && nane && val ue

met hod nBet Fi el dByNum card, num val ue
put "nBetFi el dByNum" && card & & num && val ue

met hod ntet Fi el dByl D card, id, value
put "nBetFiel dBylD:" && card && id && val ue

met hod nmnknown whi ch
put me(nGet, val ue(which)) into call BackNane
put "mnknown:" && which && "(" & -
cal | backNanme & ")"

Using XCMDs and XFCNs 279

You do not need to specify every callback handled in this factory. You
are required to define methods only for the callbacks that are indicated
in error dialogs generated by the XCMD. For example, the

nmEval Expr callback may be the only callback you need to account
for.

As indicated in this example, the put statements in each method are
optional. They are there to let you know what the XCMD or XFCN
is attempting to tell HyperCard. You can use this information in any
way you want. Sometimes, a callback requires a value (message) to be
sent back to HyperCard. If you know what that value should be, use
return at the end of the specific callback method’s script. For
example, if a callback required HyperCard to return TRUE or FALSE
you could use a method similar to the following:

met hod cal | BackMet hod
if test then return TRUE el se return FALSE
end cal | BackMet hod

Some XCMDs use a large amount of processor time. In this situation,
using a put statement in your script slows down whatever the XCMD
does, because the put statement has to be evaluated and written into
the message window. You can optimize the callback factory in this
case by removing the put statements.

When a callback error occurs, the XCMD usually stops running after
you click OK in the error dialog box. However, because of the design
of certain XCMDs, the XCMD sometimes continues to execute. You
still need to create a callback handler for these XCMDs. Otherwise,
unexpected results could occur.

280

Appendix A

Creating the callback object

After you have defined a callback factory, you can create a factory
object using the following statement:

put cal |l backFactory(mNew) into call backObj ect

Specifying the callback handler

Finally, you specify the callback handler with the following statement:
set Cal | Back XCMY XFCNnane, cal | backQbj ect
The set Cal | Back command is part of the XCMDA ue XObject.

The XCMD or XFCN should now function properly. If you later use
other elements of the XCMD’s syntax, you might still need to deal
with other callbacks. You can accomplish this easily by adding the
appropriate method to your callback factory.

Using XCMDs and XFCNs 281

XCMD and XFCN callback requests

The following are HyperCard’s callback requests. The symbol in the
rightmost column identifies which level of support is provided for each
callback.

HyperCard’s callback requests

Number HyperCard callback Type
1 SendCardMessage ad
2 EvalExpr a
3 StringLength d
4 StringMatch ad
5 SendHCMessage ad
6 ZeroBytes a
7 PasToZero d
8 ZeroToPas g
9 StrToLong ad
10 StrToNum a
11 StrToBool ad
12 StrToExt g
13 LongToStr d
14 NumToStr g
15 NumToHex g
16 BoolToStr ad
17 ExtToStr a
18 GetGlobal ad
19 SetGlobal ad

282 Appendix A

HyperCard’s callback requests

Number HyperCard callback Type
20 GetFieldByName ad
21 GetFieldByNum a
22 GetFieldByID O
23 SetFieldByName ad
24 SetFieldByNum ad
25 SetFieldByID a
26 StringEqual a
27 ReturnToPas g
28 ScanToReturn d
31 FormatScript ad
32 ZeroTermHandle O
33 PrintTEHandle ad
34 SendHCEvent O
35 HCWordBreakProc O
36 BeginXSound O
37 EndXSound O
38 RunHandler O
39 ScanToZero ad
40 GetXResInfo g
41 GetFilePath O
42 FrontDocWindow O
43 PointToStr O
44 RectToStr O
45 StrToPoint O
46 StrToRect g

Using XCMDs and XFCNs

283

HyperCard’s callback requests

Number HyperCard callback Type
47 GetFieldTE a
48 SetFieldTE O
49 GetObjectName O
50 GetObjectScript ad
51 SetObjectScript ad
52 StackNameToNum O
53 Notify 0
54 ShowHCAlert O
100 NewXWindow/ O
GetNewXWindow
101 CloseXWindow O
102 SetXWIdleTime O
103 XWHaslInterruptCode ad
104 RegisterXWMenu ad
105 BeginXWEdit/EndXWEdit ad
106 SaveXWScript a
107 GetCheckPoints O
108 SetCheckPoints O
109 XWAllowReEntrancy ad
110 SendWindowMessage ad
111 HideHCPalettes O
112 ShowHCPalettes O
113 XWAIwaysMoveHigh a
200 GoScript O
201 StepScript ad

284

Appendix A

HyperCard’s callback requests

Number HyperCard callback Type
202 AbortScript ad
203 CountHandlers O
204 GetHandlerIinfo O
205 GetVarinfo ad
206 SetVarValue ad
207 GetStackCrawl O
208 TraceScript ad

0: Automatically supported by Lingo.

0: Requires a callback handler. Some messages and expressions (such
as EvalExpr) may be evaluated by XCVDA ue in a manner compatible
with HyperTalk. Other messages and expressions (such as
GetFieldByName) always assume HyperCard entities for which there
are no counterpart in Director.

Using XCMDs and XFCNs

285

286 Appendix A

Appendix B

Using XObjects

This appendix describes XObjects and how to use them.

287

Why use XObjects

XObjects—software modules that interact with external objects—
extend Director’s ability by letting you interact with external software
and hardware.

XObjects can be used for:

File 10 Reading and writing text files

Device control Using NuBus cards, CD-ROMs, and videodisc and
videotape players

Serial port control Sending and receiving information through the
serial port

Specialized need Complex math, managing memory, and color

palette control

If you’re already familiar with using XObjects and need specific
information about particular methods, see the section “XObject
reference,” later in this appendix.

General object theory

To understand XObjects better, it helps to have basic knowledge of
objects in general. You can think of an object almost like a “black
box” that has an input and an output. When you put data into the box,
it performs a specific function on that data and sends the result back
out of the box. Similarly, we can define an object as an independent
piece of code that:

0 Receives information from an outside source
0 Internally evaluates or processes the information

0 Returns information or performs an activity based on the result.

288

Appendix B

The benefit of this approach is that you can build reusable sections of’
code that have a modular structure. When you send messages to an
object, you should always obtain predictable results. This saves you
from having to duplicate large sections of code, and it means you can
plug new “modules” (or objects) into the application at any time to
add more functions and capabilities. You can also create several copies
of one object to do different jobs in different circumstances.

Objects are a difficult concept at first. If the above description isn’t
clear to you, don’t worry. Just try working with the examples below.
Some practical experience helps you understand the theory behind
XObjects.

What an XObject is

An XObject is a code resource (XCOD) that can be accessed through
Lingo.The easiest way to learn about XObjects is by working with
them in the message window.

To see which XObjects are available in your Director application:
1. Open the message window.
2. Type showXl i b.

3. Press Return.
The following list appears:

-- XLibraries:

-- "*Standard. xlib"

-- XQoject: SerialPort I d: 200
-- Xbject: FilelO I d: 1020
-- XCObject: XCVDQ ue I d: 2020

Using XObjects 289

Each object in the list does the following:
0 Seri al Port sends/receives information through the serial port.
0 Fil el Oreads/writes text files.

0 XCMDQ ue lets Director call standard HyperCard XCMDs and
XFCN.

These XObjects are contained in the file * St andar d. x| i b, which is
part of Director. XObjects can also be contained in external files that
are called from Director using the openXl i b command. The
XObject’s resources can also be copied right into a movie file using
utilities such as ResEdit, which makes the openXl i b command
unnecessary.

XObjects are made up of methods. In a very general sense, a method
is functionally similar to a handler, except that you can’t see the scripts
within a method. You can list the methods within an XObject by
using the message window.

To display the methods in an XObject:

» Type the name of the XObject followed by (nDescr i be),
and then press Return.
The method nDescr i be is then called, returning a descriptive list
of the methods built into that particular XObject.

For example, these are the methods for the Seri al Port XObject.
Note that the characters in the left column indicate whether the
method uses integers (I), strings (S), or nothing (X) as arguments. The
“>” symbol in the comment shows what information the method
returns back to Lingo:

Serial Port (nDescri be)

-- Factory: SerialPort ID:200

-- SerialPort, Tool, Version 1.1, 9/24/90

-- © 1989, 1990 Macronedia, Inc.

-- by John Thompson and Jeff Tanner.

Il mNew, port -- Creates an instance of the XObject.
X nmDi spose -- Disposes of the XOoject.

| mGet Port Num --> The port.

290

Appendix B

ISMWVWiteString, string -- Wites out a -

string of chars.

IImMViteChar, charNum-- Wites a single character.
S nReadString --> The contents of the input buffer.
I nReadChar --> A single character.

| mReadCount --> The nunber of characters -

in the input buffer.

X mReadFl ush -- O ears out all the input characters.
I 1l mConfigChan, driverNum serConfig

I'1'l I mHShakeChan, driverNum CTSenabl e, CTSchar Num
Il nBetUp, baudRate, stopBit, parityBit

Thanks to the method nDescr i be, we can see that the Ser i al Por t
XObject contains methods for reading and writing strings or characters
through the serial ports. There are 12 methods in the Seri al Port

XObject. For a thorough description of these methods, see the section
“XObject reference” later in this appendix.

Using XObjects 291

Learning how to use XObjects

You can create, use, and dispose of XObjects in the message window.
This is a good place to learn basic XObject usage.

To create an instance of the Seri al Port XObject:

» Type put Serial Port (mNew, 1) into PortObject in
the message window, and then press Return.

By passing the argument 1, you create a new instance or
occurrence of the Seri al Port XObject for the printer port and
place it into the variable PortObject.

To verify that the object has been successfully created:

» Type put Port (bject, and then press Return.
The object appears in the message window. The display looks like
this: <Cbj ect : 1e5¢38>

The numbers and letters following the word Cbj ect : relate to the
address of the object in memory. These change with every instance,
since each new instance is unique.

To verify which port is currently assigned to the object by using the
method nGet Por t Num

» Type put Port Qbj ect (mGet Port Num , and then press
Return.

The object returns an integer (1) that corresponds to the active
port.

Finally, to dispose of the instance:

» TypePort bject (nDi spose) inthe message window, and
then press Return.

To verify that the object has been removed from memory:

» Typeput Port Object, and then press Return.
If the object is no longer present, Lingo returns 0.

292

Appendix B

Basic XObject scripting

There are three basic stages in the life of an XObject:
1. Creating a new instance of the object in memory using M\New

2. Sending messages and getting results back from the object
called by the methods

3. Removing the object from memory using nDi spose.

In this section you learn how to perform these steps by working with
the Seri al Port XObject.

This a basic script using the Seri al Port XObject:

on useSeri al Port
-- Variable "thePort" contains instance
-- of the Xhject.
-- Use O for mbdemport, 1 for printer port.
put Serial Port (mNew, 0) into thePort
-- Method mwiteString sends a string
-- (in this case, the word "howdy!")
-- out the serial port.
thePort (mviteString, "howdy!")
-- Method nreadChar reads a character in from
-- the serial port.
put thePort (nreadChar) into returnedChar
-- Renove the instance of the object from nmenory.
thePort (nDi spose)
end useSeri al Port

Using XObjects 293

What happened here?

First, to use an XObject you have to create an instance of the object
in memory. This means taking a copy of the code and placing it into
RAM where you can work with it.

Then you can call methods (functions) contained in the object. The
easiest way to find out the methods that are available for a particular
object is to use the message window.

When you’re finished with the object, dispose of the instance. Disposal
of objects is very important for consistent behavior.

Working with multiple objects

A powerful feature of XObjects is their ability to make multiple
instances of an object in memory. For example, imagine you wanted
to control Director movies on two computers from a Director movie
on one central computer. You might do this as a backup strategy in
live situations or for use as a secondary computer to control video
devices or play full-screen digital video). Using a null modem cable,
you could connect the printer port from your “control” computer to
the printer port on a “receiver’” computer, and connect the modem
port from the control PC to the modem port on a second “receiver.”
Then you could write a script for the control PC that creates two
instances of the Seri al Port XObj, one for each port, and send
characters back and forth to jump through the presentation.

294

Appendix B

In the following handler, Lingo’s obj ect P function is used to test for

previous instances of an object:

on makeTwoSeri al Obj ects

-- Put objects into global variables so they can

-- be called fromany script. The "g" in the

-- variable name is to remind you it's a global.

gl obal gModenhj, gPrinteroj

-- objectP checks if a previous instance exists;

-- if so, the old instance is disposed.

if objectP (gMbdenbj) then ghModenthj (nDi spose)

if objectP (gPrinterChj) then gPrinterChj-
(mDi spose)

-- Create two separate objects, one for each port,

-- fromthe sane Xbject.
put Serial Port (mNew, 0) into gMdentbj
put Serial Port (nNew, 1) into gPrinterQbj
-- Adding NOT to the objectP statenent
-- doubl e-checks that the objects have been
-- created properly.
if not, objectP (gMbdenthj) then ghMdenOhj -
(Di spose)
if not objectP (gPrinterCbj) then gPrinterChj -
(Di spose)

end makeTwoSeri al bj ects

Using XObjects

295

The following handler on the “control” computer could be called
from a button and would advance the presentation to the next marker
by sending strings out of the serial port. The “receiver” computers
would have scripts that read strings coming into the serial port, and
advance the presentation accordingly. This assumes that the
Seri al Port objects have already been created on all of the
computers:
on sendAdvanceComrand

gl obal gMbdenthj, gPrinter Qbj

ghodenthj (nmWiteString, "next")

gPrinterj (mMNWiteString, "next")
end sendAdvanceCommand
This handler on the “receiver” PC connected to the modem monitors
the incoming port. In actual practice, this should be called from an
on idl e handler in a movie script:
on recei veAdvanceConmand

gl obal gMbden(hj

i f gModentbj (nmReadString) = "next" then -

go to marker (1)
end recei veAdvanceComand
For more information about using specific methods in the

Seri al Port XObject, see the section “XObject reference” later in
this appendix.

296

Appendix B

Using basic FileIO

The Fi | el OXObject is useful for reading and writing text files. Some
example uses of Fi | el Oinclude saving user responses, names and
addresses, or interactive game information. Fi | el Ois also good for
presentations that include text that changes frequently, because you
can update the text files instead of the movies. Using multiple instances
is very helpful when using the Fi | el OXObject, because you can read
from and write to multiple files from multiple objects.

Syntax for FileIO

The Fi | el OXObject has three main functions:

0 Worite, which writes text to a file

0 Read, which reads text from a file

0 Append, which adds text to the end of an existing file.

When you create a new instance of the Fi | el OXObject, you must
also specify which of the three functions you wish to use and which
file you want to access.

The standard syntax for the Fi | el O XObject is:
put Filel O (nmNew, function, fileName) into objectName

Placing a question mark (?) in front of the function name
(i.e. “?read”, “?2write” or “?append”) brings up a standard file
dialog, allowing the user to select a file manually.

For example, the following statement creates a new instance
gW it eObj ect —of Fi | el Othat can write to a file named “Text
File”:

put FilelQ(mNew, "wite","Text File") -

into gWite(bject

Using XObjects 297

These handlers demonstrate how to create several different instances
of the Fi | el OXObject to either write to, read from, or append to a
file:
on witeFile
gl obal gwWite(bject
-- Create instance for witing to "Text File."
put Filel Q(mNew, "write","Text File") into -
gWitebj ect
-- Put sone sanple text into a variable.
set theText = "This text was witten using -
the Filel O XObject™
-- method mWiteString wites the contents
-- of variable "theText" to the file
gWiteObject(mMNViteString, theText)
-- Dispose of the instance.
gWitebj ect (nDi spose)
end witeFile

on readFil e
gl obal gReadObj ect
-- By adding the "?" to "read", the user -
-- can select a file froma standard file dial og.
put Filel Q(mNew, "?read", "Text File") -
i nto gReadbj ect
put gReadQbj ect (nmReadLi ne) into theText
-- This displays the text in the nmessage w ndow.
put theText
gReadObj ect (nDi spose)
end readFil e

298 Appendix B

on appendFil e
gl obal gAppendhj ect
put Filel Q(mNew, "append", "Text File") -
i nt o gAppendChj ect
-- Lingo's RETURN constant puts a carriage -
-- returnin the file.
set newlext = RETURN & "This is the new -
endpoint of the file."
gAppendhj ect (MMiteString, newText)
gAppendChj ect (nDi spose)

end appendFil e

Resolving pathname errors

The primary error most users encounter when using Fi | el Ohas to do
with file pathnames. If the XObject can’t find the text file you want
to access it generates an error.

It’s a good idea to use the Lingo pat hname command to avoid this
problem. The pat hname function returns the full path to the current
movie. When you use the pat hname function as part of your Fi | el O
script and place the text file in the same folder as the movie, Director
can find the file. This handler is an example:
on readFile

gl obal gReadObj ect

set gReadhject = Filel Q mNew, "read",the -

pat hnane & "Text File")
end readFile
For a complete description of the methods available within the

Fi | el OXObject, see the section “XObject reference” later in this
appendix.

Using XObjects 299

Basic device control

Note

Many hardware manufacturers support Macromedia’s XObjects
through standard protocols developed by Macromedia. This is referred
to as the Ortho Protocol, and is included with Macromedia’s XObject
Developer’s Toolkit.

These hardware-specific XObjects are created and distributed by the
hardware manufacturers. The Ortho standard sets out a number of
common methods that should be supported by every device-specific
XObject. As a result, you can send similar commands to different
XObject/device combinations, and obtain similar results.

For example, the method nSear chToFr ane is contained in
XObjects that control CD-ROMs and videodisc and videotape
players. When using the proper XObject for the corresponding
device, the same script can be used to tell a CD-ROM, videodisc
player, or videotape player to search to a given frame.

Not every device supports all methods. To determine which methods
a specific device supports, see the documentation for that device.

Some XObjects used to control devices work with devices other than the one the
XObjects was intended for. However, the most reliable performance typically
comes from XObject device drivers developed and tested by hardware
manufacturers. When controlling an external device from your computer, make
sure you use the driver, cables, and communications settings recommended by
the manufacturer.

The following sections use the Appl eCD XCbj to play music from an
Apple CD-ROM player as an example of how to create, send

messages to, and dispose of a device control XObject. Notice the use
of'an on st art Movi e handler to create an instance of the XObject.

300

Appendix B

Creating an instance of the XObject

This on start Movi e handler creates an instance of the XObject:

on startMvie
-- Declare a global variable that wll
-- contain the object.
gl obal gObj ect Nane
-- Create the object in active RAM
-- Use "pat hnane" conmand to reduce
-- possible path errors.
openxl i b (the pat hnanme &" Appl eCD XChj ")
-- "objectP" tests for previous instances;
-- if any exist, dispose of them
i f objectP(glhjectNane) then -
gObj ect Nane(nDi spose)
-- Place an instance of the object into
-- variable "gbj ect Nane. "
put Appl eCD(mNew) into gCbj ect Nane
end

Using XObjects 301

Sending commands to the device

This handler uses the method nGet Fi r st Fr an®e to return the first
frame of a specified track on a disc. In this example, you get the starting
frame of track 3, and then go to and play that frame:
on playCD
gl obal gObj ect Nane
put gCbj ect Nane(net Fi rstFrane, 3) into SongThree
-- SongThree is the first frame # in the 3rd track
gbj ect Nane(near chTo, SongThr ee)
gObj ect Nanme(nPl ay)
end pl ayCD
This handler stops the device. It can either be called at a frame or from
a button:
on stopCD
gl obal gObj ect Nane
gObj ect Nane(nt op)
end stopCD

302

Appendix B

Disposing of the object

This handler disposes of the object when the movie stops. This is
highly recommended; otherwise multiple instances of the object could
be created and eventually cause memory errors.
on st opnovi e

i f objectP(gbjectNane) then -

gbj ect Name(nDi spose)
end stopnovi e

Special considerations for device control

There are some special considerations you should pay attention to
when working with external devices.

Because playback from a device happens over time, and because
devices or communication links can fail, it is a good idea to monitor
the status of the device while it executes certain functions (like
searching and ejecting media). This assures that commands are
properly completed and that new commands are sent at the proper
time. For example, if you want to search to a frame and then begin
playback, you want to be sure that the search is completed and you’ve
arrived at the proper frame before sending a command to begin
playing.

The Ortho protocol contains a special method, nSer vi ce, which is
used to return the status of a device. While the operation is still in
progress, MSer vi ce returns positive integer values. When an
operation is completed successfully, nSer vi ce returns a value of 0. If
an error occurs and the device cannot complete the operation,

nBer vi ce returns a negative integer value. This error code can be
used to evaluate the source of the problem. A listing of the codes that
are returned by nSer vi ce is in the section “XObject reference” later
in this appendix.

Using XObjects 303

The following is a sample handler that can be used to repeatedly call
nSer vi ce:
on awai t Conpl eti on
gl obal gQbj ect Nane
-- gDevice contains instance of an Xhj ect
-- for a specific device.
-- gDeviceStatus will contain values returned by
-- nBervice. By declaring gDeviceStatus gl obal,
-- you can share its value with other handlers
-- that could, for exanple, put errors into the
-- message wi ndow, or display themin an
-- "alert” dialog.
gl obal gDevi ce, gDevi ceStatus
-- This repeat loop will call nBervice
-- over and over again.
-- Theoretically, this |oop could
-- repeat forever; however,
-- you will use EXIT to junp out of the | oop
-- when nBervice returns a val ue of
-- 0 or less indicating either that the
-- operation was successful, or that
-- there was an error.
repeat while TRUE
-- Place the value returned by nBService
-- into gDeviceStat us.
set gDeviceStatus = gDevice (nBervice)
-- Test if nbervice has returned O
-- (successfully conpl et ed)
-- or a negative nunber (an error).
-- If neither is the case, then
-- nBService nust have returned a positive nunber
-- indicating the operation is
-- still in progress, and we shoul d

304 Appendix B

-- remain in the | oop.
i f gDeviceStatus <= 0 then
-- Junp out of the |oop
exit repeat
end if

end repeat

-- Now check to see if Director exited the repeat
| oop

-- due to successful conpletion or

-- an error (negative value). This tests

-- only for negative values. If the value

-- isn't negative, the only renaining

-- possibility is 0 (successful), and we will

-- automatically be returned to the script

-- that called this one. First check a

-- value of -1, which is a device-specific error.

if gDeviceStatus = -1 then

-- Put an alert dialog with customn zed

-- nmessage on screen.

-- Method nExplain may be used to retrieve a

-- string fromthe device indicating the

-- source of the problem
alert "Problemwi th the device: " & -
gDevi ce (nExpl ai n)

-- Nowtest for the remai ning standard error codes.

else if gDeviceStatus < 0 then
-- Put up an alert dialog with the error code.
alert "Problemwith the device: Error # " & =
gDevi ceSt at us

end if

end

Using XObjects 305

Since this handler may look a bit daunting with all the comments, the
following is the handler’s simplest form to help clarify what’s going on:

on awai t Conpl eti on

gl obal gDevi ce, gDevi ceStatus

repeat while TRUE
set gDeviceStatus = gDevice (nBervice)
if gDeviceStatus <= 0 then exit repeat

end repeat
if gDeviceStatus = -1 then
alert "Problemwi th the device: " & -

gDevi ce (nExpl ai n)

else if gDeviceStatus < 0 then
alert "Problemwi th the device: Error #' &
gDevi ceSt at us

end if

end

306

Appendix B

To put the example in context, the following handler provides an

example of how to call the awai t Conpl et i on handler after initiating

a command:

on det ern neCurrent Frane
gl obal gDevi ce

-- Method nReadPos will read the current position,

-- and nethod nmGetValue will return the val ue.

gDevi ce (nReadPos)
awai t Conpl eti on
put gDevice (ntetValue) into currentFrane
-- Display the current frame nunber
-- in a text cast nenber.
-- Using "string" function converts
-- integer values into a text string
-- for proper display in a text field.
set the text of cast "franeCounter" to -
string (currentFrane)
end

Only certain methods need to be followed by repeated calls to

nBSer vi ce. For specific information on which methods require

monitoring, see the section “XObject reference,” later in this

appendix.

Using XObjects

307

Using serial devices

Some devices, specifically videodisc and videotape players,
communicate through the serial port. In these cases, you must go
through two steps:

O

First create an instance of the Seri al Port XObject to
communicate with the device.

Second, use the method nset Seri al Port (which should be
contained in the device-specific XObject) to connect the device
to the port. For example, the following handler does this for a
Sony laserdisc player:

on setupSonylLaserdi sc

-- Declare global variables for

-- serial port and Laserdisc

gl obal glLaserdi scoj ect, gPort (hject

-- Create a newinstance of the Serial Port X(bj ect.
-- Use O for nodem use 1 for printer

put Serial Port (nmNew, 1) into gPort(bject

-- Qpen the external file containing

-- the Sony XObject.

-- "the pat hnanme" command is recomended

-- to reduce path errors.

openXlib the pathnane & "Sony XObj"

-- Create a new instance of the Sony XObj.

put Sony_vi deoDi sc (mNew) into glLaserdi schject
-- Connect the port to glLaserdi sc(hject.
gLaserdi schj ect (nsetSerial Port, gPortQbject)

end

308

Appendix B

Retaining interactive control

In many cases, you may want to play a section of video or audio from
a device. The Ortho protocol includes a set of methods called segment
methods specifically for this purpose. To play a segment, use the
following methods in this order:

1.
2.
3.
4.

nSet | nPoi nt , which sets the starting point of the segment
nSet Qut Poi nt , which sets the ending point of the segment
nPl ayCue, which cues up the starting point of the segment
nPl aySegment , which plays the segment.

Here’s an example that uses these methods to play a segment from a
Pioneer laserdisc player. The first handler is an on st art Movi e
handler that initializes the device:

on startMvie

gl obal gPort (bj ect, glLaserdi scObject
if objectP (gPorthject) then -
gPort Cbj ect (nDi spose)
if objectP (gLaserdi schject) then -
gLaser di scObj ect (nDi spose)
openxlib the pathnane & "Pioneer XObj"
put Serial Port (nNew, 0) into gPortObject
put Pi oneer_vi deodi sc (mNew) into glLaserdi scObj ect
gLaserdi schj ect (nBet Serial Port, gPortQbject)

end startMvie

Using XObjects 309

This handler defines and plays a segment of video. (If you haven’t
already, see the section “Special considerations for device control”
earlier in this chapter for an explanation of using the nSer vi ce
method.):
on playVideodip
gl obal gLaserdi scCbject, gDeviceStatus
-- Assune start frame nunber is 2000,
-- end frame is 2500.
gLaser di scObj ect (nBetl|nPoint, 2000)
gLaserdi scObj ect (nBSet Qut Poi nt, 2500)
-- Cue the device, and call nBervice
gLaserdi scObj ect (Pl ayCue)
awai t Conpl et i on
-- Test that nBervice didn't return an error,
-- and that nPlayCue was successful .
if gDeviceStatus >= 0 then
-- Play the segnent.
gLaserdi schj ect (Pl aySegrent)
awai t Conpl et i on
end if
end
A major consequence of nPl ay Segnent is that it removes interactive
control during the playback of a segment. In effect, nPl ay Segnent
is like a repeat loop that is closed to outside events until the segment
has finished playing. In certain cases this could be a feature, providing

a way to “lock” the user into seeing or hearing an entire segment
without interruption.

In other cases, however, you may want to maintain interactivity. You
can do this using individual device methods rather than segment
methods. The solution is to use a go to the frane statementin a
score script. This has the playback head loop on one frame while also
testing whether the device has reached a specific ending position.
Director can then capture mouse and key events every time it enters
that frame.

310

Appendix B

This is a brief summary of the appropriate methods:

0 Use mBear chTo to find a start position.

0 Use nPl ay to begin playback.

0 Use mReadPos and nGet Val ue to test the current position.

0 When the current position is less than desired ending position,
then use go to the frane.

This sequence of events must take place over at least two frames in the
score. The first frame is used to find the starting position and to initiate
playback. The second frame is used to test for completion of the
segment. The following is a specific example in which the start
position is 2000 and the end position is 2500.

This handler for the first frame can be placed in a score script or could
be in a handler (as below) called from a score script or script of a cast
member:
on startPl ayback

gl obal gDevi ce

gDevi ce (nBearchTo, 2000)

awai t Conpl eti on

gDevi ce (nPl ay)
end

These statements test the position in the second frame:

-- Get the current position.
gDevi ce (nReadPos)
awai t Conpl eti on
put gDevice (ntGetValue) into currentPosition
-- Test the current position.
if currentPosition < 2500 then
go to the frane

el se
--Method nftill pauses at the current position.
gDevice (nBtill)

end if

Using XObjects 311

Testing the position of a device

Notice that the above handler uses “<” and “>” conventions rather
than “=" to test the position of a device. When a device is in motion
(playing, rewinding, etc.) it’s best to avoid using “="" since this tests for
an exact value, and it is possible that the device will be at a slightly
different position at the precise moment its position is measured. Using
“<” or “>” (or alternatively “<="" and “>="") assures that Lingo detects

when the device has reached a certain location.

312 Appendix B

General tips on XObject usage

The following are some important general tips about using XObjects.

Storing instances in global variables

Instances of XObjects should almost always be contained in global,
rather than local, variables. Using global variables allows you to access
the object from any script, so long as you declare the global in that
script. The only circumstance where you could use a local variable for
an XObject would be if you were creating, using, and disposing of the
object all within the same script, such as when you read in the contents
of a file with the fi | el OXObject.

Handling XObject names and filenames

When using XObjects stored in external files, the name of the
XObject is often different from the name of the file which contains the
object. For example, the XObject for controlling Sony videodisc
players is contained in a file named “Sony XObj,” but the name of the
object itself is “Sony_videoDisc.” To see the proper name for calling
an XObject, open the message window and type showxl! i b. All the
currently available XObjects will be listed with their proper names.

Using XObjects 313

Note

Handling pathnames

When using objects contained in external files, it’s a good idea to keep
the file in the same folder as the Director movie that contains the script
for opening and creating an instance of the object. Then you can take
advantage of Lingo’s pat hnanme command to automatically return the
proper path to the current folder. This greatly reduces the potential for
pathname errors when accessing the external file.

Always use mDispose

Because you can make multiple objects, it’s very important that you
dispose of instances as a last step and that you check for previous
instances before creating new ones. Otherwise, you could have two
instances in two different states using the same variable name, and
Director would have no way of knowing which one to use. You can
also run out of memory if your script churns new objects into RAM
but never disposes of old ones. As a safety measure, use obj ect P and
nDi spose in both the on st opMovi e and on start Movi e
handlers. See the section “Using basic device control” earlier in this
appendix for an example.

You can save XObjects in a file on your computer.

Never dispose of an XObject twice in the same handler.

314

Appendix B

XObject reference

This section lists the standard methods for Seri al Port, Fi |l el O and
Ot hoPl ay XObjects.

SerialPort XObject

Use the Seri al Port XObject to send and receive data over the
Macintosh’s two standard serial ports (commonly called the modem
and printer ports). This XObject is built into Macromedia Director, so
you don’t have to open an XLibrary to use it.

The following methods are supported by this XObject. Some of them
return a result code. A result code of 0 indicates success, while a
negative result code indicates that an error occurred.

mNew, portNumber --> object (or errorCode)

The mMNewmethod creates and returns an instance of the Ser i al Por t
XObject.

The portNumber argument can be 0 to access the modem port or 1 to
access the printer port.

Example:

put Serial Port(nNew, 0) into port

mDispose

The nDi spose method closes the serial port and disposes of the
XObject instance.

Example:

i f objectP(poprt) then port(nDi spose)

Using XObjects 315

mGetPortNum --> portNumber

The mGet Por t Nummethod returns the port number for the XObject
(0 for the modem port, 1 for the printer port).

Example:

if port(mGetPortNun) = 0 then doMbdem
el se doPrinter

mWriteString, string --> resultCode

The M it eSt ri ng method writes the specified string of characters
to the port. (Strings are limited to 256 characters. To write a string
longer than 256 characters, use a repeat loop.)

Example:

port(mMVWiteString, "Here we go")

mWriteChar, characterNumber --> resultCode

The MW i t eChar method writes a single character, specified by its
ACSII code number, to the port.

Example:

port (mAiteChar, char ToNun("$"))

mReadString --> string

The nReadSt ri ng method reads the contents of the port’s input
buffer and returns it as a string.

Example:

put port(nReadString) into input

mReadChar --> characterNumber

The nReadChar method reads a single character from the port’s input
buffer and returns its ASCII code number.

Example:

i f port(nmReadChar) = char ToNunm(RETURN) then dolt

316

Appendix B

mReadCount --> number

The nReadCount method returns the number of characters in the
port’s input bufter.

Example:

i f port(nmReadCount) < 10 then waitAWile

mReadFlush
The nReadFl ush method clears the port’s input buffer.

Example:

i f finished then port (nmReadFl ush)

mConfigChan, driverNumber, configuration -> resultCode

The nConf i gChan method performs low-level configuration of the
port. It allows the input and output sides of the port to be
independently configured. (The nSet Up method is usually used
instead of nConf i gChan. Using ntonf i gChan provides finer
control when configuring a serial port.)

The driverNumber argument can be 0 for the output driver or 1 for the
input driver.

The configuration argument is the sum of four values: one for the baud
rate, one for the number of stop bits, one for the parity, and one for
the number of data bits. The values are shown below:

Baud rate Value to use
300 380

600 189

1200 94

1800 62

2400 46

3600 30

4800 22

7200 14

Using XObjects 317

Baud rate

Value to use

9600 10

19200 4

38400 1

57600 0

Stop bits Value to use
1 16384

1.5 -32768

2 -16384

Parity Value to use
None 0

Odd 4096

Even 12288

Data bits Value to use
5 0

6 2048

7 1024

8 3072

318

Appendix B

Example:

The following statements configure both the input and the output
sides of the port for 4800 baud, 1 stop bit, no parity, and 8 data bits:

put 22 + 16384 + 0 + 3072 into config

port (mConfi gChan, 0, config)

port (mConfigChan, 1, config)

mHShakeChan, driverNumber, setFlags, xOnChar -->
resultCode

The nHShakeChan method determines the handshaking methods
used by the port. It allows the input and output sides of the port to be
independently configured.

The driverNumber argument can be 0 for the output driver or 1 for the
input driver.

The setFlags argument determines the handshaking methods to be
used. Add the following values together for the desired methods:

0 XOn/XOft output flow control: 1
0 CTS hardware handshaking: 2

0 XOn/XOff input flow control: 4
0 DTR input flow control: 8

The xOnChar argument is the ASCII code number of the XOn
character for XOn flow control.

Example:

The following statement enables CTS hardware handshaking,
XOn/XOff input flow control (using Control-Q, ASCII code 17, for
the XOn character), and DTR input flow control for the input driver.

port (mHShakeChan, 0, 2 + 4 + 8, 17)

mSetUp, baudRate, stopBit, parityBit --> resultCode

The nBet up method resets and configures both the input and the
output drivers of the port.

The baudRate argument can be 1200, 2400, 4800, 4800, 9600, 19200,
or 38400.

Using XObjects 319

Note

The stopBit argument can be 10 for 1 stop bit, 15 for 1.5 stop bit, or
20 for 2 stop bits.

The parityBit argument can be O for noParity, 1 for oddParity, or 2 for
evenParity.

This method also configures the port for 8 data bits during
asynchronous communication. No handshaking options are assigned.

Example:

The following statement configures the port for 4800 baud, 1 stop bit,
no parity bit, 8 data bits, and no handshaking:

port (et Up, 4800, 10, 0)

The nSet up method is the recommended way to configure a serial port. For
finer control, use mConfigChan and mHShakeChan.

FileIO XObject

You can use the Fi | el OXObject to read and write text files. This
XObject is built into Director, so you don’t need to open an XLibrary
to use it.

The following methods are supported by this XObject. Some of them
return a result code. A result code of 0 indicates success, while a
negative result code indicates an error condition.

mNew, option, whichFile -> object (or errorCode)

The mNew method opens a file and returns a file reference object for
it. It takes two strings as arguments. The first is an option string, and
the second is a filename or file type (depending on the option string).
The six options are:

o read

This option opens the file specified by whichFile for reading only.
(Attempting to write to the file will cause an error.) When the file
is in a different folder, the specification for whichFile must include
the pathname. It is good practice to always include the pathname
in case the movie is moved from that folder later.

320

Appendix B

wite

This option opens the file specified by the whichFile argument for
reading or writing. If the file already exists, the previous contents
are erased. If no file currently exists, a new one is automatically
created. If the file is in a different folder than the current movie,
whichFile must be a pathname.

append

This option opens the file specified by the whichFile argument for
reading or writing. If the file already exists, the previous contents
are left undisturbed and the current file position is set to the end
of the file. Subsequent writes will add characters at the end of the
file. If the file is in a different folder than the current movie,
whichFile must be a pathname.

?r ead

This option puts up the standard file dialog to let the user select a
file to open. Only files whose file types are specified in the
whichFile argument (for example, “TEXT”) appear in the dialog.
After the user has made a selection, the file is opened as with the
r ead option.

wite

This option puts up the standard file dialog to let the user specify
a file to write. The whichFile argument specifies the suggested
filename. After the user has made a selection, the file is opened as
with the wri t e option.

?append

This option puts up the standard file dialog to let the user specify
a file to open. The whichFile argument specifies the suggested
filename. After the user has made a selection, the file is opened as
with the append option.

Examples:

put Filel Q(mNew, "read", "My Phone Book") -
into fil e(hj

Using XObjects 321

Note

Note

Note

Note

Be sure to dispose of the file reference object when you are finished using the
file. Otherwise the file may remain open, and you may not be able to reopen
it until you restart your computer.

mDispose

The nDi spose method closes a previously opened file and disposes of
the file reference object.

Example:

if objectP(filenj) then fil eObj (nDi spose)
Be sure to call this method when you are finished using the file.

mWriteChar, characterNumber -> resultCode

The M i t eChar method writes a single character, specified by its
ASCII code number, to the file. The character is written at the current
position in the file.

Examples:

fileCbj (mMNiteChar, char ToNunm("A"))

mWriteString, string --> resultCode

The MW it eStri ng method writes the specified string of characters
to the file. The string is written beginning at the current position in

the file.

Examples:

fileGhj (MNiteString, -

"Xhj ects are cool!" & RETURN)

When you want to end a line, make sure your string ends with a Return
character.

mReadChar --> characterNumber

The nReadChar method reads the next character of the file and
returns its ASCII code number.

Example:

if fileQbj(nmReadChar) = charToNun{"?") then query

Reading past the end of the file returns -1.

322

Appendix B

Note

Note

Note

mReadLine --> string

The nmReadLi ne method reads the next line of the file (that is, up to
and including the next Return character) and returns it as a string. The
returned string ends with the Return character (except perhaps at the

end of the file).
Example:

put fileQoj (nmReadLine) into nextlLine

Reading past the end of the file returns the empty string

mReadWord --> string

The mReadWbr d method reads the next word of the file and returns
it as a string. Words are delimited by spaces and Return characters.
Spaces are not returned. The Return character at the end of a line is
returned as a word by itself.

Example:

if fileQbj(nmReadWrd) = "Macronedi a" then beep

Reading past the end of the file returns the empty string

mReadToken, skipString, breakString --> string

The nReadToken method reads forward in the file, first skipping over
any characters that appear in skipString and then saving characters until
it encounters one that appears in breakString. The saved characters are

returned as a string. If skipString equals the empty string "", then the
returned string includes the character that caused the break.

Examples:

put fileQoj (nmReadToken, "", RETURN) into nextLine
-- sane as nReadLi ne

put fileQoj(nmReadToken, " ", " " & RETURN) into
next Wrd

-- sane as nReadWrd

Reading past the end of the file returns the empty string

Using XObjects 323

Note

mGetPosition -> integer

The nCet Posi t i on method returns the position in the file where the
next character will be read or written. The first position is 0.

Example:

put fileQoj(mGetPosition) into mark

mSetPosition, integer

The nBet Posi ti on method sets the position in the file where the
next character will be read or written. The first position is 0.

Example:
fil eObj (nBet Position, 0)
-- nove to beginning of file

mGetLength --> integer

The nmCet Lengt h method returns the number of characters in the file.
The count includes spaces, tabs, Return characters, and other invisible
characters.

Example:

fileObj (nbBetPosition, fileOoj(nCetlLength))
-- nove to end of file

mFileName --> string
The nFi | eName method returns the name of the file as a string.
Example:

if fileQoj (nFileNane) = "Systemt then beep

mDelete --> resultCode

The nDel et e method deletes the file from the disk and disposes of the
file reference object.

Example:
fileQoj(mDel ete)
if the result < 0 then =
alert "That file could not be deleted."

You do not need to call mDispose after using mDelete.

324

Appendix B

OrthoPlay XObjects

Macromedia provides several XObjects for controlling some common
devices that play video and audio source material:

0 The Sony videodisc and Pioneer videodisc XObjects control
many models manufactured by two popular brands of videodisc
players.

0 The VISCA XObject controls a wide variety of videotape
recorders that use the VISCA protocol.

0 The AppleCD XObject controls the CD audio capabilities of the
AppleCD SC.

The methods of all these XObjects conform to a Macromedia-
developed protocol known as OrthoPlay. Each XObject implements
only the OrthoPlay methods that are appropriate for it. However,
when two XObjects do implement the same method, it makes both
devices behave similarly. As a result, you can write “generic” Lingo
scripts that play source material without concerning yourself with the
details of the playback device or the recorded media.

The complete set of methods defined by this protocol are described in
the following sections. Some of them return a result code. A result
code of 0 indicates success; a negative result code indicates an error.

Initialization and selection methods

These methods create instances of the XObjects, initialize them, and
select which device they will control.

mNew --> object (or errorCode)

The mNew method creates and returns a new instance of the XObject.

mSetSerialPort, portObject --> resultCode

The nBet Seri al Port method assigns an instance of the

Seri al Port XObject, which is built into Director, for the
OrthoPlay XObject to use. This method should be called after miNew
and before any other methods.

Using XObjects 325

mSetlnitViaDlog, initTitle --> resultCode

The nSet | ni t Vi aDl 0og method presents an initialization dialog to
select the device that the XObject will control. The initTitle string is
displayed in the dialog.

mGetinitinfo --> initString
The nGet | ni t | nf 0 method returns initialization information as a

string. The info string may be passed in the mSet | ni t | nf 0 method
to initialize another instance of the XObject to the same device.

mSetinitinfo, initString --> resultCode

The nBet | ni t | nf o method initializes the XObject to the settings
specified by initString. The argument initString is a string previously
returned by the method net | ni t | nf o.

mGetMaxDevices --> number

The mGet MaxDevi ces method returns the maximum number of
devices that can be controlled by the XObject. Devices are numbered
beginning with 1.

The methods nGet MaxDevi ces, mGet Devi ceTi tl e,

nBet Devi ce, mBel ect Devi ce, and nGet Devi ce are implemented
by XObjects that can control a set of devices. The caller can query for
the devices available using the nGet MaxDevi ces and

nCet Devi ceTi t| e, and then assign a device with either

nBet Devi ce or nBel ect Devi ce.

mGetDeviceTitle, deviceNumber —> deviceTitle
The nGet Devi ceTi t| e method returns the title for the specified
device as a string. This title can be used to present a selection menu to

the user. The integer argument deviceNumber is in the range from 1 to
the value returned by nGet MaxDevi ces.

mSetDevice, deviceNumber —> resultCode

The nBet Devi ce method assigns the device that will be controlled
by the XObject. The integer argument deviceNumber is in the range
from 1 to the value returned by mGet MaxDevi ces.

326

Appendix B

This method is called only once, before any device methods. This
method is implemented by XObjects that can control one of a set of
devices from a single instance. Once a device is selected, all method
calls that follow affect the selected device and only the selected device.

mSelectDevice, deviceNumber —> resultCode

The nSel ect Devi ce method reassigns the device that will be
controlled by the XObject. The integer argument deviceNumber is in
the range from 1 to the value returned by nGet MaxDevi ces.

This method may be called more than once to switch control to
different devices. This method is implemented by XObjects that can
control multiple devices from a single instance. Once a device is
selected, all method calls that follow affect the selected device, and
only the selected device.

mGetDevice —> deviceNumber

The net Devi ce method returns the number of the device assigned
with mSet | ni t Vi aDl og, nSet | ni t | nf o, nSet Devi ce, or
nBel ect Devi ce.

Destruction methods

This method destroys instances of XObjects.

mDispose

The nDi spose method disposes of the XObject instance, freeing the
memory that it uses.

Satellite methods

These methods provide error handling, error reporting, and an idle-
driven tasking mechanism. They enable foreground tasks (such as
animation) to operate between calls, in cases where software-only
device drivers might otherwise spend too much time waiting to
communicate with the device.

Using XObjects 327

mService --> conditionCode

The nSer vi ce method should be called repeatedly after calling a
device method. This method returns O when the command is
completed, a positive value if the command is still in progress, or a
negative value if an error has occurred. The condition codes are listed

below:

Code Meaning

0 OK - Command completed

1 Device-specific status

2 Waiting for acknowledgement
from device

3 Stopped

4 Paused

5 Playing

6 Recording

7 Playing a segment

8 Recording a segment

9 Moving forward slower than
play

10 Moving reverse slower than
play

11 Moving forward faster than play

12 Moving reverse faster than play

13 Fast forward (tape unthreaded/
video disabled)

14 Rewind (tape unthreaded/video
disabled)

-1 Device-specific error

-2 Operation canceled

-3 Bad parameter

328 Appendix B

Code Meaning

-4 Not enough memory

-5 m dl e method not called in
time

-6 No response from device

-7 Unrecognized response from
device

-8 Device reports negative
acknowledgement

-9 Device is offline or in local mode

-10 No medium loaded

-11 No time code

-12 Time code drop out

The device-specific condition codes 1 and -1 are used when the device
is in a state that is not listed. In this case the caller can call nExpl ai n
to get a string that can be presented to the user.

mGetValue --> number

The nGet Val ue method returns an integer value. It is used to pick up
values from methods that are followed by calls to nSer vi ce, such as
nmReadSt at us and nReadPos.

mCancel --> resultCode

The nCancel method cancels the current operation. The device is left
in an undefined state and should be reset by the caller. This method
should be called when nPl ay Segnment or nRecor dSegment returns
an error.

mExplain --> string

The mExpl ai n method returns a string explaining the current device-
specific status or error condition. It can be used to get an explanation
of a condition when nfer vi ce or rReadSt at us/ net Val ue
returns a device-specific condition (1 or -1).

Using XObjects 329

midle —> tickCount

The m dl e method is an optional satellite method implemented by an
XObject that requires periodic attention. When called, the XObject
should do its idle task and return the minimum number of ticks
(1/60th of second) that should lapse before it is called again.

Device methods

These are the methods that do the essential work of the XObject.
Unless otherwise noted, all device methods must be followed by
repeated calls to mBer vi ce until it reports completion (0) or an error
condition (a negative value).

mReadStatus

The mReadSt at us method initiates a request for the current status of
the device. It should be followed by calls to nSer vi ce until it reports
completion or error. If mSer vi ce reports completion, the status can
then be retrieved using nGet Val ue. The possible values are listed
under mBer vi ce.

mReadPos

The mReadPos method initiates a request for the current position of’
the device. It should be followed by calls to nSer vi ce until it reports
completion or error. If mSer vi ce reports completion, the frame
number can be retrieved using nGet Val ue.

mSearchTo, frameNumber

The nSear chTo method initiates a search to the specified frame. It
should be followed by calls to nSer vi ce until it reports completion
or error. If nSer vi ce reports completion, the device is paused at the
given frame.

mPlay

The Pl ay method starts the device moving forward at standard
playing speed.

330

Appendix B

mStill

The nSti |1 method stops the device. For videotape and videodisc
devices, mSti || leaves a still image on the screen.
mStop

The St op method stops the device. For videotape devices, it retracts
the tape.

mScanForward

The nScanFor war d method moves the medium forward as fast as
possible while still playing video (for videotape and videodisc devices)
or audio (for audio CD devices).

mScanReverse

The mBcanRever se method moves the medium in reverse as fast as
possible while still playing video (for videotape and videodisc devices)
or audio (for audio CD devices).

mPlayReverse

The Pl ayRever se method plays the medium in reverse at standard
playing speed.

mFastForward

The nfFast For war d method moves the medium forward as fast as
possible. This method is intended for videotape devices, which will
usually disable their video while fast forwarding.

mRewind

The nRewi nd method moves the medium in reverse as fast as possible.
This method is intended for videotape devices, which will usually
disable their video while rewinding.

mStepForward

For a device that can increment by one frame at a time, the
ntt epFor war d method moves the medium forward one frame.

Using XObjects 331

mStepReverse

The ntt epRever se method moves the medium in reverse one
frame.

mShuttle, speed

The nhut t | € method moves the medium either forward or in
reverse at a speed determined by the argument speed. Video is always
enabled. The speed is in the range -7 to 7. Positive values mean
forward, zero means still, and negative values mean reverse.

mRecord
The nRecor d method puts the device in record mode.

mEject

The nEj ect method ejects the physical medium (disc, tape, and so
on) from the device.

mPrepareMedium

The nPr epar eMedi ummethod is intended to set up a freshly loaded
medium. For a videodisc device it might bring the disc up to speed and
detect CAV or CLV addressing. For a videotape device it might reset
the tape counter (if the device does not support time code) or detect
the time code type (if it does). For audio CD devices it might read the
track table.

mGetFirstTrack --> trackNumber

The nmGet Fi r st Tr ack method returns the first track on the medium.
Track numbers begin with 1. This is an immediate method that does
not require nSer vi ce.

mGetLastTrack --> trackNumber

The mCet Last Tr ack method returns the last track on the medium.
This is an immediate method that does not require nmSer vi ce.

332

Appendix B

mGetFirstFrame, trackNumber —> frameNumber

The nGet Fi r st Fr ame method returns the first addressable frame in
the specified track. If trackNumber is 0, the first frame of the medium
is returned. This is an immediate method that does not require

nSer vi ce.

mGetLastFrame, trackNumber --> frameNumber

The nGet Last Fr ame method returns the last addressable frame in the
specified track. If trackNumber is 0, the last frame of the medium is
returned. This is an immediate method that does not require

nBervi ce.

mGetTrack --> trackNum

The nmGet Tr ack method returns the track number for the previous
mReadPos. This is an immediate method that does not require
nSer vi ce.

mResetCounter

The nmReset Count er method resets the device’s tape counter. This
method is intended for videotape devices that do not have absolute
time code.

mAudioEnable, channelNumber, enableFlag

The mAudi oEnabl e method enables or disables audio playback. A
disabled audio channel will not be heard. An enabled audio channel
will be heard when the device is in play. The argument
channelNumber is 1 for the left channel and 2 for the right channel.
The argument enableFlag is TRUE for on and FALSE for off.

When you use mAudi oEnabl e during playback, changes in the
channel’s status might not be heard until playback is stopped and then
resumed.

mAudioMute, channelNumber, enableFlag

The mAudi oMut e method enables or disables audio muting. A muted
channel will only be heard at play speeds. An unmuted channel will be
heard at non-play speeds. (This may cause speaker damage.) The

argument channelNumber is 1 for the left channel and 2 for the right
channel. The argument enableFlag is TRUE for on and FALSE for off.

Using XObjects 333

mVideoEnable, channelNumber, enableFlag

The nVi deoEnabl e method enables or disables video display. The
argument channelNumber is 0 for Macintosh graphics (for video
overlay), 1 for the first video input source, 2 for the second video input

source, and so on. The argument enableFlag is TRUE for on and FALSE
for off.

mShowFrame, enableFlag

The nShowFr ame method enables or disables the display of frame
numbers. The argument enableFlag is TRUE for on and FALSE for off.
This method is intended for videodisc devices.

mGetFrameResolution --> framesPerSecond

The nGet Fr aneResol ut i on method returns the frames-per-second
rate of the device. If the method is not present, 30 frames per second
is assumed. This value does not reflect the presence of drop frames.
PAL devices will return 25. This is an immediate method that does not
require nSer vi ce.

mSetFrameResolution, fps --> resultCode

The nBet Fr ameResol ut i on method is provided when the
XObject cannot detect the frames-per-second rate of the device,
allowing the user to set this value. Acceptable values are 30 (NTSC),
25 (PAL), 24 (Film transferred to NTSC with 3-2 pull down). This is
needed for an XObject to address CLV-type discs where frames must
be converted to seconds. This is an immediate method that does not
require NSer vi ce.

mHasDropFrames --> TRUE/FALSE

The nHasDr opFr anes method returns TRUE if the medium in the
device uses SMPTE dropframes and FALSE otherwise. (If drop frames
are used, the rate is 30 per second, skipping frames 0 and 1 every
minute, with the exception of multiples of 10 minutes.) If this method
is not provided, FALSE is assumed. This is an immediate method that
does not require nSer vi ce.

334

Appendix B

mSendRaw, string

The nBendRaw method sends a raw command string to the device. It
is intended for testing purposes. This is an immediate method that does
not require nSer vi ce.

mReadRaw —> string

The nReadRaw method reads raw status back from the device. It is
intended for testing purposes. This is an immediate method that does
not require nSer vi ce.

Segment support methods

These methods set instance variables used by the segment methods
nPl aySegnent and nRecor dSegnent .

mSetinPoint, inFrame --> resultCode

The nBet | nPoi Nt method sets the inpoint to be used for all device
commands that require an inpoint. After an edit the inpoint is
automatically advanced to the point following the last point of the edit,
so for common sequential editing it is necessary to call this method
only once. Altering the inpoint does not alter the number of frames for
the next task.

mSetOutPoint, outFrame --> resultCode

The nBet Qut Poi nt method sets the outpoint to be used for all
device commands that require an outpoint. Video XObjects do not
have a true outpoint. This method is provided for symmetry with
nBet | nPoi nt . It is actually an alternate method of setting a duration
for programmed device methods. Any value set with this method
should “float” in relation to the inpoint (so that the duration value is
always preserved). Therefore, setting the inpoint should always
precede setting the outpoint when using this style.

mSetDuration, nFrames --> resultCode

The et Dur at i on method sets the duration for segment methods.
Altering this value leaves the edit inpoint intact.

Using XObjects 335

mGetMinDuration --> nFrames

The mGet M nDur at i on method returns the minimum number of
frames possible in an edit.

mSetPreroll, nFrames --> resultCode

The nBet Pr er ol | method sets the preroll length. This is the number
of frames before the inpoint to cue to before a mRecor dSegnent .

mGetPreroll --> nFrames

The mGet Prer ol | method returns the preroll time in frames. For
consumer-level devices preroll is taken to mean the duration from
when nmRecor dSegnent returns to when the device goes into record.

mSetPostroll, nFrames --> resultCode

The et Post r ol | method sets the post-roll length. This the
number of frames after the outpoint to stop at after a
nmRecor dSegnent .

mGetPostroll --> nFrames
The nGet Post r ol | method returns the postroll time in frames.

mSetFieldDominance, oddEven --> resultCode

The nBet Fi el dDoni nance method informs the XObject of the
device’s field dominance hardware setting. (The field dominance
setting determines the field an edit record will cut in on.) The
argument oddEven is 1 for odd or 2 for even.

Segment methods

These methods are used for playing and recording segments:

mPlayCue

The Pl ay Cue method initiates a search to the previously set inpoint.
It should be followed by calls to mBSer vi ce until it reports completion
or error. If nSer vi ce reports completion, the device is paused at the
inpoint. This method may be used before Pl ay Segnent .

336

Appendix B

mPlaySegment

The Pl aySegnment method plays to the previously set outpoint. It
should be followed by calls to nSer vi ce until it reports completion
or error. If nfSer vi ce reports completion, the device is at the
outpoint. The inpoint and outpoint remain unaffected. To play from
the inpoint, precede this call with a call to Pl ayCue; otherwise the
device will play from the current location to the outpoint. During an
nmPl aySegnent , net Val ue may be called to get the current
position of the device.

mRecordCue

The nmRecor dCue method initiates a search to the previously set
preroll point. It should be followed by calls to nSer vi ce until it
reports completion or error. If nSer vi ce reports completion then the
device is paused at the preroll point. This method must be used before
nmRecor dSegnent .

mRecordSegment

The mRecor dSegment method starts the record process. It should be
followed by calls to nSer vi ce until it reports completion or error.
The caller should use the nmGet Prer ol | method to determine how
much time will lapse from when this method returns to when the
device is actually recording. The inpoint is automatically advanced
once the edit is complete. If mCancel is called while the edit is in
process, the inpoint should remain set at the position it occupied prior
to the call to mRecor dCue. The actual position of the head after
mRecor dSegnent is undefined to facilitate repeated edits. After all
recording is complete, the caller must put the device into the desired
state. If a device supports video-only or audio-only edits, it should
implement mRecor dVi deoEnabl e and nRecor dAudi oEnabl e. If
these methods are not implemented it is assumed that recording will
affect both video and audio. During an mRecor dSegnent ,

nmCet Val ue may be called to get the current position of the device.

mRecordVideoEnable, enableFlag

The nmRecor dVi deoEnabl e method enables or disables the
recording of video during an mRecor dSegment . The argument
enableFlag is TRUE for on or FALSE for off. This method should be
called before mRecor dCue.

Using XObjects 337

mRecordAudioEnable, channelNumber, enableFlag

The nmRecor dAudi oEnabl e method enables or disables the
recording of audio during an mRecor dSegnent . The argument
channelNumber is 1 for the left channel and 2 for the right channel.
The argument enableFlag is TRUE for on or FALSE for off. This
method should be called before mRecor dCue.

mAssembleRecord --> resultCode

The mAssenbl eRecor d method is called before mMRecor dCue to
enable an assemble edit. During an assemble edit video, audio, control
track, and timecode are recorded onto the tape. There must be valid
video and timecode during the preroll period of the edit.

mPreviewRecord --> errorCode

The nPr evi ewRecor d method is called before nRecor dCue to
enable a preview edit. The recording will not take place but the edit
will be simulated by switching video and/or audio at the in and out
points.

mGotolnPoint

The nGot ol nPoi nt method initiates a search to the previously set
inpoint. It should be followed by calls to nSer vi ce until it reports
completion or error. This method is implemented by frame-accurate
videotape devices as a consistency check.

mGotoOutPoint

The mGot oQut Poi nt method initiates a search to the previously set
outpoint. It should be followed by calls to mBer vi ce until it reports
completion or error. This method is implemented by frame-accurate
videotape devices as a consistency check.

mGotoPrerollPoint

The nGot oPr er ol | Poi nt method initiates a search to the
previously set preroll point. It should be followed by calls to

nSer vi ce until it reports completion or error. This method is
implemented by frame-accurate videotape devices as a consistency

check.

338

Appendix B

mGotoPostrollPoint

The nGot oPost r ol | Poi nt method initiates a search to the
previously set postroll point. It should be followed by calls to

nSer vi ce until it reports completion or error. This method is
implemented by frame-accurate videotape devices to as a consistency

check.

Using XObjects 339

340 Appendix B

Appendix C

Factories

A factory is a particular kind of Lingo script in which you define
your own objects. Once you’ve defined an object within the
factory, you can subsequently call on the factory to create as many
instances of the object as you want throughout a movie.

This appendix describes factories, their uses and how to create
them.

341

Introduction to factories

Factories are useful for making more than one of an item such as
bouncing balls or flying birds. Let’s say, for example, that you are
designing an interactive game. The game lets the user decide a level of
difficulty from one to ten. A level of one means that the user will be
able to zap one animated alien object. A level of ten lets the user do
battle with ten animated alien objects.

If you didn’t use a factory to create your aliens, you’d have to create
ten different sequences in your movie, one for each level of difficulty,
and place one alien sprite in the first segment, two in the second, and
so on. When an alien is hit by user-fire, you want it to explode and
disappear from the screen. Furthermore, you want all your aliens to
move randomly around the screen and every once in awhile to fire
phaser shots of their own at the user. In the ten-alien non-factory case,
you’d have a lot of things to keep track of in your scripts: alien
coordinates, hits or misses, how many aliens are left, and so on. Things
get complicated quickly. One alternative is to use a factory.

In our example, you would write an “alien factory” for the game. In
the factory, you’d define what an alien is, how it behaves, what
messages it can respond to, and any other characteristics required to
specify the object and its overall behavior. When the movie is running,
the factory “builds” aliens in response to the user’s input, as many as
needed for a given game. When an alien is hit the alien object is
removed from the screen and from memory. This ability to create and
destroy objects dynamically, on command is an important
characteristic of factories.

Furthermore, each alien object can record its own movement and
whether or not it has been hit. All the aliens can respond to the same
set of messages. (In our alien game, for example, you might create a
nove handler, or a di si nt egr at e handler.) Each alien is called an
instance of the object. Each instance of our alien can have its own data
(such as its current screen position).

342

Appendix C

Note

Even though our examples in this appendix are associated with a graphic cast
member that you can see on the screen, a factory object does not have to have a
visual component. You can create objects that reside in memory and perform
other functions, such as controlling multiple videodisc players.

Factories, then, allow you to create more efficient, compact, and
straightforward scripts. You can define as many different kinds of
objects in a factory as you want.

Recall that in other Lingo scripts, you used the on keyword to define
handlers. The handler name specifies the message to which the handler
responds. In factories, you also specify the messages to which an object
can respond. These are called methods, and the rules for defining a
method are slightly different from those you use to define a handler.

You can also use a factory to create and manage an array, to control a series of
related objects with the same methods and functions. However, a simpler
alternative is using lists to create and manage an array. For information about
lists, see the section “Using Lists,” in Chapter 9.

Factories are usually written in a movie script.

Objects and messages

Factory objects communicate with other Lingo scripts through their
messages. In a Lingo script, a message might be sent as follows:

put Pi oneerLaserdi sc(nNew, 0) into videodisc
vi deodi sc(Bt opAt Franme, 22500)

The first line of this script creates an object, here called vi deodi sc,
by sending the message mNew to the Pi oneer Laser di sc factory. In
this example, the 0 argument indicates that the videodisc player is
connected to the modem port of the computer.

In the second line, the message MBSt opAt Fr ane is sent to the newly
created object. The object’s nSt opAt Fr ame method will stop the
videodisc player at a particular frame.

Factories 343

Assume that you attach a second videodisc player to your computer.
You can create a second object using the same factory:

put |aserDisc(mNew, 1) into secondDi sc
secondDi sc(nfSt opAt Frame, 22500)

At this point, you have two devices which are synchronized, and
positioned at the same frame, 22500.

The syntax shown in this example is used by Lingo scripts to
communicate with Lingo objects. Every object has a set of methods
that it provides to Lingo scripts. In the statement vi deodi sc

(St opAt Frame, 22500), the object is vi deodi sc and the first
argument, NSt OpAt Fr ame, is the message being sent (the same as the
name of the specific method being called).

In addition, each method can have a set of arguments that it expects to
receive. If the method expects arguments, these follow the method
name. In this case, the argument 22500 is passed to the method

ntSt opAt Fr ame in object vi deodi sc.

‘When you write your factory, you can specify how the objects created
by the factory receive messages, using methods and their arguments.
The object can receive real-time input from a variety of sources:
mouse or keyboard, a sequence of predefined data from a text cast
member, or input from one of the computer’s serial ports.

344

Appendix C

How factories are defined

Note

You define a factory in a movie script. The definition always begins
with the f act ory keyword, followed by the factory name:

factory factoryName

In previous versions of Director, factories could be created only in text cast
members. The current version requires that you put them in a movie script.

The factory name uses alphanumeric characters (no special characters
or punctuation marks). A factory name can be only one word; no
spaces are allowed.

The statement containing the f act ory keyword and its name is
followed by a series of method definitions, defined by the nmet hod
keyword:

met hod messageNamel [argl, arg2...]

statements

end messageName1

met hod nextMessageName [arg1, arg2...]
Statements

end nextMessageName

In the preceding example, words in typewriter type are those elements that you
enter exactly as shown. The words or phrases in italics are placeholders that
describe the general parameter or argument for which you supply specifics. The
square brackets [| enclose optional elements that you include if needed. (You
don’t type the square brackets, though.) Optional elements may or may not
change what a statement does. For more about these conventions, see the Lingo
Dictionary.

Factories also make use of instance variables, defined by the i nst ance
keyword and discussed next.

Factories 345

Instance variables

In Lingo scripts outside of factories there can be two kinds of variables:
global and local. Global variables remain in existence for the duration
of a movie. Local variables only exist while the handler or script that
created it is being executed. Factories can use local and global
variables, and can include a third kind of variable: instance variables. A
factory can assign instance variables to specific objects. Instance
variables contain a unique set of values specific to each individual
object, even though the variables have the same name. The methods
of a factory use the instance variables.

An instance variable is available only to the object with which it is
associated. The value of an instance variable is established when the
object is created, or when a method is used to change it. Each instance
variable and its value persists as long as the object itself persists.

To define an instance variable, you must use the instance keyword,
otherwise the factory will assume it is a local (temporary) variable.

You would typically define all your instance variables in the mNew
method of a factory, the method that creates new objects.
Subsequently, the values of instance variables can be changed by other
methods.

For example:

nmet hod nmiNew par aneter1l, paramneter?2
i nstance vNamel, vName2

set vNamel = parameter]

set vName2 = parameter2
end mNew

In this example, the first statement defines two parameters that will be
used to pass values to two variables. The second line defines two
instance variables. The third line sets the initial values for the two
variables.

346

Appendix C

The perFrameHook property

The per Fr ameHook property, when assigned to an object, causes an
interrupt to occur at every frame when the playback head advances.
When this interrupt occurs, the specified object calls a special message
called MAt Fr ane. You define in a factory what actions the mAt Fr ane
method performs. This is a much simpler way of calling a script that
needs to be executed every frame (per Fr aneHook is especially useful
when recording to videotape frame-per-frame). For specific
information about the per Fr ameHook property, see the Lingo
Dictionary.

Factories 347

Creating objects from factories

After you’ve defined a factory, you can use it to “build” as many
instances of the factory’s objects as you want.

An instance of an object is created by calling the mNew handler of the
factory. The object can then use any of the factory’s handlers for
sending messages and determining new values.

Objects are created with the name of the factory and the nNew
method:

put myFactory (mNew, argl, arg2, ...) i nt o myObject

348 Appendix C

Special methods in factories

Three special predefined methods are available to every object, and do
not need to be defined within your factories. These are: mPut , mGet ,
and nDi spose. These are described next.

Creating and using object arrays

The mPut method places values in an array. Every instance of a factory
object automatically has an array associated with it. In fact, you might
create a factory just so you can use its built-in arrays as containers.
Arrays are useful for containing a “variable number of variables”— a
number of values at various locations within the array.

Here is the syntax for nmPut :
objectname(nPut , n, value)

The mPut method places value at location n in an array. The value n
must be an integer that is equal to or greater than zero. Subsequently,
you can use M3t to retrieve the value. alue can be any value, a
number, a string, or another object.

nCet retrieves a value from the array. The syntax is:
put objectname(nGet, n) into variable

The mGet method returns the value at location n in an array created
with mPut . Once again, n must be an integer that is equal to or greater
than zero.

Factories 349

Removing an object from memory

Another method that is automatically available for every object is
nDi spose. Like mPut and mGet , nDi spose does not need to be
defined in your factory script before it can be used.

nDi spose deletes an object from memory. The syntax is:
objectName(nDi spose)

The nDi spose method removes the object objectName from
memory. Use nDi spose to free up memory when an object is no
longer needed.

The me keyword

Factory objects can also call their own methods by using the me
keyword. The me keyword is equivalent to the name of the object
whose method is being called. In the example here, the

ani mat eBi r d method is called from within the | akeScene factory:

factory | akeScene
met hod nmiNew ...

end nmNew
met hod animateBird startV, startH speed

end ani mateBird
met hod fly
me(ani mateBird, 100, 100, 2)

end fly

350 Appendix C

The nme keyword is useful when you want to call the same method
with different objects. This way, you don’t have to specify the
individual object’s name each time you call that method.

Factories 351

352 Appendix C

Index

SYMBOLS

" " (straight quotation marks), as used in this

manual, 7
(pound sign), symbol operator, 113, 209
& (ampersand), string concatenator, 110, 158-60
&& (double ampersand), string concatenator,
110, 158-60
() (parentheses)
arithmetic operator, 108
function parameter delimiters, 102, 117
in logical comparisons, 110
* (asterisk), multiplication operator, 108
*Standar d. xl i b file, 289-90
+ (plus sign), addition operator, 108
+ (plus sign) button, opening scripts, 34, 72
- (minus sign)
negation operator, 108
subtraction operator, 108
-- (double hyphen), comment delimiter, 32
- - > (double hyphen right angle bracket), trace
arrow, 30, 120
/ (slash)
Command key equivalent delimiter, 193
division operator, 108
: (colon), property list delimiter, 209
< (left angle bracket), less than operator, 109
<= (left angle bracket equal sign), less than or
equal to operator, 109
<> (left angle bracket right angle bracket), not
equal to operator, 109
= (equal sign), equal to operator, 109
== (double equal sign), tracing symbol, 120
> (right angle bracket)
greater than operator, 109
returned value indicator, 290
> >>_ . (right angle bracket(s)), nesting level
indicator(s), 120

? (question mark), file select symbol
(Filel 0,297
?append option (Fi | el OmNewmethod), 321
?r ead option (Fi | el OnNewmethod), 321
2w ite option (Fi | el OmNewmethod), 321
[] (square brackets)
empty linear list, 210
list delimiters, 209
optional element delimiters, 345
[:] (square brackets enclosing a colon), empty
property list, 210
-, continuation symbol, 7
“” (curly quotation marks), as used in this
manual, 7
= (approximately equal sign), menu item
delimiter, 193

A

actions
assigning
to buttons, 250-51
to keys, 149-55
to rollovers, 162-64
to timeouts, 165-69
conditional, 87-93
repeating, 94-96
add (+) button, 34, 72
add command, 212
addAt command, 212
addition operator (+), 108
addPr op command, 212
AIFF sounds, 174, 178
Allow Outdated Lingo checkbox (Movie Info
dialog box), 14-15
ampersand (&), string concatenator, 110, 158-60
ancest or property, 238

353

ancestor scripts
assigning behavior to child objects, 257
calling, 258
characteristics set by, 256
illustrated, 259
object-oriented programming equivalent, 234
as overridden by parent scripts, 257, 258
understanding, 259-60
and logical operator, 110
animating sprites, 43
by switching cast members, 122, 144-45
append command, 212
append option (Fi | el OnNewmethod), 321
AppleCD XObject, 300-303, 325
approximately equal sign (<), menu item
delimiter, 193
arguments, 103
for methods, 344
passing values with, 103-4
arithmetic operators, 107-8
arrays, placing/retrieving values, 349
arrow (- - >) (message window), 30, 120
asterisk (*), multiplication operator, 108

B

“BasicNav” (tutorial movie), 10, 44-46, 49,
51-55, 57-61, 64
baud rate values (for serial port configuration),
table, 317-18
bi rt h function, 246
birth handlers. See on bi rt h handlers
bi rt h statements, 246, 256
issuing, 237, 246
See also on bi rt h handlers
“BNOM?” (tutorial movie), 10, 62-64
bounding rectangles (of sprites)
determining intersections, 138-40
referring to, 138

branching
to other locations, 22, 44, 50-56, 61-65
in scripts, 87-93
illustrated, 92
bugs in scripts, 28-29
built-in messages, listed, 75
buttons, 201
appearance, 201, 248
assigning actions to, 250-51
checkboxes, 201, 202-4
clicked, 202
controlling, 202-4
controlling the sound level from, 183
creating, 19, 201
determining buttons clicked, 261
radio, 201, 202-4
referring to, 202
scripts, 56, 202

C

callback factories, 275, 276
defining, 276-80
optimizing, 280
callback handlers for HyperCard callbacks,
275-76, 280
creating, 276-81
specifying, 281
callback objects
creating, 281
specifying XCMD:s for, 276, 281
callbacks (HyperCard). See HyperCard callbacks
from XCMDs
calling
ancestor scripts, 258
functions, 102
handlers, 26, 71-73, 82, 102
nser vi ce, 303-6, 307
scripts, 250-52
in every frame, 347

354 Index

calling statements, 26, 76, 81

placing, 82
case-sensitivity, 118
cast element, searching for/specifying text in

text fields, 160

cast member scripts. See scripts of cast members
cast members

assigning scripts to, 50

referring to, 113, 190

specifying, for menus, 190

switching, 122, 125, 144-45

See also scripts of cast members; sprites
cast names, referring to cast members by, 113
cast numbers, referring to cast members by, 113
cast properties, t he hilite of cast, 202-3
Change Again command (Edit menu), 37-38
channels

checking for sounds in, 176

controlling from Lingo, 121-32

making channels puppets, 122, 123-25

playing sounds in specific channels, 174

returning control to the score, 126, 128
char element, inserting characters in text

fields, 161

character spaces, 111, 117
characters, inserting in text fields, 161
checkboxes, 201

determining/setting the state, 202-3

setting access, 203-4

setting types, 204
checking

keys, 149-55

for sounds, 175-76

sprite locations, 135-40

text fields, 156-57

See also testing

child objects, 239
applications, 232
assigning to sprite channels, 243
assigning behavior to, 238, 244-45, 257
assigning sprite numbers to, 256
capabilities, 253
characteristics, 256
controlling, 250-52
creating, 235, 237, 238, 246-49, 264-65
defined, 235
identifying, 243
limitations on, 237
MECH examples, 233
multiple, 253-55
creating, 256-57
object-oriented programming equivalent, 234
removing, 249
setting initial values, 238, 241-42, 246
tracking, 256, 262-63
class instances (in object-oriented programming),
Lingo equivalent, 234
classes (in object-oriented programming), Lingo
equivalent, 234
cl ear d obal s command, 100
clearing
global variables, 100
lists, 210
See also deleting; removing
clicks. See mouse clicks
close box (script window), entering scripts, 20
cl ose command, 229
cl oseX i b command, closing resource
files, 273
closing
movie windows, 220-21, 229
movies in windows, 221
resource files, 273

355

code
breaking up long lines, 36
removing source code, 13
colon (:), property list delimiter, 209
color depth and palette effects, 132
color palettes. See palettes
colors, changing, 72-73, 95-96
Command key equivalent delimiter (/), 193
Command key equivalents, adding, to menu
items, 193
Command-? keyboard shortcut, displaying the
help cursor, 12
Command-period keyboard shortcut, stopping
movies, 21, 94
Command-S keyboard shortcut, saving
movies, 21
commands, 115
abbreviating, 119
add, 212
addAt, 212
adding parameters to, 21
addPr op, 212
append, 212
cl eard obal s, 100
cl ose, 229
closeXib, 273
conti nue, 57-60
cursor, 196, 198-200
del et eAt | 213
del et eProp, 213
dont PassEvent , 77, 78, 152
forget, 217-18, 229
gl obal , 100-101
i nstal | Menu, 188-90, 194-95
nenu: , 192-93
nmoveToBack, 224
nmoveToFront , 224
online help, 11-12
open, 219, 224

commands (continued)

openX i b, 272-73

pass, 77, 79

pause, 57-60

pl ay, 61-65

pl ay done, 61-64

puppet Pal et t e, changing palettes, 132

puppet Sound, 129, 130, 172, 173

puppet sprite, 73, 127

puppet Tenpo, 130

puppet Transi tion, 131

put, 29, 30, 31, 97-99, 106, 158-61, 281,

343-44, 348

in the script channel, 60

set, 99, 106, 160

set Cal | Back, 276, 281

showd obal s, 101

showLocal s, 99

showX i b, 273

sort, 211

sound fadel n, 130, 184-86

sound fadeQut, 130, 184-86

sound pl ayFil e, 130, 174

sound stop, 176-77

startTinmer, 178

tell, 226

updat eSt age, 105, 131, 176
comment delimiter (--), 32
comments, 118

and debugging, 118

entering and removing, 32, 118
comparing

conditions, 109-10

numbers, 108-9

sprite locations, 138-40

strings, 108-9
comparison operators, 107, 108-9
concatenating strings, 110

356 Index

condition codes (nMBer vi ce method) table,
328-29
conditions
comparing, 109-10
determining (testing), 86, 92, 106
making actions dependent on, 87-93
setting, 86, 106
constants, 114, 115
cont ai NS comparison operator, 109
comparing strings, 108-9, 156-57
continuation symbol (=), 7
cont i nue command, 57-60
continuing movies, 57-60
conventions used in this manual, 6-7
converting
integers to decimal numbers, 112
movie scripts to score scripts, 68
score scripts to movie scripts, 68
coordinates
for sprites
determining, 135-38
specifying, 141-42
for windows, specifying, 217-18, 227
copying
Lingo from the help window, 12
lists, 213
scripts, 33, 39
count function, 211
counting items in lists, 211
Courier font as used in this manual, 6, 345
curly quotation marks (“) as used in this
manual, 7
current frame, looping movies in, 44-46, 47
cur sor command, 196, 198-200

cursors
as bitmap images, 196
changing, 196-200
creating masks for, 200
detecting, 162-64
determining the cursor location, 135-36
determining whether over a sprite, 94
placing scripts, 198-200

“Cursors” (tutorial movie), 10, 196-200

D

data bits for serial port configuration, table, 318
debugging scripts, 28-30, 105, 118
decimal numbers, 112

converting integers to, 112
decision-making statements, 87-96
declaring

global variables, 100-101

local variables, 99

property variables, 238, 239-40
delays

creating, 95

repeat loops as, 95, 183
del et eAt command, 213
del et ePr op command, 213
deleting

factory objects, 350

items from lists, 210, 213

XObject instances, 292, 294, 303, 314

See also clearing; removing
destruction methods, 327
determining. See checking; testing
device control XObjects, 300-307

creating instances, 301

Ortho standard, 300

See also devices; XObjects
device methods, 330-35

357

devices equal to operator (=), 109

initializing, 309 comparing strings, 156
monitoring, 303-7 not using, in device position testing, 312
playing, 302 eITor messages
sending commands to, 302 from script windows, 29
stopping, 302 from XCMDA ue, 270, 275, 276
See also device control XObjects; serial devices events, 23, 74
Director common (listed), 75
new Lingo features in version 4.0, 13-15 and messages, 74, 77, 79-81
new tools in version 4.0, 13 preventing response to events outside
disposing of XObject instances, 292, 294, windows, 227
303, 314 responding to, 75-76
division operator (/), 108 synchronizing with sounds, 178
dont PassEvent command, 77, 78, 152 exit repeat statement, 94
double ampersand (&&), string concatenator, exi t Fr ame message, 75, 81
110, 158-60 exponential notation, 112
double equal sign (==), tracing symbol, 120 expressions, 116
double hyphen (--), comment delimiter, 32 the frame expression, 45
double hyphen right angle bracket) (- - >), trace external code modules, XCMDs and, 270
arrow, 30, 120 external files. See resource files

external objects. See XObjects
E

editing text F
in scripts, 13, 36-37 factories, 341-43, 345-46
in text fields, 148, 158-61 alternatives to, 206
elements. See Lingo elements applications, 342
empty linear list ([]), 210 callback, 275-80
empty property list ([:]), 210 defined, 275
end if statement, 93 defining, 345-47
Enter key naming, 345
entering scripts, 20 placing, 345
versus the Return key, 20 f act ory keyword, defining factories, 345
ent er Fr ame message, 75, 81 factory objects, 343-44
entering text creating, 281, 343-44, 348
in scripts, 20, 36, 72 deleting, 350
in text fields, enabling, 148 messages for, 343-44
equal sign. See equal to operator (=) FALSE element, 86

358 Index

field element

searching for strings in text fields, 156-57
specifying text in text fields, 158-61

I el O(XObject), 290, 297, 320
appending text to a file, 299

Fi

applications, 297
creating Fi | el Oinstances, 297
file select symbol (?), 297
methods, 320-24
reading text from a file, 298
resolving pathname errors, 299
selecting a file, 297
writing text to a file, 298
files
MIDI, 274
online, 8-12
resource, 2, 272-73, 314
text, 297-99
Find Again command (Edit menu), 37-38
Find Handler command (Edit menu), 37-38
Find Handler dialog box, 38-39
illustrated, 38
Find Selection command (Edit menu), 37-38
Find/Change command (Edit menu), 37
Find/Change dialog box, 37-38
illustrated, 37
finding and changing script text, 37-39
finding handlers, 38-39
f i ndPos function, 212
fi ndPosNear function, 212
fl oat function, 112
floating point numbers, 112
converting integers to, 112
forget command, 217-18, 229
forgetting, movie windows, 229
frame labels. See labels
frame markers. See markers
frame numbers, referring to frames by, 47-48

frame scripts, 15, 33, 70

placing handlers in, 84-85, 157
See also score scripts

frames

attaching scripts to, 45-46

labeling, 49

looping movies in the current frame,
44-46, 47

minimizing the use of, 122, 144-45

moving to specific frames, 22, 44, 50-56

playing, 65

referring to, 47-50

returning to, 61-64

See also frame scripts

functions, 102, 115

bi rth, 246

calling, 102

the clickOn, 91

count , 211

fi ndPos, 212

fi ndPosNear , 212
float, 112

the frane, 47, 48
function parameter delimiters, 102, 117
get A, 212

get One, 212

get PropAt, 212

ilk,212

the key, 149-55

the keyCode, 153

list, 209

max, 212

mn, 212

t he nmouseDown, 94

t he nouseH, 135, 136

t he nouseV, 135, 136

obj ect P, 295, 301, 314
the Opti onDown, 78, 153
t he pat hNare, 274, 299, 314

359

functions (continued)
r andom 89
rect, 218
rol | over, 94
soundBusy, 175-76
Furniture + Philosophy (Lingo Expo movie), 8-9,
149, 162, 196

G

get At function, 212
get One function, 212
get PropAt function, 212
gl obal command, 100-101
global variables, 100-101, 346
clearing, 100
declaring, 100-101
displaying, 101
naming, 100
storing instances of XObjects in, 313
go | oop statement, 47, 53
go to frame 1 statement, 22, 44, 47
go to next statement, 52-53, 55
go to previous statement, 53-55
go to "Start" statement, 56
go to the frame statement, 45, 47, 310-11
going to specific frames, 22, 44, 50-56
greater than operator (>), 109
greater than or equal to operator (>=), 109

H

handlers, 25, 115
advantages, 82
for built-in messages, 75
callback, 275-81
calling, 26, 71-73, 82, 102
in child objects, 237, 243
creating, 25-26
finding, 38-39
with improper syntax, 15
naming, 26, 83
object-oriented programming equivalent, 234
operation, 25, 74
in parent scripts, 238, 241-49, 264-65
passing values to, 103-4
placement in scripts, 82, 84-85, 92, 157
primary event handlers, 68-69
testing, 26-27, 31
that return results, 102
user-defined, 76
writing, 71-73
See also messages; scripts; statements; and
individual handlers by name
hardware-specific XObjects. See device control
XObjects
help cursor, displaying, 12
help settings file, 11-12
help system for movies in windows, 227
help window
copying Lingo from, 12
help note indicator (illustrated), 12
illustrated, 12
HyperCard, returning values to, 280
HyperCard callbacks from XCMDs, 275, 280,
281, 285
specifying, 280
table, 282-85
HyperCard XCMDs and XFCNs. See XCMDs

360 Index

I

i dl e message, 75, 81
i f...then structures, 87-93
Returns in, 92-93
if...then... el se structures, 90-93
“IfThen” (tutorial movie), 10, 88-89
i | k function, 212
indentation in scripts, 36
initialization methods, 325-27
initializing devices, 309
installing menus, 188-90
i nstal | Menu command
creating menus, 188-90
removing menus, 194-95
i nst ance keyword, defining instance
variables, 346
instance variables
in factories, 346
in object-oriented programming, Lingo
equivalent, 234
integers, 112
converting to decimal numbers, 112
“INTERACT” (tutorial movie), 11
interactivity, 2
enabling, 147-69
maintaining, in segment playback, 310-11
interfaces, 2, 187-209
interrupts, causing, 347
intersections of sprites, determining, 138-40
italic type, as used in this manual, 7, 345
i t emelement, inserting characters in text
fields, 161
“ITOM” (tutorial movie), 10, 89

J

jumping to other locations, 22, 44, 50-56, 61-65

K

key presses. See keyDown events
keyboard
checking/responding to time of use, 165-69
enabling interactivity, 149-61, 165-69
keyDown events, 81
detecting, 114, 149-55
responding to, 149-55
keyDown message, 75, 80-81
keys
assigning actions to, 149-55
determining the last key pressed, 114, 149-55
keyUp events, 81
keyUp message, 75, 80-81
keywords, 115
as handler names, 83
Kiosk (Learning Lingo folder), 10

L

labels (for markers/frames), 49-50
See also markers
Learning Lingo folder, 10-11
left angle bracket (<), less than operator, 109
left angle bracket equal sign (<=), less than or
equal to operator, 109
left angle bracket right angle bracket (<>), not
equal to operator, 109
less than operator (<), 109
less than or equal to operator (<=), 109
| i ne element, inserting lines of text in text
fields, 161
linear lists, 206
adding items to, 212
clearing, 210
creating, 207-8, 209-10
empty, 210
specifying items in, 209-10
See also lists

361

lines of text, inserting in text fields, 161
Lingo, 1-3
case-sensitivity, 118
concepts, 67-120
controlling channels from, 121-32
copying from the help window, 12
features, 2-3
learning, 4, 8-12
new features in Director 4.0, 13-15
outdated, 14-15
script basics, 17-39
support for HyperCard callbacks, 275
table, 282-85
syntax, 15, 117-19
terms corresponding with object-oriented
programming terms, 234
See also Lingo elements; scripts; statements;
syntax
Lingo elements, 115-16
inserting, 33, 35
online help on, 36
optional element delimiters ([]), 345
See also commands; constants; functions;
keywords; operators; properties; and
individual elements by name
Lingo Expo, 8-9
Lingo menu, inserting Lingo elements, 33, 35
| i st function, 209
lists, 14, 206-13
adding items to, 212
assigning to variables, 213
clearing, 210
copying, 213
counting items, 211
creating, 207-10
deleting items, 213
determining types, values, properties, or
positions in, 212
disposing of, 206

lists (continued)

empty, 210

list delimiters ([]), 209

maintaining lists of child objects, 256, 262-63
replacing items, 213

sorting, 211

specifying items, 209-10

types, 206

“Lists” (tutorial movie), 11, 207-9
literal values, 111-14
local variables, 99, 346

declaring, 99
displaying, 99

locations. See movie locations
logical operators, 107, 109-10
looping movies, 18-22, 43-46, 53

in the current frame, 44-46, 47
repeatedly, 94-96

loose syntax (at the end of a line), 15

M

Macintosh Toolbox values for window types

(listed), 223

macro syntax, 15
marker labels. See labels; see also markers
markers

creating, 49
referring to frames by, 48-50
sending the playback head to, 51-56

mAssenbl eRecor d segment method, 338
MAL Fr ane message, 347

mAudi oEnabl e method, 333

mAudi oMut e method, 333

max function, 212

nCancel method, 329

nConf i gChan method, configuring serial

ports, 317-19

nDel et e method, 324

362 Index

nDescri be method, listing XObject
methods, 290
nD spose method
disposing of factory objects, 350
disposing of XObject instances, 292, 303, 314
Filel Q322
OrthoPlay, 327
Serial Port, 315
me keyword, 243, 350-51
MECH (Lingo Expo movie), 8-9, 233, 267
studying, 267
nE ect method, 332
memory. See RAM
nmenu: command, 192-93
menu items, 193
adding command key equivalents, 193
menu item delimiter (=), 193
menus, 188-95
defining, 190-93
installing, 188-90
menu definition symbols, 193
removing, 194-95
specifying cast members for, 190
volume, 179-80, 188-93
See also menu items
message window
displaying scripts, 24, 29-30
displaying statement results, 30, 31
illustrated, 24, 29
testing statements, 31
tracing messages, 24
tracing symbols, 120
messages, 23, 74
built-in (listed), 75
defining, 76
Director response, 74, 77, 79
for factory objects, 343-44

messages (continued)
object search order, 74, 77, 79-81
illustrated, 74, 79, 80
to objects, 79-81
passing, 79
preventing from passing, 77, 78, 152
to primary event handlers, 77-78
putting users’ names in, 158-60
sending, 71-73
system (listed), 75
tracing, 24
See also handlers
methods
of factory objects, 103, 234, 343-44, 346
predefined, 349-50
Fil el Q 320-24
monitoring, 307
in object-oriented programming, Lingo
equivalent, 234
OrthoPlay, 325-39
result codes, 315, 320, 325
segment, 309
Seri al Port, 290-91, 315-20
of XObjects, 290
listing, 290
See also OrthoPlay XObjects; and individual
methods by name
nEval Expr callback, 280
nExpl ai N method, 329
nfast For war d method, 331
nti | eNane method, 324
net method
alternatives to, 206
retrieving values from arrays, 349
nGet Devi ce method, 327
nmGet Devi ceTi t| € method, 326
nGet Fi r st Fr ane method, 302, 333
nGet Fi r st Tr ack method, 332
nGet Fr aneResol ut i on method, 334

363

et | ni t | nf 0 method, 326
nGet Last Fr ane method, 333
nGet Last Tr ack method, 332
nCGet Lengt h method, 324
nmCGet MaxDevi ces method, 326
nGet M nDur at i on method, 336
mGet Por t Nummethod, 316
verifying serial ports, 292
nGet Posi ti on method, 324
et Post rol | method, 336
nGet Prerol | method, 336
nGet Tr ack method, 333
nGet Val ue method, 311, 329
nGot ol NPoi Nt segment method, 338
nGot oQut Poi nt segment method, 338
nGot oPost r ol | Poi nt segment method, 339
nCot oPr er ol | Poi nt segment method, 338
nmHasDr opFr anes method, 334
nHShakeChan method, configuring serial
ports, 319
“MIAW?” (tutorial movie), 11, 215-22
MIDI files, playing, 274
m dl € method, 330
m n function, 212
minus sign (-)
negation operator, 108
subtraction operator, 108
mM\ew method
defining a callback factory, 276-79
Fi l el Q 320-22
OrthoPlay, 325
Serial Port, 315
versus the bi rt h function, 246
nod operator, 108
monitoring
devices, 303-7
methods, 307
monospaced font, as used in this manual, 6

mouse
checking/responding to time of use, 165-69
enabling interactivity, 162-69
mouse clicks, 78, 80
clicked buttons, 202
determining whether on sprites, 91
rmouseDown events, 78, 80
nmouseDown message, 75, 79-80
See also t he nmouseDown function
mouseWw events, 80
nmouseW message, 75, 79-80
noveToBack command, 224
moveToFr ont command, 224
movie in a window. See movies in windows
movie locations
branching to, 22, 44, 50-56, 61-65
identifying, 47-50
movie script windows, illustrated, 217
movie scripts, 33, 70, 81
calling handlers in, 70, 82
converting to score scripts, 68
converting score scripts to, 68
defining t he timeQut Scri pt in, 169
opening, 33, 34
placing handlers in, 82, 84-85, 92, 157
understanding, 261
movie segments, moving between, 47-56
movie sequences, looping, 18-22, 43-46, 47, 53
movie windows
assigning movies to, 219
closing, 220-21, 229
controlling, 215, 223-29
creating, 216-18
displaying titles, 219, 226
forgetting, 229
interaction between, 226-27
listing, 229
making visible, 225

364 Index

movie windows (continued)

moving, 227-28
to the front/back, 224
opening, 219, 224, 225
panning, 227-28
preventing response to events outside, 227
referring to primary movies, 226
referring to, 218
resizing, 227-28
scaling, 227-28
specifying appearance, 215, 224-26
types, 223-24

See also movies in windows

movies

adding navigation, 41-65

addressing users by name, 158-60

assigning to windows, 219

branching to other locations, 22, 44, 50-56,
61-65

continuing, 57-60

copying XCMD resources into, 272

created with earlier versions of Director,
14-15

identifying locations in, 47-50

Lingo features (listed), 2-3

looping, 18-22, 43-46, 47, 53

repeatedly, 94-96

making movies appear to wait, 44-46

moving between segments, 47-56

moving forward or backward, 50-56

naming, 21

opening, old Lingo features updated by, 15

opening XCMD resources stored in, 272

pausing, 57-60

playing separate movies, 61-65

primary, 226

removing source code, 13

returning to the original location, 61-64

returning to the start, 56

movies (continued)
sample, 8-9
saving, 21
sound control, 2, 171-86
sprite operations, 2, 133-45
stopping, 21, 94
text operations, 2, 156-61
tutorial, 10-11
in windows. See movies in windows
See also movie scripts; movies in windows
movies in windows, 2, 13, 214-29
closing, 221, 229
creating, 216-22
loading, 224
providing a help system for, 227
See also movie windows
moving
forward or backward, 50-56
movie windows, 227-28
to the front/back, 224
to other locations, 22, 44, 50-56, 61-65
the playback head, 22, 44, 51-56
nPl ay method, 311, 330
nPl ayCQue segment method, 309, 336
nPl ayRever se method, 331
nPl aySegnent segment method, 309, 310, 337
nPr epar eMedi ummethod, 332
nPr evi ewRecor d segment method, 338
mPut method
alternatives to, 206
placing values in arrays, 349
nReadChar method
Filel Q322
Serial Port, 316
nmReadCount method, 317
nmReadF| ush method, 317
nmReadLi ne method, 323
nmReadPos method, 311, 330
mReadRaw method, 335

365

mReadSt at us method, 330
nReadSt ri ng method, 316
nReadToken method, 323
mReadWr d method, 323
nmRecor d method, 332
nRecor dAudi oEnabl e segment method, 338
nRecor dQue segment method, 337
nRecor dSegnent segment method, 337
nRecor dVi deoEnabl e segment method, 337
nReset Count er method, 333
nmRewi nd method, 331
nBcanFor war d method, 331
nBScanRever se method, 331
nBear chTo method, 311, 330
nBSear chToFr ane method, 300
nBel ect Devi ce method, 327
nBendRaw method, 335
nSer vi ce method
condition codes (table), 328-29
handler for calling, 303-6
monitoring devices, 303, 328-29
nBet Devi ce method, 326-27
nBet Dur at i on, 335
nBet Fi el dDom nance, 336
nBet Fr anmeResol uti on method, 334
nBet | ni t | nf 0 method, 326
nSet | ni t Vi aD og method, 326
nBet | NPoi nt segment support method,
309, 335
nBet Qut Poi nt segment support method,
309, 335
nBet Posi ti on method, 324
nBet Post rol | method, 336, 364
nBet Prerol | method, 336, 364
nBet Seri al Port method, connecting serial
devices to serial ports, 308, 325
nSet Up method, configuring serial ports, 319-20
nBhowFr ane method, 334
nBhut t | € method, 332

nst epFor war d method, 331
nst epRever se method, 332
nBtill method, 331
NSt op method, 331
multiple child objects, 253-55, 256-57
multiple XObjects, 294-96
multiplication operator (*), 108
nVi deoEnabl e method, 334
MV it eChar method
Filel Q322
Serial Port, 316
MViteString method
Filel Q322
Serial Port, 316
“MyMenus” (tutorial movie), 10, 189-95

N

naming
factories, 345
handlers, 26, 83
movies, 21
variables, 98, 100
navigation, 41-42
adding, 41-65
“Navigator” (Lingo Expo movie), 214, 226-27
negation operator (-), 108
nesting level indicator(s) (>, >>, ...) (message
window), 120
Noh Tale to Tell (Lingo Expo movie), 8-9, 42, 61,
87, 165, 179
not equal to operator (<>), 109
not logical operator, 110
not hi ng element, 183
“NTBranch” (tutorial movie), 10, 87-89
number sign (#), symbol operator, 113, 209
numbers, comparing, 108-9

366 Index

)

object-oriented programming terms, Lingo
equivalents, 234
obj ect Pfunction, testing for previous instances,
295, 301, 314
objects
callback, 281
external. See XObjects
in general, 288-89
message interception, 74, 77, 79
messages to, 79-81
search order (for messages), 74, 77, 79-81
illustrated, 74, 79, 80
that can receive messages, 23, 77
See also child objects; factory objects;
XObjects
octal syntax, 15
on ani mat e handler, 261
on appendFi | e handler, 299
on awai t Conpl et i on handler, calling
nSer vi ce, 304-6
on begi nM/Movi e handler, 216-20
on bi rth handlers, 238, 241
creating, 241-43
See also bi rt h statements
on change handler, 72-73
on continueWt hout A i ck handler, 166-67
on createBal | handler, 246-49, 261, 264-65
on det er nm neQurr ent Fr ane handler, 307
on ent er Frame handlers, 15, 57
placing, 84
on exi t Fr ane handlers, 15, 57
placing, 84
on fini shMovi e handler, 221-22
on i dl e handlers, placing, 84
on keyDown handlers
placing, 84
using t he key function in, 155

on keyUWp handlers, placing, 84
on nakeTwoSeri al (bj ect s handler, 295
on nouseDown handlers, placing, 84
on nmouselp handlers, 25
placing, 84
on noveBal | handler, 238, 244-45
calling, 250-52
on pl acePaddl e handler, 261
on pl ayCD handler, 302
on pl ayThunder handler, 183
on pl ayVi deod i p handler, playing a segment
of video, 310
on readFi | e handlers, 298, 299
on recei veAdvanceCommand handler, 296
on sendAdvanceConmand handler, 296
on set upSonylLaser di sc handler, 308
on startMvi e handlers
creating XObject instances, 301
declaring global variables, 101, 261
defining menus, 190
defining timeout actions, 169
initializing devices, 309
placing, 84
placing cursor scripts in, 198-200
turning oft puppet sprites, 261
on start Pl ayback handler, 311
on st epMvi e handlers, 15
on st opCDhandler, 302
on st opMvi e handlers, 221
disposing of XObject instances, 303
placing, 84
on test Handl er handler, 25-27
on t hanksD spl ay handler, 153-55
on ti meQut handlers, placing, 84
on useSeri al Port handler, 293
on whi chBut t on handler, 261
on whi chKey handler, 151-53
on witeFil e handler, 298
online files, learning Lingo with, 8-12

367

online help on Lingo elements, 11-12, 36
open command, 219, 224
opening
movie windows, 219, 224, 225
movies, old Lingo features updated by, 15
resource files, 272
scripts, 33, 34
XCMDs, 272-73, 274
openXl i b command, opening resource files,
272-73
operators, 106, 107-10, 115
precedence order, 107
optimizing
callback factories, 280
scripts, 92
Option key, determining whether pressed along
with the mouse button, 78
or logical operator, 110
Ortho protocol (for device-specific XObjects),
300, 325
OrthoPlay XObjects, 325
destruction methods, 327
device methods, 330-35
initialization and selection methods, 325-27
nBer vi ce method, 303-6
satellite methods, 327-30
segment methods, 309, 336-39
segment support methods, 335-36

P

palette effects, color depth and, 132
palettes
changing, 132
puppet, 126, 132
panning movie windows, 227-28
parameters for arguments, 103
“PareDone” (tutorial movie), 11, 254-57, 264-65
parent script window, illustrated, 242

parent scripts, 3, 13, 237-38, 241
assigning behavior to child objects, 238,
244-45, 257
calling, 250-52
capabilities, 253
characteristics set by, 256
creating child objects from, 235, 237, 238,
246-49, 264-65
creating 0N bi rt h handlers for, 241-43
object-oriented programming equivalent, 234
overriding ancestor scripts, 257, 258
understanding, 258
parentheses (())
arithmetic operator, 108, 117
function parameter delimiters, 102, 117
in logical comparisons, 110
“Parents” (tutorial movie), 11, 258-63, 266
parity values for serial port configuration,
table, pass command, 77, 79
passing
messages, 79, 84
values, 103-4
for property variables, 250
pathname errors, resolving, 299, 314
pause command, 57-60
pausing movies, 57-60
making movies appear to wait, 44-46
Pioneer videodisc XObject, 325
placing
calling statements, 82
factories, 345
handlers, 82, 84-85, 92, 157
pl ay command, 61-65
applications, 65
parameters, 65
pl ay done command, 61-64
opening segments containing, 64
when necessary, 64
playback head, moving, 22, 44, 51-56

368 Index

playing
devices, 302
frames, 65
MIDI files, 274
puppet sounds, 129, 172-73
segments of video or audio, 309-11
separate movies, 61-65
plus sign (+), addition operator, 108
plus (+) button, opening scripts, 34, 72
pointer. See cursors
ports. See serial ports
pound sign (#), symbol operator, 113, 209
precedence order (of operators), 107
primary event handlers, 68
defining, 68-69
messages to, 77-78
preventing execution, 77-78
ti meQut, 165-69
turning oft, 69
primary movies, referring to, 226
programming. See writing scripts
properties, 106, 115
t he actorlLi st, 249, 267
adding to property lists, 212
ancest or, 238
t he checkBoxAccess, 203-4
t he checkBoxType, 204
the float Precision, 112
t he keyDownScri pt, 151
the novi eRate, 178
t he per FrameHook, 267, 347
the soundEnabl ed, 175, 177
the soundLevel , 130, 179-83
specifying, 99
testing and setting, 106
the tineQutLength, 165-66
the tineQut Script, 165-69
values, 106

properties (continued)
t he wi ndowLi st, 229
t he wi ndowType, 223-24
See also cast properties; property lists;
property variables; sprite properties;
window properties
property ancestor statements, 258
property element, declaring property variables,
238, 239-40
property lists, 206
adding properties to, 212
clearing, 210
creating, 208-10
empty, 210
property list delimiter (:), 209
specifying items in, 209-10
See also lists
property values, 106
property variables, 238, 239, 256
accessing, 239
the ancest or property, 238
declaring, 238, 239-40
object-oriented programming equivalent, 234
passing values for, 250
puppet channels, creating, 122, 123-25
puppet palettes, 132
creating, 132
duration, 126
turning oft, 132
puppet sounds, 129
creating, 172
duration, 126
playing, 129, 172-73
and the sound channel, 173
as transitions, 172
turning oft, 130, 173

369

puppet sprites, 126
creating, 73, 96, 122, 123-25, 127, 128
duration, 126
properties under Lingo control, 126-28
turning oft, 128, 261
puppet tempos, 130
duration, 126
setting, 130
puppet transitions, 130
creating, 131
duration, 126
puppet Pal et t € command
changing palettes, 132
turning oft palettes, 132
puppets, 121-32
making channels puppets, 122, 123-25
See also individual puppets by name
puppet Sound command
creating puppet sounds, 172
playing puppet sounds, 129
turning oft puppet sounds, 130, 173
puppet Spri t € command
making sprites puppets, 73, 127
undoing sprite puppets, 127
puppet Tenpo command, setting the
tempo, 130
puppet Tr ansi ti on command, creating
puppet transitions, 131
put command, 30, 106
assigning values to variables, 97-99
checking values with, 29
creating factory objects, 281, 343, 348
displaying statement results, 30, 31
displaying XCMD messages, 279-80
put...after, 160-61
put. .. before, 160-61
put...into, 97-99
specifying text in text fields, 158-61

put statements and XCMD performance, 280

Q

question mark (?), file select symbol

(Filel 0,297

QuickDraw shapes, testing for rollovers with, 164

quotation marks (" ", “”)

in strings, 111
as used in this manual, 7

R

radio buttons, 201
determining/setting the state, 202-3
setting access, 203-4

RAM, playing puppet sounds from, 129, 172-73

r andomfunction, 89
r ead option (Fi | el OnNewmethod), 320
rect function, 218, 227
rectangles

bounding, 138-40

for movie windows, 216-18
redrawing the stage, 73
registration points, 143

determining, 135-38
removing

child objects, 249

menus, 194-95

See also clearing; deleting
repeat loops, 94-96

as delays, 183
repeat while... statements, 94-95
repeat with... statements, 95-96
resizing movie windows, 227-28
resource files, 2

closing, 273

listing open, 273

opening, 272

storing, 314
result codes from methods, 315, 320, 325

370 Index

Return key
starting new lines, 20
versus the Enter key, 20
r et ur n keyword, returning values, 280
returned value indicator (>), 290
returning to frames, 61-64
returning values from methods, 280
Returns, in i f. .. t hen structures, 92-93
right angle bracket (>)
greater than operator, 109
returned value indicator, 290
right angle bracket equal sign (>=), greater than
or equal to operator, 109
right angle bracket(s) (>, >>, ...), nesting level
indicator(s), 120
“Rollover” (tutorial movie), 10, 162-64
rol | OQver function, 94, 162-64
rollovers, detecting/responding to, 162-64

S

sample movies, 8-9

satellite methods, 327-30

saving movies, 21

scaling movie windows, 227-28

score
controlling, from Lingo, 122
ignoring score settings, 122
illustrated, 19
making text sprites editable, 148
returning control to, 126, 128
See also score scripts

score channels. See channels

score script numbers, 37, 39

score script windows, 19, 33
illustrated, 19

score scripts, 33
calling handlers in, 82
converting to movie scripts, 68
converting movie scripts to, 68
numbers, 37, 39
opening, 33, 34
relocating, 37
removing, 39
See also frame scripts; sprite scripts
screen, testing for rollOvers, 162-64
script button (cast window), 33
script channel
commands in, 60
scripts in, 22, 33
script of cast member windows, 33, 52
illustrated, 52
Script option (Cast Member Info dialog box), 33
script pop-up menu, 33
illustrated, 19
script text
entering and editing, 36-37
finding and changing, 37-39
selecting, 36
script windows, 19, 33
creating, 22
error messages from, 29
scripting process, 32
See also writing scripts
scripts, 18, 115
adding comments to, 32
assigning, 50
attaching to frames, 45-46
basics, 17-39
branching in, 87-93
illustrated, 92
breaking up long lines, 36
bugs, 28-29
for buttons, 56, 202

371

scripts (continued)
calling, 250-52
in every frame, 347
copying, 33, 39
creating simple, 18-22
debugging, 28-30, 105, 118
displaying, as executed, 24, 29-30
displaying results, 30
editing, 13, 36-37
entering, 20, 36, 72
entering text for, 20, 36-37
indentation, 36
and messages, 23
opening, 33, 34
optimizing, 92
parent, 3, 13
removing source code, 13
in the script channel, 22, 33
the scripting process, 32
selecting, 36
syntax checking, 13, 29, 36
testing, 20, 266
tracing, 24, 29-30
types, 68-70
writing. See writing scripts
See also ancestor scripts; frame scripts; handlers;
movie scripts; parent scripts; score
scripts; scripts of cast members; sprite
scripts; text window scripts; writing
scripts
scripts of cast members, 33, 69
calling handlers in, 82
opening, 33, 34, 69
placing handlers in, 84-85
versus sprite scripts, 59, 60
Search All Cast Members checkbox
(Find/Change dialog box), 38
segment methods, 309, 336-39
segment support methods, 335-36

segments
maintaining interactivity in segment playback,
310-11
of movies, moving between, 47-56
of video or audio, playing, 309-11
selecting script text, 36
selection methods, 325-27
serial devices
connecting to serial ports, 308
maintaining interactivity in segment playback,
310-11
playing segments of video or audio, 309-11
testing the position of a device, 312
serial ports
configuring, 317-20
connecting serial devices to, 308
sending and receiving data over, 315
verifying, 292
Serial Port (XObject), 290, 315
methods, 290-91, 315-20
set command, 106
assigning values to variables, 99
specifying properties, 99
specifying text in text fields, 160
set Cal | Back command, 276, 281
setting
conditions, 86, 106
properties, 106
“Shared.dir” (tutorial movie), 10
showd obal s command, displaying global
variables, 101
showLocal S command, displaying local
variables, 99
showX i b command, listing open resource files,
273, 289, 313
“SimpDone” (tutorial movie), 11, 235-36, 238,
244, 250
“Simple” (tutorial movie), 11, 239, 241-49
Simulation (Learning Lingo folder), 11

372 Index

slash (/)
Command key equivalent delimiter, 193
division operator, 108
Sony videodisc XObject, 325
sort command, 211
sorting lists, 211
“Sound” (tutorial movie), 10, 179-86
sound channel, puppet sounds and, 173
sound f adel n command, 130, 184-86
sound fadeQut command, 130, 184-86
sound pl ayFi | € command, 130
playing sounds in specific channels, 174
sound st op command, 176-77
soundBusy function, 175-76
sounds, 2, 171-86
AIFF, 174, 178
as audio-only digital video, 178
checking for, 175-76
on disk, 174
fading in/out, 184-86
playing in response to events or conditions,
172-73
specifying transition times, 184
synchronizing movie events with, 178
testing/setting/resetting the sound level,
179-83
timing, 178
turning oft, 175, 176-77
volume menus, 179-80, 188-93
See also puppet sounds
source code, removing, 13
spaces (in strings), 111, 117
sprite channels, assigning child objects to, 243

sprite...intersects comparison operator,

109, 138-39
sprite locations
comparing, 138-40
constraining moveable sprites, 142-43
determining, 135-38
specifying, 141-42

sprite numbers, assigning to child objects, 256
sprite properties

the bottomof sprite, 138
the cast Num of sprite, 144-45
the constraint of sprite, 142-43
controlling, from Lingo, 126-28
the cursor of sprite, 196-98
the editable text of sprite, 148
the left of sprite, 138
the locH of sprite, 135-38, 141-42
the locV of sprite, 135-38, 141-42
the noveabl e of sprite, 134
the novi eTime of sprite, 178
properties requiring Lingo control

(listed), 129
the puppet of sprite, 127
the right of sprite, 138
the top of sprite, 138

sprite scripts, 15, 33, 69

placing handlers in, 84-85
versus scripts of cast members, 59, 60, 69
See also score scripts

sprite...w thin comparison operator, 109
sprites

animating, 43, 122, 144-45

assigning scripts to, 50

changing colors, 72-73, 95-96

constraining moveable sprites, 142-43

determining whether a click is on a sprite, 91

determining whether the pointer is over a
sprite, 94

making sprites moveable/unmoveable,
134, 143

making sprites puppets, 73, 96, 122, 123-25,
127, 128

manipulating, 133-45

relocating, 141-42

switching cast members assigned to, 122, 125,
144-45

See also puppet sprites; sprite locations; sprite
properties; sprite scripts

373

square brackets ([|)
empty linear list, 210
list delimiters, 209
optional element delimiters, 345
square brackets enclosing a colon ([:]), empty
property list, 210
stage
displaying transitions on, 131
redrawing, 73
updating, 105
See also t he st age element
st art Movi e message, 75, 81
starts comparison operator, 109
start Ti mer command, 178
statements, 115
bi rt h, 237, 246
calling statements, 26, 76
commenting/uncommenting, 32
decision-making, 87-96
displaying statement results, 30, 31
end if,93
exit repeat, 94
flow, 105
go | oop, 47,53
go to frame 1,22, 44, 47
go to next, 52-53, 55
go to previous, 53-55
go to "Start", 56
go to the franme, 45, 47
if...then, 87-93
ordering, 105
property ancestor, 258
put , 280
repeat whil e, 94-95
repeat with, 95-96
testing, 31
st epFr ame message, 267

stop bits (for serial port configuration), table, 318

st opMovi e message, 75, 81

stopping

devices, 302

messages, 77, 78

movies, 21, 94
Storybook (Learning Lingo folder), 10
straight quotation marks (" ")

in strings, 111

as used in this manual, 7
string concatenators. See string operators
string operators, 107, 110, 158-60
strings, 111

comparing, 108-9, 156-57

concatenating, 110

in lists, 209

searching for, 157

using symbols instead of, 113-14
subtraction operator (-), 108
super classes (in object-oriented programming),

Lingo equivalent, 234

symbol operator (#), 113, 209
symbols, 113-14
syntax, 117-19

getting help on, 11-12, 36

loose, 15

Macro, 15

octal, 15

syntax checking, 13, 29, 36
system messages

listed, 75

object search order, 79-81

illustrated, 79, 80

374 Index

T

tell command, 226
tempo
puppet tempos, 126, 130
setting, 130
tempo channel, making the tempo channel a
puppet, 130
testing
conditions, 86, 92, 106
handlers, 26-27, 31
properties, 106
scripts, 20, 266
statements, 31
See also checking
text
in scripts
entering and editing, 36-37
finding and changing, 37-39
in text fields
editing and specifying, 158-61
searching for, 156-57
text file 170, 297-99
See also strings
Text Cast Member Info dialog box, making text
cast members editable, 148
text cast members
making editable, 148
See also text fields
text fields
editing and specifying text in, 158-61
searching for strings in, 156-57
text files, input/output with Fi | el Q 297-99
text operators, 107, 110
text sprites
making editable, 148
See also text fields
text strings. See strings
text window scripts, 15

the act or Li st property, 249, 267

the bottom of sprite property, 138

the cast Num of sprite property, 144-45

t he checkBoxAccess property, 203-4

t he checkBoxType property, 204

t he cl i ckOn function, 91

the constraint of sprite property,
142-43

the cursor of sprite property, 196-98

the drawRect of w ndowproperty, 228

the editable text of sprite
property, 148

t he element, accessing Pr oper t y variables, 239

the fl oat Preci si on property, 112

the frane expression, 45

t he frane function, 47, 48

the hilite of cast property, 202-3

t he key function, 149-55

t he keyCode function, 153

t he keyDownScri pt property, 151

the left of sprite property, 138

the |1 ocH of sprite property, 135-38,
141-42

the locV of sprite property, 135-38,
141-42

the nmodal of wi ndowproperty, 227

t he nmouseDown function, 94

t he nouseH function, 135, 136

t he nouseV function, 135, 136

the noveabl e of sprite property, 134

t he rovi eRat e property, 178

the rovi eTi me of sprite property, 178

t he pti onDown function, 78, 153

t he pat hNane function, 274, 299, 314

t he per FrameHook property, 347

alternative to, 267

the puppet of sprite property, 127

the rect of w ndowproperty, 228

the right of sprite property, 138

375

t he soundEnabl ed property, 175, 177 transitions

the soundLevel property, 130, 179-83 applying, 130-31
t he stage element, 226-27 calculating transition time, 184
the ti meQut Lengt h property, 165-66 displaying, on the stage, 131
the tinmeQutScript property, 165-69 puppet, 126, 130, 131
the title of w ndowproperty, 226 sound, 172, 184-86
the titleVisible of w ndow TRUE element, 86
property, 226 tutorial movies, 10-11
the top of sprite property, 138 typewriter type, as used in this manual, 6, 345
the visible of w ndowproperty, 225
the w ndowLi st property, 229 U
t he wi ndowType property, 223-24
ticks (of time), defined, 184 updat eSt age command, 105
“Timeout” (tutorial movie), 10, 165-69 displaying transitions on the stage, 131
ti meQut message, 75, 81 and the soundBusy function, 176
updating

ti meQut primary event handlers, specifying,
165-69 the stage, 105

text fields, 158-61
values, 97, 101
defining and resetting t he “UserKeys” (tutorial movie), 10, 150-55, 158-60
timeQut Script, 165-69 Using Lingo, 4-7
setting t he ti meQut Lengt h, 165-66 conventions, 6-7
timing sounds, 178 what to read, 6

Tip> notes, as used in this manual, 7

timeouts
assigning actions to, 165-66, 169

titles of windows VvV
assigning, 226 values, 97, 106
displaying, 219, 226

in arrays, 349

tools . . assigning to variables, 97-99

new in Director 4.0, 13 checking, 29

for writing scripts, 33-34 for child objects, 238, 241-42, 246
tools window, opening, 19 literal. 111-14

trace arrow (- - >) (message window), 30, 120
Trace checkbox, illustrated, 24 property, 106
Trace feature, 24 .

)) returning, 280
tracing messages and scripts, 24, 29-30 updating, 97-101

passing, 103-4

tracing symbols (message window), 120 variables. 97

tracking child objects, 256, 262-63 assigning lists to, 213

assigning values to, 97-99
in child objects, 239-40
creating, 99-101

376 Index

variables (continued)
global, 100-101, 313, 346
inserting in text fields, 161
instance, 234, 346
local, 99, 346
naming, 98
as represented in Lingo, 7
using undefined, 15
See also pr oper ty variables; values
videodisc. See XObjects.
VISCA XObject, 325
volume menus, 179-80, 188-93

W

“Wallcovering movie” (tutorial movie), 11
Whole Words Only checkbox (Find/Change
dialog box), 38
W ndowelement, 218
window properties
the drawRect of wi ndow, 228
the nodal of w ndow, 227
the rect of w ndow, 228
the title of w ndow, 226
the titleVisible of w ndow, 226
the visible of w ndow 225
window types
listed, 223
setting, 223-24
windows
help, 12
movie script, 217
for movies. See movie windows
movies in. See movies in windows
score script, 19, 33
script, 19, 22, 29, 33
script of cast member, 33, 52
tools, 15
types, 223-24
See also message window; movie windows;
window properties

wor d element, inserting words in text fields, 161
words

inserting, in text fields, 161

selecting, 36
Wrap-Around Search checkbox (Find/Change

dialog box), 38

wrapping character (=) (continuation symbol), 7
Wit e option (Fi | el OmNewmethod), 321
writing scripts, 29, 32, 53, 118

basic XObject scripting, 293-94

goals and planning, 32

tools, 33-34

X

XCMD resource files, 273
closing, 273
listing open, 273
opening, 272-73
XOVDd ue (XObject), 271, 290
accessing XCMDs with, 270, 274, 275
error messages from, 270, 275, 276
XCMDs, 3, 274, 276
accessing, with XGMDgl ue, 270, 274, 275
copying XCMD resources into movies, 272
displaying XCMD messages, 279-80
error messages from XOMDA ue, 270,
275, 276
and external code modules, 270
HyperCard callbacks from, 275, 280, 281, 285
table, 282-85
opening, 272-73, 274
put statements and, 280
returning values to HyperCard, 280
specifying for callback objects, 276, 281
storing, 272
versus XObjects, 271
See also XCMD resource files
XFCNs. See XCMDs

377

XObjects, 3, 290, 293

AppleCD, 300-303, 325

applications, 288, 294

basic scripting, 293-94

copying XObject resources into movies, 290

creating XObject instances, 292

defined, 289

device control, 300-307

disposing of XObject instances, 292, 294,
303, 314

listing, 289, 313

multiple, 294-96

names and filenames, 313

Pioneer videodisc, 325

Sony videodisc, 325

storing instances in global variables, 313

testing for previous instances, 295, 301, 314

verifying serial ports, 292

versus XCMDs, 271

VISCA, 325

See also Fi | el O(XObject); OrthoPlay
XObjects; resource files; Ser i al Por t
(XObject); XOMDA ue (XObject)

378 Index

Acknowledgements

Woritten by Joe Schmitz.
Appendixes A and B by Jeft Essex.
Edited by Toni Haskell.
Production by Lee Allis.

Special thanks to Mark Castle, John Dowdell, Bill
Edwards, David Shields, Dan Sadowski, John Thompson,
and John Ware.

	Contents
	Introduction
	Using Lingo
	Using this guide
	Learning Lingo with online files
	New Lingo features in Director 4.0

	Chapter 1
	Script Basics
	Introduction to scripting
	Debugging
	The scripting process
	Writing scripts

	Chapter 2
	Working with Navigation
	Adding navigation
	Creating loops
	Moving between sequences
	Pausing and continuing a movie
	Returning to the same location

	Chapter 3
	Concepts
	Types of scripts
	Introducing events, messages, and handlers
	Describing events
	How Director responds to messages
	Strategies for placing handlers
	Describing conditions
	Scripts that make choices
	Updating values
	Handlers that return results
	Using arguments to pass values
	How Lingo flows
	Working with values
	Expressing literal values
	The elements of Lingo
	Using Lingo’s syntax

	Chapter 4
	Working with Puppets
	What puppets offer
	Creating a sample puppet
	Using puppets

	Chapter 5
	Manipulating Sprites
	Making sprites draggable
	Checking a sprite’s location
	Controlling sprite locations
	Switching a cast member assigned to a sprite

	Chapter 6
	Using the Keyboard & Mouse
	Editing text
	Checking keys
	Checking text
	Modifying text fields
	Detecting a rollover
	Checking for timeouts

	Chapter 7
	Controlling Sound
	Playing puppet sounds
	Playing sound in a specific channel
	Checking for sound conditions
	Turning sound off
	Measuring a sound’s time
	Controlling sound volume

	Chapter 8
	Creating Interfaces
	Creating menus
	Creating cursors
	Creating buttons

	Chapter 9
	Movies in a Window
	Using lists
	What a movie in a window is
	Creating a sample movie in a window
	Controlling windows

	Chapter 10
	Parent Scripts & Child Objects
	Why use child objects
	Looking at a simple child object
	Writing a parent script
	Creating child objects
	Controlling a child object
	Looking at multiple objects
	Creating multiple child objects
	Studying MECH

	Appendix A
	Using XCMDs and XFCNs
	Using XCMDs and XFCNs in Director
	Learning to use XCMDs
	Using an XCMD or XFCN
	XCMDs and callbacks
	XCMD and XFCN callback requests

	Appendix B
	Using XObjects
	Why use XObjects
	Learning how to use XObjects
	Basic XObject scripting
	Using basic FileIO
	Basic device control
	Using serial devices
	General tips on XObject usage
	XObject reference

	Appendix C
	Factories
	Introduction to factories
	How factories are defined
	Creating objects from factories
	Special methods in factories

	Index
	Acknowledgements

