

ð

ð

Apple Dylan Quickstart

This document was created with FrameMaker 4.0.4

ð

Apple Computer, Inc.



 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating
into another language or format.
You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this

manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
LaserWriter, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe Illustrator, Adobe
Photoshop, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered
service mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Docutek is a trademark of Xerox
Corporation.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
Internet is a registered trademark of
Digital Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Mercutio MDEF from Digital
Alchemy. Copyright



Ramon M.
Felciano 1992-1995, All Rights
Reserved

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

This document was created with FrameMaker 4.0.4

iii

Contents

Chapter 1

Introduction

1

About Apple Dylan 3
About the Technology Release 4
Reporting Bugs 4
Additional Dylan Information 5

Chapter 2

Installation

7

Configuration Requirements 9
About Apple Dylan SI 10
Contents of the Seed Release 11
Installation Instructions 12
Known Incompatibilities 13

Chapter 3

Tutorial

15

Development Architecture Overview 17
Project Structure 18
Using a Project 19

Chapter 4

Libraries

33

Overview 35
Libraries, Projects, & Subprojects 35
Library Files and Applications 36
Library Names & Versions 38
Pre-linking Libraries to Speed Development 38
Creating Pre-linked Libraries 39
Creating Your Own Projects 40

This document was created with FrameMaker 4.0.4

iv

Chapter 5

The Application Nub

47

Running a Program 49
Selecting Launch Preferences 49
One Machine Development 50
Two Machine Development 51
Disconnecting from the Application Nub 52
Connecting to Running Applications 52

C H A P T E R 1

Contents

1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction

About Apple Dylan 3
About the Technology Release 4
Reporting Bugs 4
Additional Dylan Information 5

This document was created with FrameMaker 4.0.4

C H A P T E R 1

2

Contents

C H A P T E R 1

About Apple Dylan

3

Introduction 1

About Apple Dylan 1

Apple Dylan is a development environment for building software for
Macintosh computers. It combines an implementation of the Dylan
programming language with a powerful browser-based development
environment, and extensions for linking to the Macintosh toolbox and C object
code. Apple Dylan also includes an application framework and user-interface
builder designed to take advantage of the Dylan language and the Macintosh.

Dylan is an object-oriented dynamic language. A high-level programming
model, thorough object orientation, and garbage collection work together to
simplify program structure. In Dylan, you can think about your programs more
clearly and write them more quickly. You can produce greater functionality
with fewer lines of code. This adds up to fewer bugs, faster delivery, and lower
maintenance costs.

The Apple Dylan development environment extends the power of Dylan with a
flexible project model and browsing system. It provides a Finder-like user
interface that allows you to use direct manipulation techniques to explore your
program. The browsers let you view your code from a number of perspectives.
For example, a project can be viewed as source code, as a network of classes, as
a network of calling relationships. The browsers in Apple Dylan are
customizable, so you can tailor your environment to your preferences. All
development in Apple Dylan is incremental and interactive.

The Apple Dylan application framework builds on previous application
framework designs, but leverages the unique capabilities of Dylan, yielding a
framework that is easy to understand, use, and extend.

Apple Dylan’s cross-language linking and calling facilities support automatic
inclusion of C header files in Dylan programs. This lets programmers take
advantage of the Macintosh toolbox as well as the great store of static language
libraries that currently exist, all from the comfort of their Dylan programming
environment.

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Introduction

4

About the Technology Release

About the Technology Release 1

This release allows programmers to start developing Apple Dylan applications
while evaluating Apple Dylan technology.

The release does have a number of limitations:

■

While applications and libraries written in Dylan will run native on the
PowerPC (as well as on the 68K), the development environment itself is not
PowerPC native.

■

The software has not been fully debugged.

■

There are many missing features in the development environment,
framework, and user interface builder.

■

The documentation is preliminary.

Even with these limitations we feel that Apple Dylan is an exciting tool for
exploring new approaches to programming.

Reporting Bugs 1

When reporting bugs, it is helpful to include information about your Apple
Dylan and Macintosh configuration. The easiest way to do this to select the
“About Apple Dylan…” command from the Apple menu, and then click on the
“Report Bug…” button in the dialog box which is shown. Clicking on this
button will copy some text to the clipboard. You can then paste this text into an
e-mail message as part of your bug report.

The e-mail address for bug reports is given in the “About Apple Dylan…”
dialog box.

Please try to send bug reports with a meaningful subject field, to help us track
your report better. For example, “type error while browsing” is more useful
than “A Dylan bug”.

C H A P T E R 1

Introduction

Additional Dylan Information

5

Additional Dylan Information 1

There are a variety of sources of information about Dylan on the Internet and
other information services.

■

On the Internet, the Apple Dylan World-Wide Web site is http://
www.cambridge.apple.com

■

The Apple Dylan ftp site is cambridge.apple.com:/pub/dylan/

■

The Dylan WWW page at Carnegie Mellon University is http://
legend.gwydion.cs.cmu.edu:8001/dylan/

■

The Dylan newsgroup is comp.lang.dylan

■

The info-dylan and info-dylan-digest mailing lists contains the same
messages as the comp.lang.dylan newsgroup. To subscribe to info-dylan or
info-dylan-digest send mail to majordomo@cambridge.apple.com. The body
of the message should be “subscribe <list-name>”, where <list-name> is the
name of the mailing list you want to subscribe to. To unsubscribe to one of
the mailing lists, send majordomo a message with the body “unsubscribe
<list-name>.” If you would like to subscribe or unsubscribe an address
which is different from the return address of the message, include the
address after the <list-name>. For complete majordomo instructions, send a
message with the body “help”. Please do not send administrative requests to
the mailing lists! If you have trouble with info-dylan, send mail to
sysadmin@cambridge.apple.com.

C H A P T E R 1

Introduction

6

Additional Dylan Information

C H A P T E R 2

Contents

7

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Installation

Configuration Requirements 9
About Apple Dylan SI 10
Contents of the Seed Release 11
Installation Instructions 12
Known Incompatibilities 13

This document was created with FrameMaker 4.0.4

C H A P T E R 2

8

Contents

C H A P T E R 2

Configuration Requirements

9

Installation 2

This chapter includes information about configuration requirements,
compatibility, and instructions for installing the Apple Dylan software.

Configuration Requirements 2

Apple Dylan can be used in either a one-machine configuration, or a
two-machine configuration. In the one-machine configuration, the Apple Dylan
development environment and the program you are developing both run on
the same machine. In the two-machine configuration, they run on different
machines which are connected by an AppleTalk network.

We recommend running Apple Dylan on a 68040 Macintosh with at least 20
megabytes of

physical

 memory. You can use virtual memory, but if you have
less than 20 megabytes of physical memory, performance may be poor.

The Apple Dylan development environment requires a memory partition of at
least 14.5 MB, with 18 MB suggested. A low memory version of Apple Dylan,
“Apple Dylan SI” requires a memory partition of at least 10 MB, with 14 MB
suggested. This decrease in memory requirements comes at some cost in
performance. See “About Apple Dylan SI” below.

The actual amount of memory used by Apple Dylan varies with the operations
being performed. For example, it takes significantly more memory to compile a
project or create a library than to use a library of the same size.

The amount of memory required for the application you are developing
depends on the characteristics of the application. It’s probably a good idea to
start with around 2 MB, and work down or up from there. If you are using the
interface builder, you should start at about 4 MB and work up or down from
there.

The user interface for the development environment is optimized for a 16-inch
or larger 8-bit color monitor. However, the system is usable on any type of
monitor including smaller monochrome monitors.

The Apple Dylan development environment runs best on a 68030 or 68040
based Macintosh. To run the development environment on a Power Macintosh,
you should turn off the modern memory manager.

Applications under development can be run on any Macintosh, and will run
native on the PowerPC.

This document was created with FrameMaker 4.0.4

C H A P T E R 2

Installation

10

About Apple Dylan SI

Apple Dylan has been tested on versions 7.1 and 7.5 of the Mac OS.

■

Note:

The Macintosh operating system does not always deal gracefully with
situations where the system heap needs to expand, but cannot expand
because all available memory has already been allocated to applications. For
this reason, if your Macintosh has limited memory you should use the “Get
Info” command on the Finder’s “File” menu to set the preferred size of the
application nub and of the Apple Dylan development environment. Set
them so that when both applications are running there is still at least 50K
unused, to leave room for system heap expansion. Use the Finder's “About
This Macintosh” command to verify that enough unused memory has been
left.

About Apple Dylan SI 2

Apple Dylan SI (Swapping Image) is a version of Apple Dylan that requires
substantially less memory to run than Apple Dylan. It does this by keeping the
code of the development environment on disk until it is called. This means that
the first time you do anything in the swapping Apple Dylan it is substantially
slower than the non-swapping version of Apple Dylan. The second time you
do something, it is just as fast.

Swapped-in code stays in memory until the free space within Apple Dylan
drops below 500K. When this happens, all code gets purged from memory, so
subsequent operations will be slow again. If your free space remains
consistently below 500K, the system stays very sluggish since code is
constantly being purged and swapped in.

Apple Dylan SI supports browsing and editing in a partition as small as 10 MB.
Simple projects that don't use the framework can be compiled in 12MB or less.
If you're compiling projects that use the framework, you should allocate at least
14MB. Remember that Apple Dylan can always make good use of any
additional memory you can afford to give it.

C H A P T E R 2

Installation

Contents of the Seed Release

11

Contents of the Seed Release 2

The Apple Dylan technology release consists of several printed documents and
a CD. The contents of the CD are:

1.

Installation Instructions

The latest and greatest installation instructions.

2.

Apple Dylan Documentation

A variety of documents, including online versions of the printed
documentation in Acrobat and QuickView formats. This folder also includes
the Acrobat Reader and QuickView application.

3.

Other Goodies

A folder containing several non-Apple Dylan implementations and some
user-contributed Dylan code.

4.

Apple Dylan TR

The Apple Dylan development environment software and related files.

■

READ ME FIRST

A read-me file with late-breaking news and release notes.

■

Apple Dylan

The Apple Dylan development environment.

■

Apple Dylan SI

A version of the Apple Dylan development environment which requires less
memory.

■

Extension for 030’s

A folder containing a system extension that improves the performance of the
Apple Dylan development environment when running on 68030-based
Macintoshes. This extension is not necessary on other Macintoshes, and it is
not needed to run applications produced by Apple Dylan.

■

Browsers

A folder of saved browser configurations used by Apple Dylan.

■

Sample Code

A folder containing a number of sample projects.

Note that there are additional
samples in the framework folder.

C H A P T E R 2

Installation

12

Installation Instructions

■

Apple Dylan Files

A number of libraries, files, and utilities used by Apple Dylan.

n

Application Nub

A folder containing the Apple Dylan application nub, the Dylan library,
and a utility program used to quit the application nub when other
techniques fail.

n

Framework 1.0d57

A folder containing the Apple Dylan application framework project, the
Mac-Toolbox project (which imports some common toolbox definitions),
the Dylan user interface building, and the framework sample applications.

n

Cincludes

A folder containing Universal C Header files for the Macintosh Toolbox.
These are the same header files that were included with ETO 17.

n

Kernel

A folder containing source files and instructions for building your own
custom application nubs. This is useful when you want to link C code to
your Dylan application.

n

Symbols

 and

symbols.db

Files that contain the names of the symbols used internally by Apple
Dylan. These files make bug reports more readable.

Installation Instructions 2

To install Apple Dylan, copy the “Apple Dylan TR” folder to your hard disk.

Inside the folder “Apple Dylan Files:Application Nub:” you will find eight files
ending in the extension “.dl”. Make aliases to these eight files and place the
aliases in the Extensions folder of your startup disk.

If you will be running Apple Dylan on a 68030 Macintosh, you should copy the
system extension from the “Extension for ‘030’s” folder into your Extensions
folder.

To enable access to the on-line reference documentation from Apple Dylan,
copy the folder “Apple Dylan Documentation:QuickView:” to your hard disk.

The remainder of the contents of the CD can be accessed as needed.

C H A P T E R 2

Installation

Known Incompatibilities

13

Known Incompatibilities 2

Software written in Apple Dylan requires System 7 or later, but does not have
the other incompatibilities.

The Apple Dylan development environment is not compatible with RAM
Doubler, with the modern memory manager the Power Macintosh, and with
versions of the Mac OS earlier than System 7.

The QuicKeys Special commands “Select rear window” and “Select second
window” don't work in Apple Dylan. They bring the appropriate window to
the front, but don't activate it.

We cannot guarantee compatibility with third-party hardware accelerators.

Apple Dylan has not been tested on A/UX or on Sun and HP workstations
running MAE.

Please send bug reports describing any other problems you have.

C H A P T E R 2

Installation

14

Known Incompatibilities

C H A P T E R 3

Contents

15

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Tutorial

Development Architecture Overview 17
Project Structure 18
Using a Project 19

Opening the project 19
Beginning browsing 20
Running the project 21
Updating the project 22
Using the listener 23
Exploring the program 25
Modifying the program 26
Disconnecting from the nub 27
Creating a stand-alone application 28
Specifying a project type 29
Create an application 31

This document was created with FrameMaker 4.0.4

C H A P T E R 3

16

Contents

C H A P T E R 3

Development Architecture Overview

17

Tutorial 3

This chapter explains the fundamentals of Apple Dylan. It gives an overview of
the system architecture, project structure, browsing tools, libraries, and
debugging tools. It describes how to edit, compile, and debug software with
Apple Dylan, how to create stand-alone applications, and how to use libraries.

Development Architecture Overview 3

Apple Dylan uses a cross-development architecture:

The development tools are all part of the

Apple Dylan

 application. Software
under development runs inside an

application nub

. The application nub is
essentially an empty Dylan application. During the course of development,
code is loaded into the application nub and executed. Apple Dylan
communicates with the application nub via Apple Events. Apple Dylan and the
application nub can be on the same machine, or on different machines. The
application nub that is currently connected to Apple Dylan is sometimes
referred to as the

runtime

.

Programs written in Apple Dylan are stored in

projects

. A project may be used
to create an

application

 or a

library

. Projects are described in greater detail
below.

Apple Dylan Application Nub

LibraryProject

This document was created with FrameMaker 4.0.4

C H A P T E R 3

Tutorial

18

Project Structure

Project Structure 3

Projects consist of a project file, a source code database, compiler results
databases, library models and files, pointers to subprojects, resources, header
files and other files.

■

The source code database holds the text of the Dylan program in the project.

■

The compiler results databases hold the compiled form of the source code,
and additional debugging information. There will be one compiler results
database for each cpu architecture you target (68K and PPC).

■

Library models and files contain linked object code. They are described in
the next chapter.

■

Subprojects are other Dylan projects which are used by the project.
Subprojects may export modules which are imported by the project, or they
may simply add behavior to generic functions and classes.

■

Resources are Macintosh resources which are used by the program under
development. These resources are loaded automatically by the application
framework.

■

Header files are C headers that you plan to import into your project using
Creole. Note that all the Macintosh header files are included with Apple
Dylan in the CIncludes folder. You only have to add header files to your
project if they are not part of the Macintosh Toolbox.

■

Other files may be added to a project for the convenience of the
programmer, but are not treated specially by Apple Dylan.

The project file, source code database, compiler results databases and library
models are all stored in a single project folder, and should not be modified by
the programmer. The other project contents may also be stored in this folder, or
they may be stored elsewhere. The project file records the locations. If the items
are moved, Apple Dylan will prompt you to locate them when they need to be
accessed.

C H A P T E R 3

Tutorial

Using a Project

19

Using a Project 3

The remainder of this chapter walks you through opening and browsing a
project, running and modifying it, and creating an application from it.

This tutorial uses one machine development.

Opening the project 3

Launch the Apple Dylan application. When Apple Dylan is done starting up, a
window titled “Apple Dylan Listener: 68K (Unconnected)” will appear.

If you are developing on a PowerPC machine, choose “PPC” from the “Target
Architecture” command on the “Project” menu. The title of the listener window
will change to “Apple Dylan Listener: PPC (Unconnected)”

Open a project by selecting the “Open…” command from the “File” menu.

Open the “Puzzle” project. The path to this project is “Apple Dylan
Files:Framework 1.0d57:samples:puzzle:puzzle.

π

”.

As the project is opened, a progress indicator is displayed. Opening the project
locates and opens the project source database and loads information to allow
the project to be browsed.

C H A P T E R 3

Tutorial

20

Using a Project

Beginning browsing 3

When the project is opened, it is displayed in a three-paned project browser.
The top left pane shows the top level contents of the project, in this case three
subprojects (“Dylan”, “mac-toolbox”, and “dylan-framework”), two modules
(“Dylan-user” and “puzzle”), and a resource file (“puzzle.rsrc”). The top left
pane is

linked

 to the bottom left pane. This means that when an object is
selected in the top left pane, its contents are displayed in the bottom left pane.
Similarly, the bottom left pane is linked to the right pane.

■

Note:

 You can modify or create your own browser configurations and save
them. You can do this to create new browsers or to replace existing browsers.
Creating browsers is described in “Using the Apple Dylan Development
Environment.”

Once the progress indicator is gone, you can begin browsing your project.

Select the “puzzle” module in the top left pane.

You do this by clicking once on the name of the module or on the icon to the
left of the name. You will see the contents of the puzzle module displayed in
the bottom left pane. In this case, the contents consists of a single source folder,

C H A P T E R 3

Tutorial

Using a Project

21

called “puzzle”. This folder is automatically selected, displaying its contents, a
series of source records, in the right hand pane. Each source record corresponds
to one piece of source code or comment. To view the contents of one of the
source records, click on the triangle to its left. The triangle will animate,
revealing the contents of the source record (in this case, source code). Clicking
on the triangle again will hide the contents. You can also double-click on a
source record (or any other object) to see its contents in a separate window.

You can change the allocation of space among the panes in the window by
using the grow boxes in the lower right corner of each pane. You can adjust the
size of the entire window by using the grow-box of the lower-right pane or by
using the window’s zoom box.

Running the project 3

Next we are going to run the code in the project, to see that the application it
defines works.

Select the “Launch Application Nub” command from the “Project” menu.

This launches the application nub and instructs the nub to load the libraries
included in the project (in this case, the Dylan kernel definitions and the
framework). During this process, a progress indicator is displayed.

C H A P T E R 3

Tutorial

22

Using a Project

You can check to make sure the application nub has been launched correctly by
looking on the application menu (the rightmost menu on the menubar).

In addition to Apple Dylan, Finder, and any other applications you have
running, the application nub should be running. Switching to the application
nub shows an application with no windows and no menus. You can return to
Apple Dylan from the nub by clicking in one of Apple Dylan’s windows.

Updating the project 3

Before working with your program interactively, you will usually want to

update

 it. You do this by choosing the “Update” command from the “Project”
menu. Updating recompiles any source code which has been edited since it
was last compiled, and any dependent source records. If you are connected to
the application nub, updating will also download any changes you’ve made,
thereby synchronizing the application nub and your project sources.

■

Note

: The sample project you’re working with, “Puzzle” was updated and
compiled before it was shipped to you. Choosing update on the Puzzle
project should not cause any recompilation to occur. If doing an update
results in a significant amount of recompilation, you may not have installed
the software correctly, or you may have inadvertently modified a subproject
such as the framework. In this case it is suggested that you recopy the
project from the CD, and double check that your aliases are set correctly in
the extensions folder.

C H A P T E R 3

Tutorial

Using a Project

23

Using the listener 3

After connecting, the name of the listener changes to “Apple Dylan Listener”;
the word “disconnected” is removed. The listener now serves as a way to
interact with the functions, classes, and bindings in the runtime. You can enter
Dylan program fragments in the listener, and they will be compiled,
downloaded to the runtime, and executed on the runtime. Any values returned
by the execution of these program fragments will be printed in the listener.

The listener executes code as if it were a top level source record compiled in the
module that the listener is set to. It does not have access to any local bindings,
only module bindings.

Before typing program fragments into the listener, you need to make sure the
listener is set to the proper module. Otherwise, the bindings you enter will not
be compiled in the right scope. In this case, we will be testing code in the
“puzzle” module which is in the “puzzle” library. To check that this module is
selected, look at the pop-up menu in the lower-left corner of the listener.

Begin by typing some simple program fragments. At the end of each line, type
return or enter.

C H A P T E R 3

Tutorial

24

Using a Project

>

10 + 10 // (spaces around + required)

20

>

random-state()

#[7, 15, 8, 9, 6, 2, 13, 3, 5, 4, 0, 1, 10, 11, 14, 12]

>

random()

16657

>

+

 is a operator built into Dylan.

random-state

 is a function defined by the
puzzle project, and

random

 is a toolbox trap that was imported into Dylan
from a C header file.

You can look at the source code for

random-state

 by selecting the name

random-state

 in the listener and then selecting the “Show Home” command
from the “Browse” menu. You may want to resize the window to see the source
code more easily. Choosing “Show Home” on

random

 will take you to the

define-interface

 statement which imports the C header.

Next we’ll run the application, to see what it does. The startup function for
applications built using the Apple Dylan framework is called

start

. It first
performs initializations as specified by the framework and the application, and
then enters the main event loop. Because all the code for the puzzle application
and the framework have been loaded into the application nub, we can start the
application simply be calling the

start

 function from the listener.

>

start()

After initialization, the puzzle application switches itself to the front. Note that
in the background, Apple Dylan is still showing a progress indicator. That’s
because it’s waiting for the function

start

 to return (which it won’t do until
we cause the puzzle application to return from its main event loop).

■

Note:

 You can connect to the application nub, perform an update, and run
the startup function in a single step by choosing the “Run” command from
the “Project” menu.

■

Note:

 You can partially reset a framework application by calling the

reset

function. This closes windows, deinstalls menus, and calls user defined reset
methods. See the framework documentation for more details.

You can play with the puzzle to make sure it works, create new puzzles, etc.
When you are done playing with the puzzle, choose the “Pause Application”
command from the “Debug” menu of the puzzle application. This will cause

C H A P T E R 3

Tutorial

Using a Project

25

the main event loop of the puzzle application to return, and place the puzzle
application in a state where it can respond to additional commands from Apple
Dylan. The “Debug” menu is a special menu that framework installs when an
application is under development.

Typing command-option-period with the puzzle as the front most application
will also cause the main event loop to return. This is also a feature of the Apple
Dylan framework, and is only available for projects built on the framework.

■

Note:

When a program hits an error or a break, the main event loop is
similarly suspended, allowing the application under development to receive
commands from Apple Dylan.

Exploring the program 3

Apple Dylan lets you execute Dylan one program fragment at a time in the
context of your running program. This lets you explore your data structures,
test out new functionality, and replace existing class and method definitions.
Because you don’t have to quit and restart your program, you can test
corrections without having to go through the process of duplicating an error
condition.

You can type temporary program fragments into the listener. To change a part
of your program permanently, you edit its source code and recompile it from a
browser window. If you are connected to an application nub, the code is
downloaded to the runtime when it is compiled.

There are many ways to explore your program by invoking functions defined
by Dylan, the framework, or your program itself. For example, to look at the
front window, you could use the framework function

front-window

.

>

front-window()

#<<window> id: 1>

To explore further from this window, select the “Inspect Listener Result”
command from the “Debug” menu. This brings up an inspector window
showing the contents of the window object. You can double click on the entries
in the inspector window to explore further, and choose commands from the
inspector pop-up menu for additional information (for example, to see all the
objects which reference a given object). You can select a class or function in an

C H A P T E R 3

Tutorial

26

Using a Project

inspector window and choose the “Show Home” command from the “Browse”
menu to see the source code of the class or function.

Modifying the program 3

Next we’ll make a change to the puzzle application and test the change.

Find the function

make-puzzle-window

 in the right hand pane of the project
window, and open it up to view its source code.

■

Note:

 You can temporarily expand the right hand pane by clicking in the
pane’s zoom box, which is in its upper right hand corner. This expands the
pane to fill the entire window. Clicking the pane zoom box a second time
restores the old pane configuration.

In the second call to

make

, change the keyword argument

title:

 from

"Puzzle"

 to

"Game"

.

Note that a blue box appears to the left of the title of the source record. This is a
status indicator, indicating that the source record has been modified and not
saved. The source folder “puzzle” is also marked as modified and unsaved,
and the module “puzzle” is also so marked. There are other status indicators,
for marking compiler warnings, uncompiled code, etc. Not all indicators are
shown in all panes by default. You can control which status indicators are

C H A P T E R 3

Tutorial

Using a Project

27

shown in which pane. For more details, see the Apple Dylan User Interface
chapter.

To save the source record, choose the “Save” command from the “File” menu.
The status indicator will go away.

To recompile

make-puzzle-window

 select the icon next to its title and type
enter or choose the “Compile and Download Selection” command from the
“Project” menu. When compilation and downloading are complete, Apple
Dylan will print the following message in the listener:

defined make-puzzle-window (pict-handle :: <PicHandle>)

 => window :: <window> ;

The function has been recompiled, and the new version has been stored both
on the runtime and in the compiler results database.

Now re-enter the application’s event loop by typing

start()

 in the listener or
selecting the “Run” command from the “project” menu. New windows that
you create will have the title “Game” rather than “Puzzle”.

Disconnecting from the nub 3

Once again, type command-option-period with the puzzle as the front most
application.

After execution has stopped and you have returned to Apple Dylan, select the
“Quit Application Nub” command from the “Project” menu and choose “Quit”
in the confirmation dialog.

■

Note:

It sometimes happens that the application nub quits, and Apple Dylan
doesn’t find out about it. In this case, there will still be a “Quit Application
Nub” command on the “Project” menu, even though no application nub is
running. To let Apple Dylan know it’s not connected, choose the “Quit
application nub” menu-item, confirm that you want to disconnect, and then
cancel the request to find the nub.

■

Note:

 If you ever get into a state where the application nub is not
responding and you cannot get it to quit, run the “Quit Application Nub”
application in the “application nub” folder.

C H A P T E R 3

Tutorial

28

Using a Project

Creating a stand-alone application 3

There are two steps to creating a stand-alone application in Apple Dylan. You
first specify some parameters of the application, such as its signature and
startup function in the “Set Project Type…” dialog. You then use the “Create
Application” command to actually build the stand alone application. What
follows is a more detailed description of each of these two steps.

C H A P T E R 3

Tutorial

Using a Project

29

Specifying a project type 3

You specify project parameters via “Set Project Type…” on the “Project” menu.
Choosing the command displays the following dialog:

C H A P T E R 3

Tutorial

30

Using a Project

All the information in the dialog is remembered as part of the project. It does
not need to be set every time an application is created. You only need to bring
up the dialog when you want to change or review its contents.

The “Set Project Type” dialog has the following fields:

■ Project Type:
A choice of “Application” or “Library.” Libraries are described in the
following chapter. If you choose “Library” the remaining fields will be
different, and are described in the next chapter.

■ Creator Type:
The creator ID to give the new application.

■ Startup Function:
The function to call to start up the application. Applications built using the
framework, usually use the startup function start.

■ Module:
The module containing the startup function.

■ Memory:
Minimum and suggested memory configurations for the application.

■ Use separately loaded libraries:
Whether to bundle the libraries of any subprojects into the stand alone
application, or leave them separate.

■ Create Fat Binary:
Whether to create a fat binary. If this option is not selected, “Create
Application” will create an application suitable for the currently selected
target architecture.

■ Application Names:
Names to use when creating 68K, PowerPC, and Fat applications. The
applications will be saved in the project folder, using these names.

The project information is already properly filled out for the puzzle project, so
you shouldn’t make any changes.

C H A P T E R 3

Tutorial

Using a Project 31

Create an application 3

After checking the dialog settings, you can choose “Create Application” from
the project menu. A progress indicator will be shown as the application is being
saved to the project’s folder.

■ Note: Applications can only be built when disconnected from the nub. If you
are connected, choosing “Create Application” will confirm with you that it is
okay to disconnect from the nub before continuing.

■ Note: If you save an application when the project’s folder is open in the
Finder, the application may appear as a document rather than as an
application. To convince the Finder it is an application, you must close and
open the folder containing it, or moved it into a closed folder.

Once the application has been created, you can double click it to launch it.

Congratulations, you’ve created your first Apple Dylan application!

C H A P T E R 3

Tutorial

32 Using a Project

C H A P T E R 4

Contents

33

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Libraries

Overview 35
Libraries, Projects, & Subprojects 35
Library Files and Applications 36

Library file search path 37
Library Names & Versions 38
Pre-linking Libraries to Speed Development 38

Using library files to speed development 39
Creating Pre-linked Libraries 39
Creating Your Own Projects 40

Create a new project 41
Rename the source folder 41
Enter the library definition 41
Save the project 42
Enter the module definition 42
Create the remainder of the library 42
Finish creating the library 43
Create another project 43
Add a Subproject 44
Define Some Functions 44
Test the project 44

This document was created with FrameMaker 4.0.4

C H A P T E R 4

34

Contents

C H A P T E R 4

Overview

35

Libraries 4

This chapter explains the use of libraries and library files in Apple Dylan, both
during development and during application delivery.

Overview 4

Libraries are a feature of the Dylan language. A library is a group of modules
which are compiled and linked together. A library includes exported modules
and unexported modules. Exported modules can be imported by other
libraries, unexported modules can’t be. The exports and imports of a library are
specified by a

define library

 definition.

Libraries can be used to divide applications into parts which are separately
compiled and linked, and may be separately delivered to other developers and
end users in the form of library files. In addition, the speed of many
development operations can be greatly increased by pre-linking libraries. This
process is described below.

Library files are a feature of Apple Dylan. A library file is the compilation
product of a library, and is used to support separate delivery of the pieces of an
application. The presence of library files in the right locations can also make
some development activities faster.

For additional information on libraries as they relate to the Dylan language, see
the Dylan Reference Manual. The remainder of this section describes libraries
and library files as they relate to Apple Dylan projects.

Libraries, Projects, & Subprojects 4

Every Dylan project is associated with a library. The library consists of the
modules in the project. You can supply the library definition (with

define
library

), but if you don’t, a default library definition will be calculated
automatically. This default library will use the library of each subproject, and
will not export any modules.

When a project has subprojects, each subproject is associated with its own
library.

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Libraries

36

Library Files and Applications

■

Note:

 Library definitions should be compiled immediately after they are
modified. Do this by typing enter or command-E while the blinking
insertion bar is in the text of the library definition or the icon of the library
definition is selected.

The

define library

 definition is part of the source code of a project, and is
usually placed in the Dylan-User module. A Dylan project cannot contain more
than one

define library

 definition.

When a library uses another library, the using library can import modules from
the library being used. When project A has project B as a subproject, the library
definition of project A will usually use the library of project B and import
modules which are exported by the library definition of project B. This is
declared by the

define library

 statement.

■

Note:

 A could use B without importing any modules from B if B adds
methods to some generic functions and thereby extends the functionality of
A. This can only happen if there is a common library which both A and B
use.

Most programs written in Apple Dylan will contain at least three subprojects:

1. The Dylan subproject, which exports modules containing the standard
Dylan language definitions and other modules containing Apple extensions
to the Dylan language. Every project must contain this subproject.

2. The Framework subproject, which contains the Dylan Application
Framework.

3. The Mac-Toolbox subproject, which imports some useful Mac Toolbox
definitions using Creole and re-exports them. The Mac-Toolbox project is
used by the Framework project, but you may want to use it in your projects
as well.

■

Note:

 You only need to use the Mac Toolbox library if you plan on accessing
toolbox functions or types directly, rather than through the framework.

Library Files and Applications 4

When you deliver your application to an end user, you must ensure that the
end user has access to all of the libraries used by the application. There are two
ways you can do this. You can include the library in the application file itself,

C H A P T E R 4

Libraries

Library Files and Applications

37

or you can use separately loaded library files. Separately loaded library files
appear as individual files on disk.

When you create an application using separately loaded library files, the
project’s library is included within the application but all subprojects’ libraries
are kept as separate individual files.

The choice between separately loaded library files and included libraries is an
option of the “Project Type” dialog box which is accessed through the “Set
Project Type…” command on the “Project” menu.

Including the libraries in the application file has the advantage of simplifying
delivery and configuration for your end user. However, it has the disadvantage
of make applications larger and using additional disk space for each different
application which uses a library.

Using separately loaded library files reduces the disk footprint of applications
by allowing a single library file to be shared by multiple applications.

■

Note:

A single Apple Dylan library file may be used by multiple
applications, but each application will have its own copy of the library in
RAM. At this time, Apple Dylan library files will not decrease the RAM
footprint used by applications.

Library files are normally saved with the suffix “.dl”, and have this Finder icon:

Library file search path 4

When you launch an Apple Dylan application, it looks for its libraries in the
following locations, in the following order:

■

First:
in the application itself.

■

Next:
in the folder containing the application.

■

Last:
in the Extensions folder of the System folder of the startup volume.

C H A P T E R 4

Libraries

38

Library Names & Versions

Aliases are resolved as necessary in the process of searching for library files.

Library Names & Versions 4

When you save a library file, neither the name of the file nor its creator are
significant. Applications which use the library locate it by its file type, and by
the name of the library it contains as specified by the

define library

statement.

A library has a version and a minimum compatible version. These versions are
set in the “Project Type” dialog box which is accessed through the “Set Project
Type…” command on the “Project” menu.

A program built to work with version N of a library will accept any library file
which has a version greater than or equal to N and a minimum compatible
version less than or equal to N.

■

Note:

 It’s up to the programmer to know when to bump version numbers.
Some guidelines are given in “Using the Apple Dylan Development
Environment.”

Pre-linking Libraries to Speed Development 4

You can pre-link libraries to greatly speed up the time it takes to launch an
application or library under development.

When you launch the application nub and update, any code which is not in a
pre-linked library will be linked and downloaded to the application nub. This
can take a while, especially for large projects or projects with large subprojects
(such as the Dylan Framework).

However, if there are pre-linked libraries for the project or any of its
subprojects, these will be loaded into the application nub more quickly. Once
the libraries are loaded, Apple Dylan checks to see if any code in the project or
subprojects has changed since the libraries were linked. The next time you
update, any code which has changed will be separately linked and
downloaded on top of the pre-linked libraries. This process is much faster than
not using pre-linked libraries at all.

C H A P T E R 4

Libraries

Creating Pre-linked Libraries

39

When you’ve made a number of changes to a project, you can re-link the
libraries, thereby saving the time to download the changed code.

■

Note:

Changed code will not be loaded until after all the libraries are loaded.
This means that if you change code which causes a side-effect at start-up
time, it will be executed twice: once when the library is loaded and again
when the new version of the changed code is downloaded. When you
change code that has such side-effects, you should re-link the library.

When a project’s library is linked, the results are stored in a library model in
the project folder. There will be a separate library model for each target
architecture.

Using library files to speed development 4

Library files (“.dl” files) hold pre-linked libraries in the form in which they can
be delivered to end users. Library files can also be used to further increase the
speed of installing libraries in the application nub. Loading a library from a
library file is slightly faster than loading it from a library model.

The search path for library files during development is similar to the search
path when applications are delivered: First the folder containing the
application nub is checked, then the Extensions folder. If a library file is not
found, the library will be loaded from the library model.

■

Note:

 You can take advantage of this feature by placing the library files or
aliases to the library files in your application nub folder.

Creating Pre-linked Libraries 4

The same mechanisms are used to create library models and library files. There
are two such mechanisms:

1. When you create an application, the libraries of the project and its
subprojects are brought up to date. That is, they are linked if they have been
modified since the last time they were linked. The results are stored in a
library model for each project and in a library file for each project, in each
project’s folder.

C H A P T E R 4

Libraries

40

Creating Your Own Projects

2. You can link the library for a project and its subprojects by making the
project the active project and creating the library explicitly. To do this select
“Set Project Type…” from the “Project” menu and choose the project type
“library.” Then choose “Create Library” from the “Project” menu. If any
subprojects need to be brought up to date, you will be prompted for
confirmation.

■

Note:

You cannot create a library or a stand-alone application while you are
connected to the application nub. If you are connected to the application
nub, selecting the “Create Application” or “Create Library” command from
the “Project” menu will disconnect from the application nub before creating
the application or library.

To make library files accessible during development, you must place them or
aliases to them in the search path of the application nub. We recommend
leaving each library file in its project’s folder, and placing an alias to the library
file in the application nub folder. This way new library files will replace old
library files, and the aliases will refer to the new library files.

■

Note:

When you distribute an application that uses separately loaded
libraries, make certain to distribute the required library files too. Instruct
users that these library files can be kept either in the same folder as the
application or in the Extensions folder in their System folder. Unlike Other
system extensions, library files will not automatically be placed in the
Extensions folder when they are dropped on the System folder. They must
be explicitly placed in the Extensions folder.

Note:

 If you create a stand-alone application for your own use, you also have to
move library files or aliases to library files from the application nub folder to
the stand-alone application’s folder or the Extensions folder.

Creating Your Own Projects 4

This section walks you through the process of creating a simple project which
defines a library, and then creating a new project which uses the first project.

C H A P T E R 4

Libraries

Creating Your Own Projects

41

Create a new project 4

Begin by launching Apple Dylan. If Apple Dylan is already running, close any
projects which you have open.

Create a new project by choosing “Project” from the “New” command on the
“File” menu.

Rename the source folder 4

Click on the title of the source folder called “Untitled” in the lower left pane,
and when it becomes editable, rename it to “Library and Modules”. (You can
actually choose any name you want, but it’s conventional to use this name for
the source folder holding your library and module definitions.)

Enter the library definition 4

The “Library and Modules” source folder contains one source record, which is
displayed in the right hand pane. Click to the right of its icon to get a blinking
insertion bar then enter the following source code:

define library arithmetic

 use Dylan;

 export simple-arithmetic; // export the module

end library arithmetic;

■

Note:

 Library definitions should be compiled immediately after modifying
them. Do this by typing enter or command-E while the blinking insertion
bar is in the text of the library definition or the icon of the library definition
is selected.

Note that the unsaved status indicator appears next to the source record, and
also next to the source folder and module which contain it.

C H A P T E R 4

Libraries

42

Creating Your Own Projects

Save the project 4

Before proceeding further, save your new project by selecting the “Save”
Command from the “File” menu. You will be prompted for a name and
location for the project. Save the project as “Integer Math”.

Enter the module definition 4

Create a new source record by choosing the “New Source Record” command
from the “File” menu or by typing Command-N. Enter the following source
code in the new source record:

 define module simple-arithmetic

 use Dylan;

 export plus, minus; // export the names

end module simple-arithmetic;

Save the project again.

Create the remainder of the library 4

Compile the module definition. Note that a new module object appears in the
upper left hand pane of the project browser.

The new module will be created with one source folder already in it. Rename
this source folder “Plus and Minus.”

In the right hand pane, open the source record in the “Plus and Minus” source
folder, and enter the following source code:

define method plus (number1 :: <integer>, number2 :: <integer>)

 => result :: <integer>;

 number1 + number2

end method plus;

Create a new source record in the “Plus and Minus” source folder and enter the
following source code:

C H A P T E R 4

Libraries

Creating Your Own Projects

43

define method minus (number1 :: <integer>,

 number2 :: <integer>)

 => result :: <integer>;

 number1 - number2

end method minus;

Save the project.

Finish creating the library 4

Select the “Set Project Type…” command from the “Project” menu and set the
project’s type to “Library”. This dialog also lets you set version numbers for the
library, names to use when saving the library, and a creator for the library file.

Close the dialog and choose the “Create Library” command from the “Project”
menu to link the library and create a library file.

Close the “Integer Math” project.

Create another project 4

Create a new project and give it a “Library and Modules” source folder using
the steps outlined above.

Click in the source record in the right hand pane and enter the source code:

define library integer-math-user

 use Dylan;

 use arithmetic; // use the library

 export ones; // export the module

end library integer-math-user;

Create a new source record, and enter the source code:

define module ones

 use Dylan;

 use simple-arithmetic; // use the module

 export plus1, minus1; // export the names

end module ones;

C H A P T E R 4

Libraries

44

Creating Your Own Projects

Save the project as “Integer Math User”.

Add a Subproject 4

Choose the “Add to Project…” command from the file menu. Add the “Integer
Math” project. To do this, select the file “Integer Math.

π

” from the “Integer
Math” folder.

Choose the “Update” command from the “Project” menu.

You’ve now created a project which uses a subproject and imports definitions
from that subproject.

Define Some Functions 4

Select the newly created module “ones” in the upper left hand pane. Rename
the untitled source folder in

ones

 to “Addition”.

Add the following definitions to the “Addition” source folder:

define method plus1 (number :: <integer>)

 => result :: <integer>;

 plus(number, 1)

end method plus1;

define method minus1 (number :: <integer>)

 => result :: <integer>;

 minus(number, 1)

end method minus1;

Save the project.

Test the project 4

To test the project:

Launch the application nub (command-K).

C H A P T E R 4

Libraries

Creating Your Own Projects

45

Update the project (command-U). The “update on launch” preference lets you
skip this step.

Set the listener’s module to “ones.”

Type some expressions into the listener. The ones module has access to the code
it defines, as well as code imported from the simple-arithmetic and Dylan
modules.

>

plus1(100)

101

>

minus1(77)

76

>

plus(50, 50)

100

>

77 - 55

22

>

C H A P T E R 4

Libraries

46

Creating Your Own Projects

C H A P T E R 5

Contents

47

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 The Application Nub

Running a Program 49
Selecting Launch Preferences 49
One Machine Development 50
Two Machine Development 51
Disconnecting from the Application Nub 52
Connecting to Running Applications 52

This document was created with FrameMaker 4.0.4

C H A P T E R 5

48

Contents

C H A P T E R 5

Running a Program

49

The Application Nub 5

This chapter explains how to use different configurations of the development
environment and application nub, including two-machine development.

Running a Program 5

To execute the code in a project, you must run an application nub and load the
code into the nub.

Apple Dylan supports both one-machine and two-machine development
configurations. In the one-machine configuration, both Apple Dylan and the
application nub reside on the same machine. In the two machine configuration
they reside on different machines connected by AppleTalk.

The steps for using the application nub are different for the one-machine and
two-machine cases. In the one-machine case, the nub is launched and
connected to the runtime with one command from Apple Dylan. In the two
machine case, you launch the nub manually and than connect to it.

■

Note:

 Regardless of how it is started up, the application nub will be
launched with the amount of memory specified for it in the “Get Info” box
of the Finder. When you are working on large projects, or projects which
include the Dylan interface builder, you should make sure to increase the
preferred memory size of the application nub.

Selecting Launch Preferences 5

The “Preferences” command on the “Edit” menu includes a panel for
application nub preferences.

■

Launch Application Nub on Project Activation
If this preference is selected, the application nub will be launched when a
project is opened, or when a new project is made active. (Active and inactive
projects are described in “Using the Apple Dylan Development
Environment.”)

■

Update when Application Nub is Launched
If this preference is true, then an “Update” command is issued whenever the
development environment connects to the application nub.

This document was created with FrameMaker 4.0.4

C H A P T E R 5

The Application Nub

50

One Machine Development

■

Development Mode
This preference let’s you choose between one-machine and two-machine
development. If two-machine development is chosen, you can also fill in the
name of the runtime machine (the machine on which the application nub
will be run). This is the name of the Macintosh as given in the “Sharing
Setup” control panel.

One Machine Development 5

To start up and connect to the application nub in the one machine
configuration, you choose “Launch application nub” from the “Project” menu
after opening your project.

■

Note:

 You can also use the “Run” command on the “Project” menu, which
will launch the nub if it’s not already running, update, and call the project’s
startup function.

The search path for the application nub begins with the folder of the active
project, and then proceeds to the folder “Apple Dylan Files:application nub:”.
The application nub is identified by name.

If the application nub can’t be found, either because it is missing or an alias
cannot be resolved, an alert will be presented asking you to locate an
application nub. You are presented with three choices:

■

Launch
Lets you locate an application nub on disk using the standard file dialog.
The nub will be launched and connected.

■

Choose
Lets you locate a running application nub using the PPC browser. This nub
can be on the same machine or on a different machine. It will be identified
by its application type, not name.

■

Cancel
Lets you cancel the operation.

C H A P T E R 5

The Application Nub

Two Machine Development

51

Two Machine Development 5

Setting up for two-machine development involves the following steps:

■

Select two-machine development and enter the runtime machine name in
the preferences panel.

■

Turn on “program linking” in the “Sharing Setup” control panel of the
runtime machine. Also on the runtime machine, use the “Users & Groups”
control panel to set up a user which allows program linking.

■

Copy the application nub and any library files you will be using to the
runtime machine. All of these should be in the same folder, or the library
files can be in the Extensions folder of the runtime machine. The library files
to copy include the Dylan library file, the Framework library file, and the
Mac Toolbox library file.

■

Using personal Appleshare, mount the volume containing your project on
the runtime machine. The application nub needs this volume mounted so it
can access any resources in the project folder.

Macintosh program linking does not allow one Macintosh to launch an
application on another Macintosh. You must launch the application nub by
hand, by double-clicking it in the Finder.

Once you’re set up for two machine development, you connect by performing
the following steps:

■

Launch the application nub on the remote machine.

■

Choose the “Launch Application Nub” from the “Project” menu of the
development environment.

■

Respond to the ensuing dialog by entering the appropriate user name and
password.

Once you’re connected, development operations can be performed just as in
one-machine development.

C H A P T E R 5

The Application Nub

52

Disconnecting from the Application Nub

Disconnecting from the Application Nub 5

When you close a project, the application nub will automatically be quit.

If you want to disconnect from the application nub without closing the project,
you can do this manually by choosing “Quit application nub” from the
“Project” menu. This command will only work if the application nub is in a
state where it can receive commands from Apple Dylan (that is, if it is paused).

If the application nub gets stuck open, you can force it to quit by running the
“Quit application nub” program provided with Apple Dylan.

Note:

If you quit the application nub this way (or if you simply quit the
application nub by using the “Quit” menu-item in the application you are
developing), Apple Dylan will not know that the application nub has been quit.
The “Quit application nub” command will still appear on the “Project” menu.
Choosing this command will spuriously ask you to locate the running
application nub. You can simply cancel the dialog containing that request.

Connecting to Running Applications 5

If you create a stand-alone application with Apple Dylan and the application
encounters an error while it is running, you can connect the application to the
development environment for debugging.

When the application encounters an error that isn’t handled, it will present a
dialog box offering to quit to the Finder. To debug the application, hold down
the option key and click on the “Quit” button of the dialog box. The dialog will
go away but the application won’t quit. Then return to the Finder, launch
Apple Dylan, open the project which was used to create the application, and
choose “Tether to Application” from the “Project” menu.

Once you have tethered, you can debug just as if the application had been
launched from inside Apple Dylan. If you repair the error situation and
continue from an appropriate restart, you can untether by selecting the
“Untether from Application” command on the “Project” menu.

C H A P T E R 5

The Application Nub

Connecting to Running Applications

53

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe Illustrator



 and
Adobe Photoshop



.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Andrew Shalit

ILLUSTRATOR

Steve Strassmann

PRODUCTION EDITOR

Lorraine Findlay, JoAnne Smith

Special thanks to Ricardo Gonzalez and
Russ Daniels for their ongoing support.

Apple Dylan has been the work of many
hands over many years. Through its
evolution as a language design, research
project, and now product effort, it has
benefited from the contributions,
support, and helpful comments of too
many people to list in this small space.
You know who you are! Thank you for
your help in making the world a better
place for programmers. Carry the flame
forward!

This document was created with FrameMaker 4.0.4

	Apple Dylan Quickstart
	Contents
	Introduction
	About Apple Dylan
	About the Technology Release
	Reporting Bugs
	Additional Dylan Information

	Installation
	Configuration Requirements
	About Apple Dylan SI
	Contents of the Seed Release
	Installation Instructions
	Known Incompatibilities

	Tutorial
	Development Architecture Overview
	Project Structure
	Using a Project
	Opening the project
	Beginning browsing
	Running the project
	Updating the project
	Using the listener
	Exploring the program
	Modifying the program
	Disconnecting from the nub
	Creating a stand- alone application
	Specifying a project type
	Create an application

	Libraries
	Overview
	Libraries, Projects, & Subprojects
	Library Files and Applications
	Library file search path

	Library Names & Versions
	Pre- linking Libraries to Speed Development
	Using library files to speed development

	Creating Pre- linked Libraries
	Creating Your Own Projects
	Create a new project
	Rename the source folder
	Enter the library definition
	Save the project
	Enter the module definition
	Create the remainder of the library
	Finish creating the library
	Create another project
	Add a Subproject
	Define Some Functions
	Test the project

	The Application Nub
	Running a Program
	Selecting Launch Preferences
	One Machine Development
	Two Machine Development
	Disconnecting from the Application Nub
	Connecting to Running Applications

