9JoUdJ38j9Y Ssowwelbo.id

v.l.
: o 2

Acius 4th Dimension..
Programmer’s
Reference

4th Dimension by Laurent Ribardiére

Copyright © 1987 Acius, Inc.
All rights reserved.

This manual was written by
Dominique Hermsdorff, Will
Mayall, Bruce Barrett, and Bill
Kling.

Cover design by Patrick Chédal
C & C.

This manual and the software
described in it may not be
copied, in whole or in part,
without written consent of
Acius, Inc., except in the
normal use of the software or to
make a backup copy. It is against
the law to copy 4th Dimension
on magnetic tape, disk, or any
other medium for any purpose
other than the purchaser’s
personal use.

Even though Acius has tested
and reviewed the software and
documentation, ACIUS
MAKES NO WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED,
WITH RESPECT TO SOFT-
WARE, ITS QUALITY,
PERFORMANCE, MERCHANT-
ABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE IS
SOLD “AS IS,” AND YOU
THE PURCHASER ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND PERFORMANCE. IN NO
EVENT WILL ACIUS BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT IN THE SOFTWARE
OR ITS DOCUMENTATION,

even if advised of the possibility
of such damages. In particular,
Acius shall have no liability for
any applications developed
with, or data stored in or used
with, 4th Dimension, including
the costs of recovering such
programs or data.

Apple, AppleShare, AppleTalk,
ImageWriter, LaserWriter,
MacDraw, Macintosh, and
MacPaint are trademarks of
Apple Computer, Inc.

Chapter 1

Chapter 2

Contents

Figures and tables ix

Preface xiii

Manual overview xiii
Aids to understanding xiv
Vocabulary xiv

Overview 1

Tools 2
Database structures 3
Layouts 3

Layout procedures and file procedures 3
Procedures and functions 4
Programming language 4
Menus 4
Passwords 4
Environments 5
Design environment 5
User environment 5
Custom environment 5
Syntactic definitions 6

Programming 7

Types, constants, and variables 8
Data types 8
Constants 9
Variables 9
Identifiers 10
Filenames 10
Layout names 10
Field names 11
Subfields 11
Variables 12

Sets 12
Procedures and functions 13
Constants 13
Operators 14
Numeric expression operators 14
String expression operators 15
Date expression operators 15
Comparison operators 15
Logical operators 16
Picture operators 16
Three logicial functions 17
Equality test and assignment operation 17
Programming structures 19
Case of: a structuring command 21
Procedures and arguments 23
Procedures 23
Structuring and simplifying large procedures 23
Calling procedures 24
Modularizing your application 25
Parameter passing 27
Scope of arguments, global variables, and local variables 28
Functions 30
Tips for writing applications 31
Variable types 32
Variable tables: indirection and index notation 33

Chapter3 Files 35

Creating a file 36
Specifying field types 37
Alpha 37
Text 38
Real 38
Integer 38
Long Integer 38
Date 38
Picture 39
Subfile 39
Specifying field attributes 39
Indexed 39
Unique 40
Mandatory 40
Non-enterable 40
Can’t modify 41
Standard Choices 41

iv Contents

Layouts 42
Output layouts and input layouts 43
Layout procedures and file procedures 44
File procedures 44
Layout procedures 44
Layout procedures and the execution cycle 45
Execution cycle for input to a record with no subfiles 46
Execution cycle for output with no subfiles 47
Current selection and current record 49
Selecting a file 49
Current record 51
Sorting 51
Subfiles 54
Subfiles defined 54
Subfile example 1 54
Subfile example 2 56
Subfile example 3 59
Subfiles and layouts 60
Printing options in the subfile area 62
Subfile layout procedures and the execution cycle 64
Execution cycle for input to a record with a subfile 64
Execution cycle for output with subfiles 65
Output from a record having at least one subfile 66
When to use a subfile 66
RAM costs of subfiles 67
Creating an invoice system 67

Chapter4 Layouts 69

Report layouts 70
Printing a simple list 71
Printing sorted records 71
Printing sorted records with subtotals and a page break 74
Formatting fields within a layout 74
Alphanumeric and Text fields 75
Real, Integer, and Long Integer fields 75
Number sign (#) 76
Asterisk (*) 76
Caret (A) 76
Zero (0) 76
What happens at display time 77
Numeric formatting examples 77
Formatting a Date field 78

Contents

Vi

Contents

Chapter 5

Working with Picture fields 78
Truncated pictures 79
Scaled to fit pictures 79
On background pictures 80
Picture modes 80
Layout variables 85
Enterable and Non-enterable variables 87
Accept, Don’t Accept, and Button buttons 88
Accept and Don’t Accept buttons 88
Button buttons 90
Check boxes 90
Radio buttons 90
Graph areas 91
Scrollable areas 91
External areas 95

File Links 97

Single-file approach 98
Two-file solution 100
Linking files 106
How links work 108
Loading a linked record for the first time 108
The next time you load a linked record 109
Important considerations 109
LOAD LINKED RECORD command 110
Notes 111
Mandatory attribute 112
Solution 1 112
Solution 2 113
Dealing with duplicate values in linked fields 113
LOAD LINKED RECORD: a second syntax 113
LOAD LINKED RECORD and wildcards 114
SAVE LINKED RECORD command 115
The database: an analysis 116
Managing the link between Invoices

and Customers files 118
Improving procedures 118
Working with old links 120
CREATE LINKED RECORD command 122
Linking to a subfile 128

Chapteré6 Sets 133

Chapter 7

Chapter 8

Chapter 9

Sets defined 133

Operations on sets 135
CREATE EMPTY SET command 136
CREATE SET command 136
USE SET command 137
ADD TO SET command 138
INTERSECTION command 139
UNION command 139
DIFFERENCE command 140

Using sets: deleting duplicate records 140

UserSet system set 143

Menus 145

Menu components 146
Menu window features 147
Programmable menu features 149

Operations on Pictures 151

Introduction 152

Operations on Picture expressions 154
Horizontal concatenation (+) 155
Vertical concatenation (/) 155
Exclusive superimposition (&) 155
Inclusive superimposition (1) 155
Horizontal move (+) 156
Vertical move (/) 157
Point symmetry (*) 158
Horizontal scaling (*+) 159
Vertical scaling (*/) 160
Negation (Not) 161

Picture operations examples 161

ASCIl Maps 165

File import and export 166
Uses for an ASCII map 166
Working with ASCII maps 167

Index 169

Contents

Vii

Chapter 1

Chapter 2

Chapter 3

Figures and tables

Overview 1

Figure 1-1
Table 1-1
Table 1-2

Programming

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8

Figure 2-9a
Figure 2-9b
Figure 2-10a
Figure 2-10b
Figure 2-11

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8

Files 35

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

4th Dimension general architecture 2
Syntactic symbols 6
Syntactic metasymbols 6

7

Variable table in RAM 9

Equality test 18

Assignment operation 18

Sequence structure 19

Branching structure 20

Loop structure 20

Breaking a large procedure into modules 24
Flowchart procedure for sorting and printing 25
Procedure that calls Make A List 26
Flowchart for Make A List procedure 26
Procedure that calls Make A List 27
Flowchart for new Make A List procedure 27
Global and local variables in two procedures 29
4th Dimension naming conventions 14
Numeric operators 14

String operators 15

Date operators 15

Comparison operators 15

Logical operators 16

Picture operators 17

Logical functions 17

Parts of the file box 36

Add or Change Field dialog box 37

Standard Choices dialog box 41

Input and ouput layouts 42

Input template and output printout 43

Student data input layout with Age variable 45
Two search criteria applied to the same file 50
Records in the order entered 52

i X

Chapter 4

Figures and tables

Figure 3-9
Figure 3-10

Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16

Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20

Figure 3-21
Figure 3-22
Figure 3-23

Layouts 69

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22

Sort dialog box: Sort descending

on Last Name field 52

Students sorted with average in descending order
and last name in ascending order 53

Detalil file for an invoice 54

Alternatives 1 and 2 55

Subfile alternative 55

Invoice file with its detail subfile 56

Structure of records and their subfiles 57
Subrecord search returning current selection
of records 58

Search within a subfile 59

Multiple-level subfile access 60

Layout dialog box for a subfile 61

A file with its related record, subrecord layouts,
and record/subfile output 62

Three options for printing subrecords 63
Invoice design with two levels of subfiles 67
Invoice system with two files and one subfile 68

Output layout and a piece of paper 70
Printout of a simple file list 71

Breaks on sorted records with subtotals 72
Report form with breaks for region

and sales person 73

Report with page breaks for each break 74
Format of field dialog box 75

Truncated pictures 79

Scaled to fit pictures 79

On background picture 80

Choice of mode dialog box 80

srcCopy example 81

srcOr example 82

srcXor example 82

srcBic example 83
notSrcCopy example 83

notSrcOr example 84

notSrcXor example 84

notSrcBic example 85

Standard layout variables 86

Format of variable dialog box 86

Generated layout with Scrollable area list 92

Working Generator dialog box displaying values 95

Chapter 5

Table 4-1

Table 4-2
Table 4-3

File Links 97

Figure 5-1
Figure 5-2

Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9

Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 5-22
Figure 5-23
Figure 5-24
Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29

Figure 5-30
Figure 5-31
Figure 5-32
Table 5-1

How 4th Dimension displays numeric fields
for various formats (for display purposes only)
and its three different configurations

(positive, negative, and zero) 77

Date formats 78

Pixel transfer modes 81

Single-file database structure: Contacts file 98
Two-file database structure: Contacts

and Companies files 100

Entry layout for Contacts file 101

List layout for Contacts file 101

Entry layout for Companies file 102

List layout for Companies file 102

Entry?2 file layout 104

Three-file database structure 105

Current record and current selection

for three files 106

Searching and the index table 107

Drawing a link in Structure window 107
Loading a linked record for the first time 108
Loading subsequent linked records 109
Linking from the many to the one 111

Create a record dialog box 112

Scrollable window of duplicate values 114
Selection window after wildcard search 115
Structure window view of Invoices database 116
Structure for Customers file 116

Structure for Invoices file 117

Structure for [Invoices]items subfile 117
Structure with addition of linked Products file 122
Field structure of Products file 122

Input layout for Invoices file 123

Subfile layout for [Invoices]items subfile 123
Completed invoice form 126

Products file output displaying results 126
How a subfile links to a record in a file 127
Current subrecord pointing to one record

in file linked to subfile 127

Structures with addition of Sales subfile 128
Five new records in Products file 130
Displaying a product’s sales history 131
Record size for Contacts file 99

Figures and tables

Xi

Chapteré6 sets 133

Figure 6-1 CREATE EMPTY SET command 136

Figure 6-2 CREATE SET command 136

Figure 6-3 USE SET command 137

Figure 6-4 ADD TO SET command 138

Figure 6-5 INTERSECTION command 139

Figure 6-6 UNION command 139

Figure 6-7 DIFFERENCE command 140

Figure 6-8 File structure 140

Figure 6-9 Output of file before removing duplicates 142
Figure 6-10 Output of file after removing duplicates 142
Table 6-1 Current selection and sets concepts compared 134

Chapter7 Menus 145

Figure 7-1 Menu components 146
Figure 7-2 Menu window 148

Chapter8 Operations on Pictures 151

Figure 8-1 Two-file database structure 152
Figure 8-2 Overview of layout for Letter 1 153
Figure 8-3 Horizontal move 156

Figure 8-4 Vertical move 157

Figure 8-5 Point symmetry 158

Figure 8-6 Horizontal scaling 159

Figure 8-7 Vertical scaling 160

Figure 8-8 Negation 161

Figure 8-9 Processing indicator 161
Figure 8-10 Bar graph 163
Table 8-1 Concatenation and superimposition operations 154

Chapter9 ASCIl Maps 165
Figure 9-1 Edit map dialog box 168

Xii Figures and tables

Preface

This reference manual gives an overview of the 4th Dimension™ program, describes
its language and structures, gives programming tips, and shows how to use its
features.

Manual overview

Here’s a quick overview of the manual:

O

O O O

o O 0 O 0O

Chapter 1 gives an overview of 4th Dimension.
Chapter 2 discusses the programming language and use of variables.
Chapter 3 covers files, records, substructures, layouts, and sorting.

Chapter 4 gives detailed instructions on working with layouts and their
components.

Chapter 5 looks at the advantages of multi-file databases and the use of links.
Chapter 6 shows you how to use sets.

Chapter 7 covers menu setup and use.

Chapter 8 discusses manipulation of pictures.

Chapter 9 shows you how to write and use ASCII maps.

For a “how to” approach to 4th Dimension, see 4th Dimension User’s Guide.

Xiil

Aids to understanding

Look for these visual cues throughout the manual:

“* By the way: Text set off in this manner presents sidelights or interesting pieces of
information.

Important

Text set off in this manner presents important information that you should read
before proceeding.

Warning

Warnings like this alert you to situations where you could lose data or damage
hardware or software.

This manual uses a special typeface for samples of code and procedure listings:
It looks like this.

In syntax statements, metasymbols are shown in italic.

Vocabulary

A 4th Dimension command always appears in all capital letters. For example,
DEFAULT FILE. A 4th Dimension function, on the other hand, always returns a
value and appears with an initial capital letter. For example, End selection. The
Procedure editor groups 4th Dimension commands and functions together in a

window under the term Routines. It groups control of flow and assignment terms as
Keywords in another window.

When referring to user-written code, routine means any programming entity you
might create. (Developer-created routines appear on the screen in italic type at the
end of the list of 4th Dimension routines in the Procedure editor. Externally written
and compiled routines appear in bold italic.) When referring specifically to a
developer-created procedure or function, the book uses the term procedure or
Jfunction, accordingly.

The term numeric refers to any data object on which you can perform arithmetic.
Thus, numeric comprises the data types Real, Integer, and Long Integer.

XiV Preface

Chapter 1

Overview

This chapter provides a general overview of 4th Dimension tools, environments,
and syntactic definitions.

Tools

4th Dimension offers the application designer powerful tools: database data
structures, easy creation of layouts (input and output forms and dialogs), and a
powerful programming language for handling input, output, processing, and

interfacing. You can also set up complete menu systems and password protection.
Figure 1-1 shows 4th Dimension’s general architecture.

Passwords

Layout procedures

and file procedures Access to the database:

Structure window,
J Custom environment,

startup procedure

|
File procedures are called Database structure

when the file’s records
are entered or modified

Passwords for
menu items

v

Layout procedures

are called when the layout
Is used for data entry,
modification, or output

Layouts Passwords for layouts Calling procedures after \
user clicks a menu item

8.
=g
A
i
e

R -
- Global procedures
| and functions Procedural modifications

Procedures and functions of menu bqrs. menus.
executed within layouts and menu items

Layout and file procedures ?
are called by global procedures
and functions

Figure 1-1
4th Dimension general architecture

2 Chapter 1. Overview

Here is a quick overview of 4th Dimension’s features. The rest of this book details
these features and how to use them.

Database structures

A database can contain as many as 99 files; every file can contain up to 511 fields.
You can assign any of eight types to a field: Alphanumeric, Text, Real, Integer, Long
Integer, Date, Picture, or Subfile. A subfile can in turn contain up to 511 subfields.
You can define up to five subfile levels per file. You can also assign attributes to a
field; attributes include Enumerated, Indexed, Unique, Enterable, Non-enterable,
Moadifiable, Can't modify, and Mandatory. You can create relationships between
files by drawing lines to link files. Links are activated through procedures.

Layouts

Once you've created a file, you can specify layouts for entering records, for
displaying records on the screen or printing them on the printer, and for importing
or exporting data. You can also create layouts for custom dialog boxes. You can
define up to 32,767 layouts in a single database. 4th Dimension features a layout
generator and a highly sophisticated graphics editor; with the editor, you can
include all or some of the file’s fields in a layout.

You can add variables to display fields from another file, buttons, radio buttons,
check boxes, scrollable variable tables, and graph areas for graphing subfile numeric
values. You can draw boxes, lines, ovals, create text, and paste in custom MacPaint®
or MacDraw® pictures. You can adjust layout details to produce the kind of printed
reports you want.

Layout procedures and file procedures

Once you've created a file and its layouts, you can write procedures that 4th
Dimension executes every time you enter or modify a record using that layout. With
layout and file procedures, you can control new entries, create your own error and
range checking, test the validity of values, and access records from other files. You
can also change the way a record is printed according to the values it contains.

Tools

Procedures and functions

4th Dimension provides you with approximately 200 standard commands and func-
tions. In addition, you can create your own procedures and functions, which you
either call directly or execute from a custom menu, a layout procedure, or a file
procedure.

Programming language

You can write your procedures and functions in the Flowchart editor, where the
various steps of the procedure are graphically displayed and where tests are linked
together. You can also use the Procedure editor and type your statements. This
editor features automatic statement indentation.

4th Dimension uses a structured language similar to Pascal. The language structures
are the sequence, the branch, and the loop. Macintosh developers can add to 4th
Dimension’s built-in command set by writing external routines written in a compiled
language or in assembly language. You can assign external routines to external areas
created in your layouts. A procedure can call an unlimited number of standard or
custom procedures and functions. Variables can be either globally or locally related
to the routines you write.

Menus

You can create custom menu systems. Every menu item you create can have a
corresponding keyboard character, and a check mark. You also can choose the
typeface you want for your menu item text. Every time the user chooses a menu item,
the procedure assigned to that item executes. In addition, you can assign a
customized picture to each menu bar which will be displayed in the middle of the
screen,

Passwords

You can protect your database with passwords. A password can protect access to the
structure of your database, menu items, and layouts.

4 Chapter 1. Overview

Environments

4th Dimension has three environments in which to create, test, and run custom
applications: the Design environment, the User environment, and the Custom
environment.,

Design environment

The Design environment lets you create and modify the design of your database,
layout and file procedures, global procedures and functions, and menus and
passwords. You can change the structure of your database at any time, even if it
already contains data.

User environment

In the User environment, you can
O add, modify, and delete records for any file in the database

O add records to the file you're using or to a different file through the use of layout
procedures, file procedures, and links

O report (on screen or to the printer) a record or a list of records in any layout
O print multi-file reports showing subtotals with the Quick report generator

O print (on the screen or to the printer) graphs with the Graph Generator (you can
also print labels)

0 do a multi-criteria search by index

O do a multi-criteria search with logical conditions associated with And, Or, and
Except operators

0 do a sequential search with the help of test procedures written in the procedure or
the Flowchart editor

O sort a selection of records with up to 30 different sort levels
O execute procedures

O import or export data in SYLK, DIF, or Text format with character mapping

Custom environment

Use the Custom environment to execute applications. While still enjoying User
environment features, you use your database as if it were an off-the-shelf application
for the Macintosh™ computer with its own menus, dialog boxes, and password
protection.

Environments

Syntactic definitions

This manual uses a consistent set of metasymbols to express command arguments.
This section gives you the symbols and syntactical expressions used throughout this
guide. Metasymbols appear in italic throughout this book. Table 1-1 summarizes the
syntactic symbols; Table 1-2 shows the syntactic metasymbols.

Table 1-1

Syntactic symbols

Symbol

Description

Example

%

{}

« »

Repeat preceding statement up to last

required statement.

Repeatable any number of times

Optional argument

One (and only one) of two options

Intervening code

{statement}«{;*}»

{statement}
BEEP«(posintexpr)»
varl subfieldname
While...End while

Note: Both the asterisk (*) and the vertical bar (1) also appear as arguments and operators.

Table 1-2

Syntactic metasymbols

Metasymbol Description Example

boolexpr Boolean expression If (boolexpr) ... End if

buttonvar Button variable BUTTON TEXT (buttonvar,strexpr)

date 4th Dimension date Day of (date)

docname Desktop document name DELETE DOCUMENT (docname)

expr An expression of any type SEARCH BY INDEX « (fieldname{=|t}expr«{;*}») »

fieldname Name for field CREATE LINKED RECORD (fieldname)

filename Name for file ADD RECORD« (filename) »

intexpr Integer expression TRUNC (numexpr,intexpr)

numexpr Numeric expression Arctan (numexpr)

numyar Numeric variable GET HIGHLIGHTED TEXT (var | fieldname,numuvarl,
numvarl)

picturexpr Picture expression picturexpr + numexpr

posintexpr Positive integer BEEP« (posintexpr) »

strexpr String expression Ascii (strexpr)

strvar String variable GRAPH (vanrposintexpr,strvarX,numuvary)

statement Logical line of code APPLY TO SELECTION («filename,» statement)

subfieldname Name for field in a subfile Squares sum (subfieldname)

subfilename Name for a subfile End subselection (subfilename)

var Any variable Undefined (var)

6 Chapter 1. Overview

Chapter 2

Programming

This chapter discusses the fundamentals of programming in 4th Dimension. It
includes

O

constants, variables, and arrays
identifiers
operators

basic structures of the language

O O O 0O

procedures, functions, and arguments

0 modularizing procedures

People program to automate activities. Programming amounts to writing routines
that perform actions (procedures) and return values (functions). These routines,
in turn, are composed of one-line statements. You create statements by
combining 4th Dimension keywords and commands with expressions. Here are
some examples of expressions:

42

-5

"Hello"+" "+"World"
Total*1.07

The simplest expression is a single operand (like 42), although usually an expression
contains an operand and an operator (like —5) or multiple operators and operands
(like the last two examples above). An operand can be a constant or a variable. A
constant is a fixed value. Program execution does not change it. A variable is a
name for a place in memory where you can store a value, a value that program
execution can change.

Types, constants, and variables

This section looks at data types, constants, and variables.

Data types
Expressions can evaluate to any of five data types:

0 Alpha expressions yield a series of Macintosh characters, including alphabetic,
numeric, and punctuation characters. (Fields can be typed as Alpha or Text.)

O Numeric expressions yield a numeric object. (Fields can be typed as Real, Integer,
or Long Integer.)

O Date expressions yield a calendar date in 4th Dimension format.

8 Chapter 2: Programming

0 Boolean expressions return either True or False.

O Picture expressions contain Macintosh pictures.

Constants

A constant is an expression which always has a fixed value. There are three types of
constants:

O "4th Dimension" is an Alpha type constant.
o 111/28/1990! is a Date type constant.

0 123.78 is a Numeric type constant.

Variables

A global variable has a name consisting of a maximum of 11 characters. A local
variable name begins with a dollar sign ($), followed by up to 11 characters. The first
character of a variable name must be alphabetic. Thereafter, you can use alphabetic
and numeric characters, the space character, the underscore, and the period
character.

In 4th Dimension, a variable is an object whose type and value can change when your
procedures execute. Variables are used to keep intermediate results in the Macintosh
RAM which routines can access. You create a variable by naming it in a procedure.
4th Dimension keeps a variable table in RAM. Figure 2-1 illustrates such a table.

Names of variables Values assigned to variables
- B
vNum 124.56
L1 0.13
L2 1.123
vName Mr Dupont
bOK]
Cl 111/28/1990!
C2 112/25/1990!
[——
—
Figure 2-1

Variable table in RAM

Types, constants, and variables

If you assign a value to a variable, 4th Dimension puts the value in the variable table
and gives the variable the same type as the value. If you assign a value to a non-
existing variable, 4th Dimension automatically creates the variable and places it in
the variable table. If you try to read a variable to which you haven’t yet assigned a
value, that variable is considered undefined. It contains no value and remains
untyped. 4th Dimension provides you with all the necessary programming tools to
test whether or not a variable is undefined and to delete variables from RAM to gain
memory.

Identifiers

This section describes the various identifiers used in the 4th Dimension language.
All names for files, fields, and variables follow these rules:

O A name must begin with an alphabetic character.

O Thereafter, the name can include alphabetic characters, numeric characters, the
space character, and the underscore character.

O Periods, slashes, and colons are not allowed.

0O 4th Dimension will clip any trailing spaces.

Filenames

You designate a filename by placing its name between square brackets. The
maximum number of characters in a filename is 15.

Examples

[Orders] [Customers] [Letters]

Layout names

A layout name is a string expression. When written as a constant, put a double
quotation mark on each side of the layout name. The maximum number of
characters in a layout name is 15. You can also write an alphanumeric expression
whose value is equal to its name.

Examples

"Input" "Output" "Label" "Dialog" + String (i)

10 Chapter 2: Programming

Field names

You indicate a field in one of two ways, depending on the procedure’s context. The
maximum number of characters in a field name is 15.

In a global, file, or layout procedure, write the field name prefixed by the name of
the file to which it belongs.

Examples

[Orders]Total [Customers]Name [Letters]Text

Important

In a global procedure, you must always prefix the field name with the filename.

In a file or layout procedure, you need specify only the field name as long as the field
belongs to the current file.

Examples

Total Name Text

Subfields

Subfield naming follows the same principles as field naming,

When writing a file procedure or a layout procedure for the file to which the subfield
belongs, you must precede the subfield name with the name of its subfile and an
apostrophe.

Examples

Rows'ltems Addresses'ZIP Code Keywords'Word

You can write the subfield name without its filename only when working in a subfile
procedure or a subfile layout to which subfield belongs.

Examples
ltems ZIP Code Word

When writing a global procedure or a layout procedure or a file procedure in another
file, you must precede the subfield name with the name of its file, its subfile, and an
apostrophe.

Examples

[Orders]Rows'ltems [Clients]AddressesZIP [Letters]Keywords'Word

Identifiers

11

A reference to a subfile at any level must include a reference to its parent file(s).

Example

Suppose you have a file named Estimates containing a subfile named Sector which
in turn contains a subfile named Row and that Price is a subfield of the Row
subfile:

In a2 Row layout procedure, you access the subfield by typing Price.
In a Sector layout procedure, you access the subfield by typing Row'Price.

In an Estimates layout procedure, you access the subfield by typing
Sector'Row'Price.

In a global procedure, you access the subfield by typing [Estimates]Sector'Row'Price.

Variables

A variable is a named area in memory where you store, modify, and retrieve values.
A variable is always referred to by its name or, when using indirection, an
alphanumeric expression whose value is equal to the variable name. A global
variable name can be a maximum of 11 characters. A local variable begins with 2
dollar sign ($) with the remaining characters (up to 11 allowed) following variable
naming rules. The indirection symbols are the section symbol (§) or the curly braces

(.
Examples
GrandTot A1 §("AA"+String(i)) R{k}

In the above examples, using the indirect references § and {}, if i is equal to 23, the
name of the variable is AA23, and if K is equal to 52, the name of the variable is
equal to R52.

Sets

A set is always indicated by its name placed between double quotation marks (with a
maximum of 80 characters) or by an alphanumeric expression whose value is equal to
its name.

Examples

"Records to be deleted" "Customer Orders" "Good"+"Deal"

12 Chapter 2: Programming

Procedures and functions

A procedure, like a function, is always indicated by its name (with a maximum of 15
characters) or by an alphanumeric expression whose value is equal to its name if you
use the EXECUTE command.

Examples

Add Customer ListOrd EXECUTE ("PRINT"+String(j))

Here, if | is equal to 30, EXECUTE ("PRINT"+string(j)) invokes the PRINT30
procedure.

Important

When choosing a name for a field, a variable, a procedure, or a function, make
sure you don’t use 4th Dimension keywords, such as structure commands If or
End case, procedures or standard functions like Date, Uppercase, Time, or
names of system variables like OK or Document.

Constants

An alphanumeric constant is always placed between quotation marks. It is limited to
80 characters.

Examples

"Smith" "Beware! This operation destroys the record!"

A numeric constant consists of arabic numerals, a decimal point for non-integer
numbers, and a minus sign for negative values.

Examples

1273256 1000 -0.34

A date constant is always written as follows: exclamation mark, two digits for the day,
slash, two digits for the month, slash, four digits for the year, and an exclamation
mark.

Example

16/14/1990!

Table 2-1 summarizes 4th Dimension naming conventions.

|dentifiers

13

Table 2-1
4th Dimension naming conventions

Type Length Case sensitive
Filename 15 No

Layout name 15 No

Variable name 11 No

Field name 15 No
Procedure name 15 No

Menu title 15 No

Menu item 30 No

Password 13 Yes
Operators

Operators are symbols used to perform calculations. When combined with different
expressions, they generate new expressions.

Warning

4th Dimension has a left to right precedence. Only parentheses can override
this evaluation. As a result, you must use parentheses to ensure proper
evaluation of expressions and statements. Lack of or incorrect use of
parentheses can cause either erroneous answers or invalid expressions. For
example, 3 + 4 * 5 evaluates to 35. However, if you meant this expression to
return 23, you should write 3 + (4 * 5). Likewise, the test expression

50*2 =25"4 isinvalid. It should be written (50 * 2) = (25 * 4).

Take care to ensure that each left parenthesis character has a matching right
parenthesis character.

Numeric expression operators

Table 2-2 shows 4th Dimension’s numeric operators.

Table 2-2

Numeric operators

Operation Symbol Syntax Example
Addition + numexprl + numexpr2 2+ 3 returns 5
Subtraction - numexprl - numexpr2 3-2 returns 1
Multiplication * numexprl * numexpr2 20*2 returns 40
Division / numexprl | numexpr2 20/2 returns 10
Exponentiation = numexprl ~ numexpr2 2"3 returns 8

14 Chapter 2: Programming

String expression operators

Table 2-3 shows 4th Dimension’s string expression operators.

Table 2-3

String operators

Operation Symbol Syntax Example

Concatenation & strexprl + Strexpr2 "Pre"+"fix" returns "Prefix"
Repetition * strexpr * numexpr "AB™3 returns "ABABAB"

Date expression operators

Table 2-4 shows 4th Dimension’s date operators.

Table 2-4

Date operators

Operation Symbol Syntax Example

Difference - datexprl - datexpr2 107/10/1990!-107/17/1990! returns
—7, the number of days between
the two dates

Addition + datexpr + numexpr 107/10/1990!+7 returns
107/17/1990!

Comparison operators

Table 2-5 shows 4th Dimension’s comparison operators.

Table 2-5

Comparison operators

Operation Symbol Syntax Example

Equality = exprl = expr2 (50*2)=(25*4) returns TRUE

"Good bye" = "Hello" returns FALSE
"a"="A" returns TRUE

Inequality # exprl # expr2 (50 *2)# (25 * 4) returns FALSE
"Good bye" # "Hello" returns TRUE

Operators

15

Table 2-5 (continued)
Comparison operators

Operation Symbol Syntax Example
Greater than > exprl > expr2 18 > 10 returns TRUE
"B">"D" returns FALSE
Less than < exprl < expr2 27 <42 returns TRUE
"D" <"B" returns FALSE
Greater than >= exprl >= expr2 25 >=25 returns TRUE
or equal to 25 >=24 returns TRUE
Less than <= exprl <= expr2 25 <=25 returns TRUE
or equal to 25 <= 24 returns FALSE

25 <= 36 returns TRUE

¢ Note: In 4th Dimension, the way to test to see if the case of two characters is

different is to compare their ASCII codes. For example, the following statement
returns FALSE:

Ascii ("A")=Ascii ("a")

Logical operators

4th Dimension supports two logical operators: conjunction (AND) and disjunction
(OR), both of which work on Boolean expressions. A logical AND returns a TRUE if
both expressions are true. A logical OR returns a TRUE if at least one of the
expressions is true. See Table 2-6.

Table 2-6

Logical operators

Operation Symbol Syntax Example

Conjunction & boolexprl & boolexpr2 ("A"="A")& (15#3) returns TRUE
(5>=7) & ("Z"#"ER") returns FALSE

Disjunction | boolexprl | boolexpr2 ("A"="A")|(15#3) returns TRUE

(5>=7)| ("Z"#"ER") returns TRUE

Picture operators

Table 2-7 summarizes 4th Dimension’s picture operators. Picture operators are
described in Chapter 8, “Operations on Pictures.” Some picture elements are also
discussed in Chapter 4, “Layouts.”

16 Chapter 2: Programming

Table 2-7
Picture operators

Operation Symbol Syntax Description

Horizontal + exprl + expr2 Move exprl to the right

concatenation

Vertical / exprl / expr2 Move exprl to the top

concatenation

Horizontal move + expr + numexpr Move expr numexpr pixels to
the right

Vertical move / expr/ numexpr Move expr numexpr pixels to
the bottom

Exclusive & exprl & expr2 XOR exprl and expr2

superimposition

Inclusive exprl | expr2 Put expr2 on top of expri

superimposition

Three logical functions

4th Dimension offers three logical functions: True, False, and Not.

Table 2-8

Logical functions

Function Syntax Example

Not Not(boolexpr) = While (Not (End selection)) continues the
operation until End selection returns TRUE

True True Always returns TRUE

False False Always returns FALSE

Equality test and assignment operation

It is important to distinguish between the 4th Dimension relational operator, the
equal sign (=), and the assignment operator, a colon followed by an equal sign (:=).

Some languages, like BASIC, use the equal sign to indicate both equality and
assignment.

Use the equal sign to see if two expressions of the same type are equal, that is, contain
the identical values (expr? and expr2 must be of the same type). Figure 2-2 shows the
equality test, a logical expression that returns either TRUE or FALSE.

Equality test and assignment operation

17

Equal sign '

exprl = expr2

Expressions of the same type
Figure 2-2
Equality test

Examples

[filename]fieldname = "Tax"

This expression returns TRUE if the fieldname field of the filename file contains the
string value "Tax".

Substring (var;1;1) ="T"

This expression returns TRUE if the alphanumeric type variable var starts with the
letter "T" or "t".

Important

4th Dimension evaluates the lowercase and uppercase form of any letter as
equal. Thus, "a"="A" returns TRUE.

The assignment operator (:=) assigns or copies the value of the expression to its right
into the variable or field to the left of the assignment operator. Figure 2-3 illustrates
the assignment operation.

Assignment operator ‘—1

X = expr

Variable or field to ——| LV<:1Iue to be assigned to X

receive the value

Figure 2-3
Assignment operation

Example
MyVar := Length ("Macintosh")

The example places the value 9 (the number of characters in the word Macintosh)
into the variable named MyVar.

18 Chapter 2: Programming

Programming structures

A routine is a series of statements which accomplishes a given task. This book uses
the term procedure to indicate any kind of routine. Strictly speaking, a procedure
carries out programmable tasks or actions, whereas a function also returns a value.
Regardless of the complexity of a programming task, you will always use one or more
of three language structures. The three structures are the sequence structure, the
branching structure, and the loop structure.

A sequence is a series of statements that 4th Dimension executes one after the other,
from top to bottom. See Figure 2-4.

[:.-.muu FILES [Fhite] DEF AULT FILE([Fhile]!

ALL RECORDS

OUTPUT LAYOUT! "Dutpugt™)
DISPLAY SELECTION

‘ALl RFECORDS ¢

|

TUTPUT LAYOUTE Output ™)

|

CSPLAY SELECTION b
\

Figure 2-4
Sequence structure

The branching structure tests a condition to determine which of two alternate courses
of action to execute. When a logical expression returns a TRUE, 4th Dimension
executes the statement(s) following the condition test. If the expression returns a
FALSE, 4th Dimension executes any statement(s) following the Else keyword. If
you omit Else, 4th Dimension continues execution with the first statement (if any)
following the branch terminating keyword, End if. Compare the simple branching

structure with the Case of, discussed below in the section “Case of: A Structuring
Command.” See Figure 2-5.

Programming structures

19

ALL RECORDS
If (Records in file=0)
ALERT("The file contains no records.”)]
Else [»'«LL FECORDS]

DEFAULT FILE([Phile]) [[:-EFAI_ILT FILE [Fhile]]

OUTPUT LAYOUT("Output™)
PRINT SELECTION

End if

ALERT("Operation complete”)

M3

TIUTFUT LAYDITE " Catpyt) h ALERTC “Thiz file containz no
L’ec.clrd;—‘- 3
1 A
——— l ™
FEIMT SELECTIOMN
L A
I
|

FEF!T(_ “Oper ation cormplete J

Figure 2-5
Branching structure

The loop executes a sequence as long as a logical expression returns a TRUE. See
Figure 2-6.

MyStr :="Hello"

n:=1

Yhile (n<=Length(MyStr))
ALERT("The ASCIl code for character n® "+String(n)+" is "+String(Ascii(Substring(Mystr;n;1))))
n:=n+1

End while

ALERT("Loop finished")

|Eu Str:="Hello"

]

n>Length(MyStr)

NG

E\LERT("me finished™)]

ALERT("The ASCII code for character n®
"+String(n)+" is
"+String(Ascii(Substring(MyStr ;n;1))))

—

[. =n+1 J

T

Figure 2-6
Loop structure

20 Chapter 2: Programming

Case of: a structuring command

The Case of structure works like several If...Else...End if commands. It tests a
series of Boolean expressions and executes the statement(s) following the first
Boolean expression that returns TRUE. If none of the expressions evaluates as TRUE
and you have included an Else clause, 4th Dimension executes any statement(s) in
the Else clause. If none of the expressions evaluates as TRUE and you have not
included an Else clause, 4th Dimension continues execution with the first
statement if any, following the End case keyword.

You use the Case of structure when you want to test several expressions
consecutively and only perform an action if one of the expressions is true. Case of
can be easier to write and it performs more efficiently than a series of If statements.
The two listings below do exactly the same thing: return the day of the week from a
day number. The first uses the Case of structure. The second listing uses the
If...Else...End if command.

"DayCase using Case statement
r:="It must be "
d:=Request("Enter a day number.")
If (OK=1)

d:=Num(d)
Case of
: (d=1)
r:=r+"Sunday."
: (d=2)
r.=r+"Monday."
: (d=3)
r:=r+"Tuesday."
: (d=4)
r:=r+"Wednesday."
: (d=5)
r:=r+"Thursday."
: (d=6)
r.=r+"Friday."
: (d=7)
r:=r+"Saturday."
Else
r:="No such day."
End case
ALERT(r)
End if

Case of: a structuring command

21

Here’s the If...End if version:

"DayCase using If statements
r:="It must be "
d:=Request("Enter a day number.")
If (OK=1)
d:=Num(d)
If (d=1)
r:=r+"Sunday.”
Else
If (d=2)
r:=r+"Monday."
Else
If (d=3)
r=r+"Tuesday."
Else
If (d=4)
r.=r+"Wednesday."
Else
If (d=5)
r:=r+"Thursday."
Else
If (d=6)
r:=r+"Friday."
Else
If (d=7)
r.=r+"Saturday.”
Else
r:="No such day.
End if
End if
End if
End if
End if
End if
End if
ALERT(r)
End if

When 4th Dimension encounters the Case of command, it executes only the
sequence following the first true case it encounters and then goes directly to End
case.

% Pascal programmers: The 4th Dimension Case of is more powerful than the
Pascal Case. While the conditions are related in Pascal, they don’t have to be so
in 4th Dimension. For example, you can use as test conditions :(A#12) and
:(M="aa") in a single Case of.

22 Chapter 2: Programming

Procedures and arguments

Procedures and functions are two essential parts of a structured language.

Procedures

A procedure is one or more statements written to perform one or more tasks. You
create a procedure by choosing Procedure from the Design menu while in the Design
environment. You can write a procedure in either the Listing (line-by-line) editor or
the Flowchart editor. You construct a procedure from flow control keywords, 4th
Dimension’s built-in commands and functions (routines), assignments, variables,
fields, and expressions, and from your own procedures. Once you create a
procedure, it becomes part of the language for the database in which you created it.

You can set up a procedure to be called from a menu item by entering the procedure
name next to the menu item name in the Menu editor. When the user selects the
menu item, 4th Dimension executes the procedure associated with the item.
(Selecting an item that has no procedure causes 4th Dimension to leave the Custom
environment or runtime program.) You can also call a procedure from another
procedure, from a layout procedure, or from a file procedure by typing the
procedure name in a flowchart step or in a listing line. Writing modular procedures
improves and simplifies the writing of applications.

Structuring and simplifying large procedures

Suppose you need to construct a procedure, called Proc0O, that does a number of
things. First, study the various aspects of the problem at hand and outline the things
you want the procedure to do before coding. Then, build a series of smaller
procedures: Proc1, Proc2, and so forth. See Figure 2-7. Writing ProcO will take less
time and its overall structure and legibility will appear clearer if you choose this
modular approach. It also makes modification easier.

Procedures and arguments

23

ProcO

Proc1 » Procl
S —————— ‘_
Proc4 —» Proc4
-

Proc2 P Proc2

. A

Proc3 P Proc3

— s ([il
Figure 2-7

Breaking a large procedure info modules

Calling procedures

When a procedure is associated with a menu item, 4th Dimension executes that
procedure when the user chooses the menu item or types the corresponding
keyboard shortcut.

When you call a procedure from a procedure, 4th Dimension first saves the return
statement, which is the statement that follows the calling statement in the calling
procedure. 4th Dimension then executes the called procedure. At the end of the
called procedure, 4th Dimension returns to the calling procedure and resumes its
execution from the return statement.

A procedure called by another procedure can in turn call a procedure and so on. In
this way, you can build complex procedures containing many levels. The 4th
Dimension language lets you create as many levels as you want. The return statements
for the calls are stored in memory. The number of levels you can create is limited by
the RAM size.

24 Chapter 2: Programming

Modularizing your application

Supposing your database contains 40 files and that you want to implement a special
procedure for 20 of those files in order to generate a specific sorted selection and
display the selection on the screen or print it on paper. The procedure filenameX
might look like the one shown in Figure 2-8.

[[Z-EF ALLT FILEL [FyFile]]

[rJFI T LAY m Irput ™ 1

Fecords n

zelection ®#0

g [
[&LEF?T("I”JO records found')]

UTFLT LH|IIIITI Ctput™l)

—
<

EEF.:TE"lilp-:-r.atic.n canceled ") J [.ulE.F‘L A SELECTION 3

S i I
[-mr-n SELECTION } Ecurqm-r---u "Frint ths b

selection)

Figure 2-8

Flowchart procedure for sorting and printing

You can see that except for the first three steps, which are different for every file, all
the remaining steps are common to the 19 other procedures. You can easily avoid
this repetition.

Instead of typing 20 nearly identical procedures, you create a procedure containing
the part of the application they all share and then create 20 procedures determining
the default file, the input layout, and the output layout of that file, which will call the
procedure you can name MAKE A LIST.

In the same way, when you plan an application, look for operations that do the same
thing and try to reduce them to shared procedures that will be called from other
procedures.

Procedures and arguments

25

This approach has many advantages:
O You save time when you write your applications.

O You gain disk space. In the above example, 20 identical procedures would have
taken up 280 steps and tests. By calling a common procedure, you have 11
(common procedure) + (3 + 1) * 20 (three different steps, plus the call for the
shared procedure for the 20 different procedures), which comes to 91 steps and
tests. This means that you have three times fewer steps to write.

O Debugging takes less time.

O Your code is more legible and easier to maintain.

Suppose that in the above example, you write = instead of # inthe (Records

found # 0) test. You've already created 20 identical procedures when you realize while
in the Custom environment that you made a mistake. You now have to correct 20
procedures. If you had created a common procedure, you would have had to correct
only one procedure.

Once a procedure is corrected and works smoothly, it can later be called by other
procedures and you know for sure that it will work. You won'’t have to go into
debugging at all. See Figure 2-9.

DEF AULT FILES [MyFile]) [E ARCH]
Feoords in
o =0 =T i (] |u'
o r"I'I..E
l 4

_ M3 ALERTC "M recards found™)
[JUTF'UT LAYOUT("Output™) :

e [\ : FZIF'T SELECTION }
[' ake 15t ;

Figure 2-9a ..,...

calls MAKE A LIST [‘#LEF:TE"IZIp-:-r'.ati-:nn n::.aru::-:-l-:-d"ﬁil} S __iM:w
SFLAY ZELECTIOMN
{ |

selection)

['F: INT SELECTION] EDNF IRMCUFrint this

183 @

Figure 2-9b
Flowchart for MAKE A LIST procedure

26 Chapter 2: Programming

Parameter passing

You can further improve the legibility and simplicity of your application by passing
arguments.

To pass arguments to a procedure, specify the procedure name followed by the list of
arguments in parentheses, separating each argument with a semicolon:

Proc (Expr1 ; Expr2 ;... ; Exprn)

When you pass arguments to a procedure, 4th Dimension stores the arguments in
memory. The number of arguments you can pass to a procedure is only limited by
the RAM size.

In a called procedure, the passed arguments become parameters with local variable
names $1, $2, and so on through $n. $1 stands for the first argument, $2 for the
second argument, and so on.

If in the MAKE A LIST example you explicitly indicate that the input layout name will
be passed as first argument and the output layout name as second argument, the
procedures will look like the one shown in Figure 2-10.

Records in
Selection ¥0
_ (SCIRT SELECTION)

Noé

(SEARCH) ‘_._M
Figure 2-10a

Procedure that o Nog
calls MAKE A LIST @ s (DISPLAY SELECTION)

Noé GLERT("No records found.“))

DEFALLT FILEC[FyFile])

ﬂNPLIT LAYOUT($1))

@UTPUT LAYOUT($2))

Aake 4 Listl " Input”; "Output 1

(ot s amm ra . N .1 . 2. (CONFIRMC"Print this list?"))

G\LERT(“Operation cance1ed."ﬂ

yes f’EE=1

Q:R INT SELECTION j

Figure 2-10b
Flowchart for new MAKE A LIST procedure

Procedures and arguments

27

Scope of arguments, global variables,
and local variables

Because 4th Dimension supports both global and local variables, it becomes
important to understand the difference between the two and when you should use
each type for best programming results. It is also important to understand that 4th
Dimension manufactures its own local variables, while allowing you to create local
variables. As an example, suppose a procedure contains a call to a procedure:

If(MyVar >1000)
START ALERT (MyVar)
End if

With the START ALERT procedure written as follows:
ALERT (String ($1) + " is too large! ")

When you pass the argument to the START ALERT procedure, 4th Dimension
automatically creates a new variable to which it copies the value of the argument and
specifies the argument type. This new variable is only known to the START ALERT
procedure and referenced as $1. It is a local variable.

If you were to change the $1 variable in the START ALERT procedure by assigning it
a new value, the variable alone would be affected, and not the passed argument. The
$1 local variable only exists in the START ALERT procedure. At the end of the
procedure, 4th Dimension automatically clears the $1 variable from memory
before returning to the calling procedure.

Conversely, the MyVar variable is a global variable. It is known to all procedures for
as long as it exists in memory. (The CLEAR VARIABLE command and quitting a
database clear global variables.) If START ALERT were to assign it 2 new value upon
resuming the calling procedure, the value of the MyVar variable would be changed
and might even be of a different type.

Generating a local variable when passing an argument is an overall 4th Dimension
concept: you explicitly create local variables for a procedure or a function by placing
a dollar sign (§) before a variable name. (The variable name must still begin with an
alphabetic character.) If you create a local variable in a procedure, it will only exist
in that procedure and will be cleared from memory at the end of the procedure.

Figure 2-11 illustrates a procedure calling a second procedure. Global and local
variables are involved.

28 Chapter 2: Programming

Procl

SV =
v:=0
While (Sv<=10)
ALERT ("Sv="+String(Sv)+",v="+String(v))

Proc
ALERT ("Sv="+String(Sv)+".v="+String(v))
Sv ;= Sv+1
S-V-:;[-]
y:=v+1
Figure 2-11

Global and local variables in two procedures

In the Proc1 procedure, you use two variables: $v and v. The variable $v is a
Proc1 local variable, while v is a global variable. In the Proc2 procedure, you use
two variables: $v and v. The variable $v is a Proc2 local variable, while v is a
global variable. The $v variable in Proci is different from the $v variable in
Proc2. When Proci is called, $v is created and it will only be deleted from
memory at the end of the procedure. When Proc2 is called, a new copy of $v is
created and will be deleted from memory when returning to Proci. The v variable
is a global variable common to both procedures. When $v is reset in Proc2, $v in
Proc1 remains unchanged. Upon execution, subsequent alerts will display the values
listed below:

1st passage in the loop:
$fv=1,v=0

$v=1,v=1

2nd passage in the loop:
$v=2,v=1

v=2,v=2

10th passage in the loop:
$v=10,v=9
$v=10,v=10

Scope of arguments, global variables, and local variables 29

Thus, local variables and global variables are different kinds of variables, and any
confusion between the two may lead to programming errors. If in a procedure called
up in certain cases (following tests in the calling procedure), you change the value or
the type of a global variable that will be used when returning to the calling procedure,
you’ll get error messages from time to time which may seem random but which are
quite logical.

You'll then have to find out in which cases the procedure is called upon and in which
cases it generates an error message only to realize that you are modifying a variable.
However, if you want a procedure to modify or return certain values and avoid the
above-mentioned problem, you should use a function.

As a general rule, use local variables whenever possible. This practice greatly
simplifies modularization and program logic. Local variables reduce the
unnecessary duplication of variables that makes complex procedures difficult to read
and prone to errors. Use global variables primarily when calling a series of
procedures between which parameters will be passed.

Functions

A function is a routine that returns a value. You create a function by choosing
Procedure from the Design menu while in the Design environment. Built-in 4th
Dimension functions begin with an initial capital letter with the rest of the name in
lowercase. For example, Current date.

A function is always called by a global procedure, a layout procedure, a file
procedure, or another function. Because a function returns a result, it can only exist
in an expression or to the right of the assignment symbol.

Just as with procedures, you can pass arguments to a function. The arguments are
named $1, $2, through $n. The result returned by the function is named $0
inside the function. A function can call a procedure or another function. A user-
defined function acts just like a built-in function. That is, you write a statement
containing the name of the function and giving its necessary arguments, if any.

Example 1

You are going to create Initial, a function returning the first character of an
alphanumeric expression. For example, the statement Initial ("Foo") returns "F".

$0 := Substring ($1 ;1 ;1)
Thus, you may write in your procedures

var := Initial ((MyFile]MyField)

30 Chapter 2: Programming

and write a test like
If (Initial ((MyFile]MyField) # Initial ([YourFile]YourField))
Example 2

You've retrieved data from an application in which all records have a fixed size.
"Whiter", for instance, is a 70-character alphanumeric field, which takes up 70
characters: 6 letters followed by 64 spaces. In 4th Dimension, fields take up only the
space they need, and "Whiter" in an alphanumeric field would take up 7 characters:
6 letters plus 1 byte for the length.

To recover the space taken up by the 64 trailing blanks, you need to delete spaces at
the end of the string. To do this, create a function named Clean up:

"Clean up function to delete trailing spaces
vChar :=""
n := Length ($1)
While ((vChar ="") & (n > 0))
vChar := Substring ($1;n; 1)
If (vChar="")
ni=n-1
End if
End while
If (n=0)
$0 ="
Else
$0 := Substring ($1 ;1 ;n)
End if

If you invoke Clean up with the argument "spaces5 ", it returns "spaces5".

Tips for writing applications

You can edit procedures either in the Flowchart editor or in procedure (listing)
mode. Flowcharts are helpful for beginners, because the graphic depiction of
structures helps them rapidly master test and loop structures. For large procedures,
however, choose the listing mode; automatic indentation in the Procedure editor
lets you see the different levels of the application clearly.

< Incompatibility: A procedure written in one editor cannot be read or translated
by the other editor.

In addition, it's easier to change a large procedure in listing mode, because you can
delete or add lines. Changing steps and tests graphically can be quite time-
consuming in a flowchart. When writing in the listing form, the results of complex
applications are more structured, thus more legible. You can use both forms in a
single database.

Tips for writing applications

31

Whatever the form you choose to write applications, you call a 4th Dimension
standard procedure or function by typing its name at the keyboard or by clicking its
name in the list displayed on the screen. The same goes for keywords.

The names of 4th Dimension commands are always in uppercase. For example:
DISPLAY SELECTION.

The names of 4th Dimension functions begin with an uppercase character with the
rest of the function name in lowercase. For example: Current date.

You call a procedure or function you created by typing its name on the keyboard or
by clicking its name in the list displayed on the screen. Your global procedures
appears in italic toward the bottom of the Routines list.

If you type the name of a 4th Dimension command or function on the keyboard,
you can use the “at” sign (@) as a wildcard. For instance, if you type DEF@,
4th Dimension will look for a procedure or a function beginning with DEF. When the

procedure or function is found, it's added to your application. Here you'll get
DEFAULT FILE.

You can insert comments into your procedures, regardless of the form you’re
working in. Whether in the Listing or Flowchart editor, you begin every comment
with a grave accent ().

< Editor tip: If you write a statement that creates a syntax error, the editor surrounds
the statement with bullets. Fixing the error removes the bullets.

Variable types

You've seen earlier that a variable takes on the type of its assigned value. An
alphanumeric variable accepts up to 32,000 characters. For example:

Today := "Today is " + String (Current date)

A numeric variable accepts any numeric value with up to 19 significant digits. For
example:

StateTax := [Invoices]Total * .065

A date variable accepts 4th Dimension dates between !00/00/00! and !'12/31/32000!.
For example:

GetDate := Date ("01/01/" + String (Year of (Current date) + 1))
A Boolean variable accepts any logical argument. For example:
v := End selection & ([Invoices]Paid # 1)

A picture variable accepts a Macintosh picture. For example:

vNewHome := [Houses]Pictl

The 4th Dimension language introduces arithmetic operations on Macintosh
pictures. This aspect is discussed in detail in Chapter 8, “Operations on Pictures.”

32 Chapter 2: Programming

Variable tables: indirection and index notation

When executing procedures, you may create several variables in memory, some of
which pertain to a set of variables such as v1, v2, through v100. To process these
variables, you could write 100 lines of code, like this:

vl = expri
V2 = expr2

v100 := expri00

To simplify programming, you can use the array or variable table constructs
instead. Both are forms of indirection. You can choose either of two symbolic
notations:

§(strexpr)

var{ numexpr}

The §(...) notation introduces the indirection concept on variables. The va#...}
notation introduces the index concept on variables.

When you specify a variable with indirection, 4th Dimension calculates the
alphanumeric expression you typed in parentheses to create the name of the
variable. The example assigns the four variables to zero.

Example

type:="AA.BB.BA.CC"

=1

While(i<Length(type))
§("Part"+Substring(type;i;2)):=0
=143

End while

Only the § operator allows use of alphabetic operators, whereas {...} takes numeric
operators.

When you specify a variable with an index (the curly braces form) in a procedure, 4th
Dimension calculates the numeric expression you typed in braces, and the returned
value is concatenated with the name of the variable to create the final name.

Variable tables: indirection and index notation

33

Example

The instruction Month {Month of (Current date)} # 0 is valid. Current date is a
4th Dimension function returning the date shown on the Macintosh clock. Month of
is a 4th Dimension function returning the number of the month of the date passed as
parameter. Suppose the date is September 11, 1990. Current date returns
109/11/90!. Month of returns 9. Thus, the instruction is equivalent to Month 9 # 0.

The advantage of indirection or of index notation is that the content of the given
expression placed between parentheses or braces may vary.

Example

You want to process the variables v1, v2, through v100. You write a loop:

=1

While (i < 101)
v{i} := expr
I=1+1

End while

34 Chapter 2: Programming

Chapter 3

Files

35

This chapter discusses files and their components, records and fields. These
essential database elements are defined as follows:

0 A file is a finite set of records.
0O A record is a finite set of fields.

O A field is a category of data, in which the data has a specific type.

As an example, think of a teacher’s list of students. The list is a finite set of records,
with each record containing information about one student. A student’s record is, in
turn, a finite set of fields with one field each for the student’s last name, first name,
date of birth, average grade, and so on. Each field contains a specific value that
reflects the field’s type. For instance, a student’s name consists of alphanumeric
characters, whereas the average grade field contains numeric values.

Creating afile

In 4th Dimension, you create a new file in the Design environment. Choose the New
File command from the Structure menu. The file box represents the file you are
creating. You can change the name of a file. Select it by clicking anywhere within the
file box; then choose the Rename File command from the Structure menu. To add a
field to the file, double-click within the file box or choose the New Field command
from the Structure menu. You can also change the type or attributes of a field once
you've selected it. Click within a given field to select it; then choose the Change Field
command from the Structure menu or simply double-click it. Figure 3-1 identifies the
different parts of the file box.

Students File

Filename

Lazt Name &
First Mars
Date of Birt
Average

Field type

Field name

Figure 3-1
Parts of the file box

To delete a field, select it and choose the Delete Field command from the Structure
menu. To delete a file, select it and choose the Delete File command from the
Structure menu.

36 Chapter 3: Files

Warning

Deleting fields or files considerably alters the structure of your database. Should
power fail during this time-consuming operation, the entire database will be
lost. Be sure to back up your database before choosing either of these

commands.

A file can have as many as 511 fields, including subfile type fields. In turn, each
subfile field can have 511 subfields. You can nest subfile fields to a depth of five. See

the 4th Dimension User’s Guide for information on nesting subfiles.

Specifying field types

A field must be one of eight types (all shown in Figure 3-2): Alpha, Text, Real,

Integer, Long Integer, Date, Picture, and Subfile.

Add or Change Field in Phile

Fietd name: [N

@ Alpha |20 [JMandatory [0K and Next |
1 Text [] Display only — :
' Real [] Can't modify
1 Integer [] Indexed
_rLong Integer [iisaas |' Cancel
1 Date [] Standard Choices ;
:' Picture ,' Plvevdearg f il I 0K
1 Subfile ‘ '
Figure 3-2

Add or Change Field dialog box

Alpha

The user can enter any keyboard character except for Tab, Return, Backspace, or any
control character into an Alpha. Maximum length is 80 characters. An Alpha field is
not a fixed length field and takes 1 byte per character plus 1 byte for the data length.

In the file box, the letter A to the right of a field name indicates that the field is Alpha.

Specifying field types

37

Text

The user can enter any character from a Macintosh keyboard into a Text field, except
for control characters, Tab, and Backspace. (Return characters can be entered into
Text fields, but not into Alpha fields.) A Text field has a maximum capacity of 32,767
characters. A Text field takes 2 bytes plus its length in characters for storage space. T
is the field type symbol for Text fields.

Important

Procedural calculations convert numbers to reals, regardiess of type. When
calculated numbers are assigned to fields, the numbers take on the type of the
field.

Real

Enter any numeric value in this field up to 19 significant digits. The calculable range
for reals is £1E1022. Reals follow specifications for SANE extended reals. 4th
Dimension allots 10 bytes to each Real field. R is the symbol for such fields.

Integer

Enter any numeric value in this field in the range of £ 32,767. An Integer field takes 2
bytes. The letter I marks Integer fields.

Long Integer

A Long Integer field handles any number in the range of + 2 billion. A Long Integer
uses 4 bytes. L is the symbol for Long Integer fields.

Date

A Date field consists of a month (1-12), a day (1-31), and a year (to 32,767). Dates
are sorted chronologically. A Date field can manage dates exceeding the Macintosh
clock limits. A Date field requires 6 bytes and is marked by the letter D. 4th
Dimension does not take Gregorian calendar changes (circa 1600 CE) into account.

38 Chapter 3: Files

Picture

A Picture field handles any Macintosh picture, for example, MacPaint bit-map
images or MacDraw picture format graphics. P is the symbol for Picture fields. A
Picture field takes 8 bytes plus the size of its contents on the Clipboard.

4th Dimension retains all of a picture’s information. If you copy a picture back into
its application, all the information will be there.

Subfile

A Subfile field lets you generate a substructure with subfields (see the “Subfiles”
section near the end of this chapter) and is indicated by the asterisk character. You
can calculate the storage requirements of a subfile by multiplying the bytes used by
fields times the number of subrecords.

Specifying field attributes

You can set any of the following attributes to a field: Indexed, Unique, Mandatory,
Non-enterable, Can’t modify, and Standard Choices.

Indexed

When you assign a field the Indexed attribute, 4th Dimension creates and
automatically updates an index table as records are added, modified, or deleted.
Text fields, Picture fields, and Subfile fields cannot be indexed, whereas Alpha, Real,
Integer, Long Integer, Date, and fields within subfiles can. Indexing a field creates a
4th Dimension document called database.Indexn on disk, where n is the index
number.

When calculating the size of a database, include the amount of storage space taken by
index tables. Storage space for Indexed fields is as follows:

0 Alpha: (Maximum length + 15 or 16)
O Real: 24 (Length + 14)

O Integer: 16 (Length + 14)

O Long Integer: 18 (Length + 14)

0O Date: 20 (Length + 14)

Specifying field attributes

39

% Alpha length: The storage space for an indexed Alpha field is Maxlength+15,
unless the result is an odd number. In the case of an odd number, the storage
requirement is Maxlength+16. Maxlength is the field length specified in the
Design environment, not the number of characters typed into each field.

Indexed field names appear in bold characters in the file box. An Indexed field lets
you search for a specific record among any number of records significantly faster
than a non-indexed search would. If the search by index activates more than one
record, search speed increases logarithmically. That is, on a per-record basis, 4th
Dimension finds ten records quicker than just one. You can sort Indexed fields far
faster than non-indexed fields. Index the fields that you will frequently search or sort
to save time.

Unique

Unique fields must be indexed. Giving a field this attribute makes it impossible to
enter a duplicate value for the field within the file. 4th Dimension will alert the user if
the user tries to enter a duplicate value.

Mandatory

4th Dimension will not save a record if the user has failed to make an entry in this
field. Use the Mandatory attribute for required data. 4th Dimension considers a field
empty if it contains no character at all or if a field contains a “non-value value,” as
follows:

O Alpha: ™ (null string)
Real: 0

Integer: O

Long Integer: 0
Date: !100/00/00!

Non-enterable

The user cannot enter values into Non-enterable fields. Only 4th Dimension
procedures can write values to such fields. Choose Non-enterable to protect fields
which will contain values resulting from calculations, like a line total in an invoice.

40 Chapter 3: Files

Can’t modify

When a field is Can’t modify, 4th Dimension accepts an initial entry into the field,
but does not allow keyboard modification of the initial entry after you save it. Only a
4th Dimension procedure can modify a Can't modify field.

Standard Choices

When working in the Design environment, you can create a list that will become
active when, during data entry, the user moves into a field bearing this attribute.
Figure 3-3 shows the Standard Choices dialog box. The user can choose only one
item from among the choices listed for that field for a given record. The user chooses
the item by clicking its name, by using the arrow keys, or by typing one of the entries
and pressing Return. This attribute does not apply to Picture and Subfile fields. You
could use this attribute

O for fields that are restricted to a small group of values, like freight carriers a
company deals with (you won't have to type the field value every time you enter the
record)

O to automatically control the spelling of complex names

Standard choices for Origin
Africa <+ []Choices can be modified
At
| Sort |
Auztralia * ‘
Eurape
Fiddle Eazt f e ’
Morth Arnerica | Insert |
South Arnerica - , .
Anarctic = ‘. prenﬂ _J |‘ Cancel J
Asia | Delete | | 0K |
Figure 3-3

Standard Choices dialog box

By selecting the Modify option in the Standard Choices box, users can modify the list
of standard choices whenever they enter values in a record.

< Note: Modify, in this case, is an option, not an attribute.

Specifying field attfributes

4]

Keep these things in mind:

0 If the list for a field contains several hundred items, or if a single item has to be
entered in different fields, use files and links to emulate the list of choices. This
procedure is explained later on in this chapter.

O No item on the list can be more than 30 characters long.

Layouts

Layouts determine the way the information contained in the records of a file will be
displayed. You can create up to 32,767 different layouts for a single file in a database.
You use layouts to enter data, to display data on the screen, to print data on paper,
and to create custom dialogs. Layouts are the interface between the user and 4th
Dimension’s data structures.

In a layout you can display only some of a file’s fields and use variables to display
fields belonging to another file. Giving a file several layouts enables you to display all
or part of its fields in ways that best suit your needs. Figure 3-4 shows an input layout
(single record) and an output layout (multiple records). Figure 3-5 shows how these
layouts look when in use: an input form with data entered into it, and a printout of
three records corresponding to the input.

Students

Last Name Last Name

First Name First Name

Date of Birth |Dateof Birth

T w][e

Last Name First Name Date

[Last Name |I[First Name |[Date of Birth |

Figure 3-4
Input and output layouts

42 Chapter 3: Files

Students

Last Name MART M

First Name Henry

Date of Birth |0S/07/86

- ™ o A

0K | | Cancel

. A b

Last Name First HName Date

[oav1= Jean D3 2088

MARTIM Heriry S 07 65

FRICE #ndy 1105/ 66

Figure 3-5
Input template and output printout

\/

“* Note: Records and layouts are two different concepts. A record contains data
and a layout is the means of displaying that data. Adding, deleting, or changing
a field in the Structure window changes the file structure, whereas adding,
deleting, or changing a field in a layout only changes its appearance and does
not change the file structure or its contents.

Layouts are a powerful 4th Dimension feature. You can create extremely
sophisticated layouts and adapt them to printed forms if you wish.

Output layouts and input layouts

You can designate any layout as an input layout or an output layout. Normally, input
layouts take data entry and modifications, and output layouts display or report data.

Two rules control the use of layouts in 4th Dimension:

m Data output: 4th Dimension uses the current output layout of a file to display or
print its contents or to export a SYLK, DIF, or Text file. You must explicitly specify
one of the file layouts as the output layout of that file. Use OUTPUT LAYOUT in a
procedure, or choose the Choose File Layout from the File menu in the User
environment, or designate them in the Design environment Layout dialog box.

m Data input: 4th Dimension uses the current input layout of the file to enter records
or to import a SYLK, DIF, or Text file. You must explicitly specify one of the file
layouts as the input layout of that file. Use INPUT LAYOUT in a procedure or
choose the Choose File Layouts from the File menu in the User environment or
designate them in the Design environment Layout dialog box.

You can specify any layout as the file output layout and/or input layout at any time,
according to your specific needs. Each file has its own input and/or output layouts.

Output layouts and input layouts 43

Layout procedures and file procedures

You can write procedures that work only when a specific layout is active (layout
procedures) or when a specific file is active (file procedures). A layout procedure
becomes active any time the layout (whether an input, output or dialog layout) is
called. A file procedure is executed for data entry and modification. Layout
procedures are frequently used. File procedures are rarely used.

File procedures

You can have at most one file procedure per file or subfile. You create or open a file
procedure by selecting the file in the Design environment’s Procedure dialog box
and clicking Open. 4th Dimension only executes file procedures for input layouts.
Data output operations and dialog layouts do not execute file layout procedures.

4th Dimension always executes a file procedure before each execution of an input
layout procedure. The order of execution is

1. Set a particular execution cycle function (Before, During, or After) to TRUE.
2. Execute the file procedure.

3. Execute the input layout procedure.

When you are reading a description of an input layout procedure, you can assume
that if a file or subfile procedure exists, 4th Dimension will execute it before executing
the input layout procedure. The two reference manuals assume that you understand
the place of file procedures in the execution cycle.

Layout procedures

Write a layout procedure any time you want 4th Dimension to do some kind of
processing whenever a particular layout is used. Consider the example of a file of
students records. The teacher wants

O last names to be in uppercase even when entered in lowercase
O first name initials to be in uppercase and the remaining characters in lowercase

O to automatically display the corresponding age whenever a date of birth is entered
in the Students file, and therefore needs to add an Age variable to the layout

44 Chapter 3: Files

The following layout procedure covers all three requirements. Figure 3-6 shows a
filled-in input template with the Age variable in place.

Last Name := Uppercase(Last Name)

First Name := Uppercase (Substring (First Name ; 1; 1) + Lowercase (Substring (First Name ; 2 ; Length
(First Name)-1))

Age := Int ((Current date - Date of birth) / 365.25)

Students

Last Name MAETIN

First Name Henry

Date of Birth |0S/07/66 Age 20
0K Cancel
Figure 3-6

Student data input layout with Age variable

Layout procedures and the execution cycle

The 4th Dimension execution cycle consists of phases, phases intiated both by
internal processing and user actions. A phase comes into being when 4th Dimension
sets a particular function to TRUE. Each phase executes the layout procedure. Within
the procedure, you can determine which phase is active and take appropriate
actions. There are separate execution cycles for input and for output.

The phase functions for input are
m Before

m During

m After

The phase functions for output are

In header
Before
During

In break

In footer

Layout procedures and file procedures 45

The next two sections show how the execution cycle works for records having no
subrecords. The “Subfiles” section below discusses how the execution cycle and
subfiles work together.

Execution cycle for input to a record with no subfiles

The user events that can trigger a change of phase during input include

O completing an entry to or a modification of a field by pressing Tab or Return or
clicking another field

clicking a button
clicking a scrollable or external area

selecting a menu

O 8 &8 6

forcing a redraw action by resizing a window, scrolling, or completing a Full Page
(included subfile) layout edit

There are two input layouts that do not include subrecords: the simple input layout
with no subrecords and the input layout with an included file. The order of phase
execution for a simple input layout with no subrecords is as follows:

1. Before phase (before 4th Dimension displays the layout)
2. During phase (for each user event until a validation or a cancel)

3. After phase (only when the user validates the current record)

The order of phase execution for an input layout with an included file is as follows:
1. Before phase (before 4th Dimension displays the layout for the main file)

2. During phase executes the included layout procedure for each included record
displayed. 4th Dimension sets During TRUE and then draws each displayed
record for the included layout procedure.

3. During phase (for each user event)

4. After phase (for the main file only when the user validates the current record)

46 Chapter 3: Files

Here is an example of a simple input layout procedure:

Case of
.(Before)

If(Entry date = 100/00/00!) "If date is O this is an ADD RECORD
Entry date := Current date
End if

:(During)
lf(Modified(Company))
Company:=Uppercase(Company)
End if
:(After)
Month := Month of (Current date)
End case

When Before is TRUE and the date is empty, the procedure stores the current date
in the Entry date field. The user will see the date already filled in when the layout
appears on the screen. When During is TRUE, the procedure puts the company
name in uppercase. When After is TRUE, the procedure parses the month number
from the current date and stores it in the Month field (for sorting by months). When
entering data, the user never sees the Month field.

Execution cycle for output with no subfiles

There are three basic execution cycles when dealing with output layouts having no
subrecords: screen display only, printed output lacking either sorted fields or
subtotals, and printed output with sorted fields and subtotals.

With the exception of canceling a printing report, user actions cannot change phases
in output layouts.

A display-only output layout has only one phase: 4th Dimension sets Before and
During to TRUE simultaneously for each record, before the record is displayed.

The order of phase execution for an output layout with no sorted fields, no subtotals,
and no subrecords is as follows:

1. Header phase once for each page (Before selection returns TRUE the first time
only)

. Before phase for each record
. During phase for each record before the record is printed

. In Break phase once for each page (fbr level O only)

(VIR NS R\~

. Footer phase once for each page (End selection returns TRUE for the last footer
only)

Layout procedures and file procedures

47

The order of phase execution for an output layout with sorted fields, subtotals, and no
subrecords is as follows:

1. Header phase once for each page (Before selection returns TRUE the first time
only)

2. Before phase once for each record

3. Test: If there is not enough room on the page to print the record, do both a Footer
and Header phase

4. During phase once for each record

5. Test: If the next record will not cause a break, return to step 2

6a. Break (least significant break level)

6b. Test: If no change in the next most significant break level, return to step 2
7a. Break (next most significant break level)

7b. Test: If not at end of selection, return to step 2

8. Break (for level 0 only)

9. Footer (End selection returns TRUE for the last footer only)

Here is an example of an output layout procedure with sorted fields:

If (Before)

If (Before selection)
vPage:=0

End if
gQuarter:=[Income]Quarter
vStri ="
vStr2:=""

End if

If (In break)
Case of
: (Level=1)

vStr1:="Subtotal for Quarter "+String(gQuarter)+": $"+String(Subtotal(Sale))

: (Level=0)

vStr1:="Final figures to date.... Maximum: $"+String(Max([Income]Sale))
vStr2:=" Total: $"+String(Sum(Sale))
End case
End if

If (In footer)
vPage:=vPage+1
End if

48 Chapter 3: Files

Current selection and current record

The teacher in the example may want to search student records on the basis of one or
more criteria; for instance, all students born after a given date. Such an operation
would yield a subset of all records in the file. This subset is called the current
selection. Unless the current selection is empty, it will have a current record.

Selecting a file

You may define a subset of all records in a file as a current selection. Conducting a
search results in creating a current selection for the file. Figure 3-7 illustrates the
change from all records in a file to the current selection.

When in the User environment, choose the Search, Search and Modify, and Search
by Formula commands. When writing procedures, use SEARCH, SEARCH
SELECTION, or SEARCH BY INDEX. If no matching record is found, 4th
Dimension returns an empty selection. The current selection can contain all the
records of the file. Choose Show All in the User environment or use the ALL
RECORDS command in a procedure.

Important

Making a selection destroys any sort order. If you want to see records in a
particular order, always sort after a search.

The current selection enables you to manipulate a group of records in a file, whether
to print them, modify them, perform calculations, or take other actions.

% Note: A current selection does not actually contain the matching file records, but
only points to them. It is, in fact, a table in memory. The number of records that
a selection can contain therefore depends on the RAM size of your Macintosh. A
current selection takes up 4 bytes for each selected record.

Current selection and current record

49

Students File: 12 of 12

ALL RECORDS ((Students File))

Last Name First Name Date Average

MARTIN Henry 05/07/66 14
DAVIS Jean 03/12/66 16
PRICE Andy 11/05/66 17
DRUMMOND Jack 02/11/65 16
ELLIS Patricia 09/07/63 12
SMITH Julia 09/08/64 15
BAILEY Henry 09/05/65 13
ANDERSON Peter 03/09/64 11
R AND Larry 06/09/63 10
PASCAL Phillip 07/14/63 13
AL INE Toni 07/16/64 14
PETERS Jacquiline 03/19/63 17

O|ln

Students File: 8 of 12

SEARCH ((Students File);(Students File)Date>=!1/1/64!)

Last Name First Name Date Average

MARTIN Henry 05/07/66 14
DAVIS Jean 03/12/66 16
PRICE Andy 11/05/66 17
DRUMMOND Jack 02/11/65 16
SMITH Julia 09/08/64 15
BAILEY Henry 09/05/65 13
ANDERSON Peter 03/09/64 11
AL INE Toni 07/16/64 14

S

Students File: 5 0of 12

SEARCH ((Students File);(Students File) Average <14)

Figure 3-7

Two search criteria applied to the same file

50 Chapter 3: Files

Last Name First Name Date Average

ELLIS Patricia 09/07/63 12
BAILEY Henry 09/05/65 13
ANDERSON Peter 03/09/64 11
RAND Larry 06/09/63 10
PASCAL Phillip 07/14/63 13

Current record

When you perform an action on a current selection, 4th Dimension by default starts
with the first record in the current selection, which becomes the current record, then
goes on to the next, which in turn becomes the current record, and so on to the last
record in the selection.

When the search operation results in a current selection containing at least one
record, the first record becomes the current record in the file. When the selection is
empty, there is no current record. When you add a record to a file, the new record
becomes the current record when the user validates it.

The 4th Dimension programming language provides you with commands such as
PREVIOUS RECORD and NEXT RECORD to move the record pointer through a
current selection, so that you can select records one by one as the current record.

Selecting a record as the current record automatically loads it into memory. Running
a procedure to modify a field amounts to changing the value contained in the current
record. To save the modification, you must tell 4th Dimension to save the record,

with SAVE RECORD. When values are modified during data entry, these
modifications cannot be saved unless the user validates the entry.

Sorting

Once you have searched a current selection, you may want to change the order in
which records are displayed or printed. This means sorting the current selection.
Sorting a selection does not modify its contents. It only changes the way records are
arranged within the selection. Once the selection is sorted, the first record becomes
the current record.

4th Dimension lets you sort all the records in a current selection using any field type,
except Picture and Subfile type fields. You can sort to 2 maximum depth of 30 fields.
You can sort fields in ascending or descending order. When sorting a selection on
multiple fields, you may choose either sort order on each field.

Any non-indexed sort operates on the current selection table, ignoring any previous
sort order. Within a given sort instruction, 4th Dimension gives priority to the first
field to be sorted, then to the second, and so on. The first field sorted is considered a
level 1 sort, the second field sorted a level 2 sort, and so on.

Sorting

Sl

Figure 3-8 shows student records in the order entered by a teacher.

Students File: 12 of 12

[

Last Name First Name Date Average

MARTIM Henry DS/07 S8 14
DAL IS Jean PR PEy -1 16
FRICE #Aridy 11709 66 17
R S e [Jdack (e 6 B 16
ELLIZ Fatricia 0/07 83 12
SHITH Julia RN 12
EAILEY Henty 03 0S8 S ES 1%
ANDERSON Feter D503 084 11
R AMC Larry CIE SO R 110
F &z AL Fhilhip 0751463 12
AL INE Tam a7 658 14
FETERZ= Jacgquiline NESS BT 17

.;-_::t]

Figure 3-8
Records in the order entered

Figure 3-9 shows the User environment Sort dialog box set to sort the Last Name field
in descending order.

Sort Students File ...
Lazt Marne T
Fir=st Narne 1 Last Name =
Crate of Birth
Average
o o
| Cancel | | Sort |

Figure 3-9
Sort dialog box: Sort descending on Last Name field

52 Chapter 3: Files

Figure 3-10 shows a Sort dialog set to sort the Average field in descending order, the
Last Name field in ascending order, and the records that appear as a result.

Sort Students File ...

Frvet N LA | Average s

Date of Birth

Average Last Marne

Students File: 12 of 12 ==

Last Name First Name Date Average i
PETERS Jacquiline 03/19/63 17
PRICE dAndy 11/05/66 7
DAVIS Jean 022766 16
DRUMMOMNLC: Jack 02/11/65 16
SMITH Julia 09/ 02 /64 15
AL INE Toni 07416/ 64 14
MARTIN Henry AS/07 FEs 14
BAILEY Henry 030565 12
FASCAL Fhillip 07 A14/63 12
ELLIS Fatricia 02/07 /83 12
ANDERSON Feter 0F /09554 11
R AND Larry 0e /0% /632 10

e

A3

Figure 3-10

Students sorted with average in descending order and last name in ascending order

Sorting is 2 dynamic operation. It acts on the current selection. This is the reason any
of the following actions may result in a loss of the current sort order:

changing the current selection

sorting again

using a set

o 0O 0o 0O

performing a search

quitting the application

Sorting

53

Subfiles

This section describes subfiles, how and where to place them, and how the execution
cycle affects them.

Subfiles defined

A subfile is, in reality, a field containing a varying number of records. These
records are referred to as subrecords. Each subrecord contains one or more
subfields. The maximum number of subfile records per parent record is 32,767
(limited by RAM). This book refers to subfiles as substructures when referring to
the structure of subfiles and subfields as seen in the Structure window.

The maximum number of subfile levels is five. Whether referring to one field and its
subfile or a subfile field containing a second subfile, the book uses the terms parent
and offspring. The parent is the data structure containing the offspring structure. To
see how subfiles work, study the following examples.

Subfile example 1

Figure 3-11 shows a file named Items. This file contains the elements (items) of an
invoice detail.

Iterns
Stock Nurnber A
Description A
Frice R
Tax Rate R

Figure 3-11
Detail file for an invoice

Suppose you wanted to store data for a sales report containing detailed information
about each item sold: date of sale, quantity sold, and invoice number. You also want

to know the total sales per item. Here are the three alternatives for accomplishing
this goal:

1. In the first alternative, you could add three fields named [ltems]Date,
[tems]Quantity, and [ltems]Invoice Number to the file. (See Figure 3-12.) In this
case, you would have to add a new record to the ltems file every time an item is
sold and repeat the stock number, description, price, and tax. This solution would
be time-consuming and wasteful of storage space, because you would have to enter
the same four values every time a particular item is sold. An additional
disadvantage is that you would only get the total amount of sales per item by going
through every record and adding the sales values.

54 Chapter 3: Files

2. As an alternative, you could create a new file named Sales containing three fields:
[Sales]Date, [Sales]Quantity, and [Sales]invoice Number. (See Figure 3-12.) You
would still have to enter the item reference number for each item sold and go
through all the records referring to the same item to calculate the total quantity
sold.

Iterns Iterns Sales

Stack Nurnber A Stock Number A Date D
Dezcription A Dezcription A Quantity R
Frice R Frice R Inveoiee Murmber L
Tax Rate R Tax Fate R

Date D

Quantity R

Invoice Murnber L

Alternative 1 Alternative 2

Figure 3-12
Alternatives 1 and 2

3. The third alternative is to insert the list of sales per item within each Part record.
The list would have the capacity to insert a number for quantities sold. In other
words, this would amount to adding a smaller file within each item record—a
subfile.

To solve the invoice problem, add a field of type Subfile named [ltems]Sales. You
create the actual subfile by adding subfields to [ltems]Sales.

These subrecords belong to a given record and will be loaded into memory at the
same time as the record to which they belong. A subrecord pointer points to the
first subrecord, defining it as the current subrecord.

This makes it possible to view the quantity sold per item. 4th Dimension has a
number of routines to manipulate subrecords. Thus, you can search, sort, create,
modify, delete, graph, and perform statistical and -arithmetical calculations on
subrecords. For example, you can find the quantity sold per item by using the Sum
function. Figure 3-13 shows the subrecord solution.

Iterns
Stock Number A
Cezcription A
Frice R
Tax Fate R
Sales L.

Date D
Quantity R
Invoice Murnber L B

Figure 3-13
Subfile alternative

Subfiles 55

Subfile example 2

Suppose you want to create a specific file to invoice the above-mentioned items.

This file would handle all necessary information such as the invoice number, date,
customer’s address, price (tax included, tax not included), and the tax total. You will
have to create at least six fields. The next step would be to list all invoiced items,
specifying the stock number, description, quantity sold, price, tax, total tax not
included, total tax included, and the total tax for each item. You will need to create at
least seven fields per item.

Assuming that 20 items are listed on one invoice, you would need to create 166 fields
(6 + 8 * 20) to specify the invoice accurately. Whether your invoice contains 2 items
(with more than 100 fields the majority of which won'’t be used) or 21 (you would need
another record to add 8 fields and so on), invoicing is quite a chore.

This file structure does not allow easy data management. A solution would be to
create two files: one, named Invoices, contains invoicing information. Another,
named Iltems, containing details of every invoice plus a field in which the number
referring to the appropriate invoice is stored. This brings you back to the problem
encountered in Example 1. You would also have to go through every detail item in
the second file to display or print an invoice.

Typically, a group of items detailed in one invoice should function as a smaller file
within an invoice record. Therefore, it's best to create a subfile field named
[Invoices]ltems, which generates a subfile composed of subfields that detail every item
on the invoice. The group of items on an invoice is similar to a subfile. Thus, you can
create 2 number of detail items and calculate prices with and without including taxes.
See Figure 3-14.

Irowonces

Irwoice Murnber L

Irwvotoe Date D

Customer LE

Totsl THI R A R

Total Tl R : i

Iterns t Y S Iterns
Stock Murnber A
Cezcription Al
it Frice RE
Huantity RE
Ta: Fate RE
Total THI R
Total T RE
Total Tas RE

Figure 3-14
Invoice file with its detail subfile

56 Chapter 3: Files

Once you have specified a file and its subfile, you can add a varying number of
subrecords within any record of the file. Figure 3-15 shows the structural relationship

between records and their subfiles. A given group of subrecords that belong to one
file record constitute a subfile.

Record

Field 1
Field 2
Field 3
Field 4
Field §

| | @ —+—— Subrecords

Figure 3-15
Structure of records and their subfiles

Only the subrecords belonging to the current record are in memory at a given
moment, rather than all the subrecords of all records in the file or selection. Thus,
when you add, delete, modify, search, sort, or print subrecords, you are acting only
on a selection of subrecords belonging to the current record. To work on more than
one record’s subrecords, you would have to work within a loop that would move
through a selection of records.

You can search both in the User environment and through a procedure called from a

custom menu. In either case, you can search subrecords in two ways: you perform a
search within the file with

[flename]subfile'subfield = Value.
A statement following this template could look like this:

SEARCH([Invoice]ltem'Part No = "A5430B")

Subfiles 57

In this case, 4th Dimension selects the records in the file containing at least one
matching subrecord. This returns a record selection and not a set of subrecords.
Figure 3-16 illustrates a search that returns a selection (the current selection) of
records based on values in a subfile.

Current selection returned by a search

Record 1 Record 2 Record 3
1 1
C—1 1
S 1
! 1
1 ieippa
1 1]
1] 1
E == R
—1 "

Subrecords satisfying the test

Figure 3-16
Subrecord search returning current selection of records

You can also perform a search only on the subrecords that belong to the current file
record. A procedural version of this might look like the following:

SEARCH SUBSELECTION([Invoice]ltem'Part No = "A5430B")

4th Dimension selects matching subrecords, creating a subselection within the
subfile. When this subselection is not an empty one, the first subrecord becomes the
current subfile subrecord. 4th Dimension provides you with commands like

PREVIOUS SUBRECORD and NEXT SUBRECORD to move through a
subselection. Figure 3-17 illustrates a search within a subfile.

Important

Unlike a record selection, a subselection does not automatically have a current

subrecord. Always select the current subrecord with ALL SUBRECORDS or
FIRST SUBRECORD.

58 Chapter 3: Files

Current record

Current subrecord

L Subrecords
— returned by search

Figure 3-17
Search within a subfile

Subfile example 3

Suppose you want to create a documentation database. You'll have a file named
Documents, where each record will contain a particular text stored in a Text field. You
then want to search for texts containing one or more specific words. When records
contain long texts and the file contains many records, a sequential search such as

SEARCH([Documents]Text = "@Value@")

would take too long. Therefore, a solution would be to work with a subfile. You create
a field of type Subfield, named [Documents]Keywords.

In the subfile, you create a subfield named [Documents]Keywords'Word. Several words
can be saved as keywords for a single text. Knowing that a subfield can be indexed,
index the Word field of the [Documents]Keywords subfile. You then can perform an
indexed search with

SEARCH BY INDEX ([Documents]Keywords'Word = "Value")

This returns a current selection representing all the records containing at least one
matching subrecord. Thus, you have a set of text records containing the specified

keyword. Don’t forget that you must be able to specify keywords related to the text
while entering a record.

If you want, you could write a procedure that would do the time-consuming search
just once, adding a subrecord to each record where the value is found.

SEARCH([Documents]Text="@Value@")

Subfiles

59

A subfile can contain one or more fields of type Subfile. A field of type Subfile will
generate a lower-level subfile. Hence the concept of subfile levels.

Working on a level deeper than two can be quite a complex matter. In other words, to
access a given subrecord within an 7 level subfile, you must first access the parent
record and through it the first-level subfile and the desired first-level subrecord, and
through it the second-level subfile and the desired second-level subrecord, and so
on. See Figure 3-18.

Current record

Level 1 subfile . Level 2 subfile

I |
Current subrecord T —— Current
for level | subrecord
: I for level 2
Figure 3-18

Multiple-level subfile access

Subfiles and layouts

To enter data into subrecords, or to display or print subrecord data, you need to
create subfile layouts in the same way as you create layouts for a file. Once you have
created your subfile layout(s), you create an included layout area to include these
layouts in an appropriate file or parent subfile layouts. The output layout and input
layout concepts (as defined earlier) also apply to subfile layouts. Figure 3-19 shows a
layout dialog box for a subfile.

60 Chapter 3: Files

Format for an included layout...
Items 4
Sales % [seiet) |t
Sales Report Omatty]
m gl
Sales Output M
e (< Full Page
(] Multi-line
[Cancel]
5
— —— Print using...
[trpand J () Variable frame
@ Fixed frame (truncation)
(O Fised frame (multiple records)
Figure 3-19

Layout dialog box for a subfile

To enter, display, and report data in subfiles, you can follow five steps when creating
layouts:

1. Create a Multi-line layout for each subfile for subrecord display (output).
. Create a Full Page layout for each subfile for subrecord entry (inpub).
Create an input layout for the parent file.

. Within the parent-file input layout, create an included layout area.

N o N

. Indicate that the subfile layout for the area is the Multi-line layout created in
step 1.

You can also enter directly into subrecords with ADD SUBRECORD and MODIFY
SUBRECORD. These take a subfile layout name as an argument.

See 4th Dimension User’s Guide for details on how to create layouts and include

subfile layouts in file layouts. Figure 3-20 shows a file structure with its related record
and subfile layouts.

% Note: When you create subfile layouts, you can select the subfile default Multi-
line and Full Page layouts. When you create a subfile area in a file layout, you can
select the subfile and layouts you want. These layouts can be identical to or
different from the subfile default layouts. Default layouts are activated if you do
not specify any other layouts for the subfile.

Subfiles

61

Items HllI————————— Lagout: ITEMS ==——————""U)=
Stock Number A . " L I
- ™, + L
Description A J I
Price R —Ira? Items L
Tax Rate 4 Bl ;
Sales x] Stock Number [Stock Mumber] [50
— Description [Cezcription]
Sales TR Price [Frice I -
Date Sold D niii F 100
Quantity RE Tax Rate |Tax Rate | L

Invoice Number L = Sales

Items
Stock Number [BRDO6
— Description |BRICK-RED HAVERTON
=[] Layout: SALES Price | 54 6
N Date Sold Quantity Invoice Tax Rate I 0.065
ra7|[Date Soid J|[Quantit Invoice Numbs
O Y —— | — lII .r.sjrmce —. _ Date Sold Quantity Invoice <>
Ol 07/12/86 3500 1548 |
— 08/10/86 3800 1602 _“
|E| 09/05/86 4500 1741 ¥
= eemmmT T Tl S
Figure 3-20

A file with its related record, subrecord layouts, and record/subfile output

Printing options in the subfile area

When creating a subfile area within a given layout, you may choose one of three
framing options: Variable Frame, Fixed Frame (truncation), and Fixed Frame
(multiple record). These options only apply to printing. They let you decide the way
subrecords will be printed.

If you choose Variable Frame, 4th Dimension prints as many subrecords as are
present, expanding the frame as necessary.

The Fixed Frame (truncation) choice always prints the same number of lines, whether
you have enough subrecords to fill the space or not. If there is not enough space to
accommodate all the subrecords, 4th Dimension does not print the extra records.

Fixed Frame (multiple record) will print as many records as necessary to print the
subrecords for the current record. If the number of subrecords is less than the
number of allotted lines, 4th Dimension still prints a whole page, but with the last
line(s) blank. Figure 3-21 illustrates these three printing options.

62 Chapter 3: Files

Items

Stock Number |EROCE

Description |ERICK-RED HAVERTOM

Items

Stock Number |[ERO0E

Description IE:F: ICK-RED HAYVERTON

Price | o4 6
Tax Rate | 0065
Date Sold Quantity Invoice
0712786 500 15482
02 10726 Z200 1602
0905 /26 4500 1741
Items

Stock Number |[ERODE

Description IE!F: ICK-RED HAVERTON

Price | 54 5
Tax Rate | 0065
Date Sold Quantity Invoice
07127868 2S00 154a
20026 Za00 1602
02/05./26 4500 1741
1016536 ZE00 1245
115217868 G000 1874
121205868 4100 1920
01 /05027 ZE00 1925
Variable Frame
Items

Stock Number |EROOE

Description lEIF'. ICE-REL HAVERTON

Price | S4 &

Tax Rate | 00685

Date Sold Quantity Invoice

a7 41 2/86 5100 1545
0 10026 Ta00 1602
09 /05 /86 4500 1741

Price | 54 &

Tax Rate I 0.065
Date Sold Quantity Invoice
1016736 Ze00 1245
117521786 40010 1874
12/12/86 4100 1920

Items

Stock Number |EROOE

Description |ERICK-RED HAVERTON

Price ‘ o4 6

Tax Rate I 0.065
Date Sold Quantity Invoice
01./05/87 Za00 1925

Fixed Frame (fruncation)

Figure 3-21

Three options for printing subrecords

Fixed Frame (multfiple record)

Subfiles

63

Subfile layout procedures and the execution cycle

The 4th Dimension execution cycle also applies to the execution of subfile layout
procedures. This section discusses the input and output execution cycles for subfile
layouts. Because you can nest subfiles to a depth of five, the terms parent and
offspring refer not only to a file-level record and its subfile, but also to a higher-level
(closer to the main record) subfile and the lower-level subfile connected to it.

* Reminder: The Multi-line layout lets you display subrecords within the record
layout, and the Full Page layout lets you display a given subrecord when you
double-click in the subfile area.

Execution cycle for input to a record with a subfile

A rule of thumb for input to a parent record having a subfile is that 4th Dimension
executes each phase for the offspring before it executes the same phase for the

parent. As with record-level input, user events can trigger a change of phase during
input. These events include

O completing an entry to or a modification of a field by pressing Tab or Return or
clicking another field

clicking a button
clicking an area

selecting a menu

O

forcing a redraw action by resizing a window, scrolling, or editing a Full Page
(included subfile) layout

There are two input layouts that do not include subrecords: the simple input layout
with no subrecords and the input layout with an included file. The order of phase
execution for an input layout procedure with at least one subfile is as follows:

1. Before phase of the included subfile layout once for each subrecord
. Before phase once for the parent layout

. Display the parent record

. During phase for each displayed subrecord

(VAR SN L\

. During phase for each user event, parent record, or subrecord

5a. If the user acts on the subfile, a During phase occurs for the subfile layout
procedure and then for the parent

5b. If the user acts on the parent record, a During phase occurs for the parent
layout procedure

6. After phase (only when the user validates the current record)
6a. After phase for the subfile layout procedure once per subrecord

6b. During phase for the parent layout procedure once

64 Chapter 3: Files

Execution cycle for output with subfiles

This section covers two output layouts with subfiles: those in which the Multi-line
layout is designated as Fixed Frame (truncation) and those designated as Fixed Frame
(multiple records).

The order of phase execution for an output layout in which the Multi-line layout is
designated as Fixed Frame (truncation) is as follows:

N SO N AN -

. Header phase for the parent (Before selection returns TRUE the first time only)
. Before phase for each parent record before it prints

. During phase for each parent record before it prints

. Before phase for each displayed subrecord before it prints

. During phase for each displayed subrecord before it prints

. Break phase for level 0 only

. Footer phase for the parent (End selection returns TRUE for the last footer only)
8.

Return to step 1 if more records remain to be printed

A Fixed Frame (multiple records) subfile layout has a more complex cycle, because it
must test to see if the fixed frame has room for another subrecord. If it does not have
enough room, it should generate another page. The order of phase execution for an
output layout in which the Multi-line layout is designated as Fixed Frame (multiple
records) is as follows:

1.
2.

SN N A W

Header phase for the parent (Before selection returns TRUE the first time only)
Before phase for each parent record before it prints

2a. Test: If room remains for the next subrecord, go to step 3

2b. Break phase for level O only

2c. Footer phase (End selection returns TRUE for the last footer only)
2d. Header phase

2e. Before phase

. During phase for each parent record before it prints
. Before phase returns TRUE for each displayed subrecord before it prints
. During phase for each displayed subrecord before it prints

. If subrecords remain to be printed:

6a. If another subrecord will fit, do step 4

6b. If another subrecord won't fit, do step 2a

. If no subrecords remain, do step 2

. Break phase for level 0 only

9. Footer phase for the parent (End selection returns TRUE for the last footer

only)

Subfiles

65

Output from a record having at least one subfile

This section looks at the execution cycle for outputting a record having at least one
subfile. This includes printing and screen display.

Printing a record having at least one subfile area

The order of execution when printing a record with at least one subfile is as follows:
1. Before file statements and Before file output layout statements execute once.

2. Before subfile statements and Before output layout statements used in the file
output layout execute once for every subrecord contained in the record.

3. During file statements and During file output layout statements execute once.

4. During subfile statements and During output layout statements used in the file
output layout execute once for every subrecord contained in the record.

Viewing a record selection having at least one subfile area

4th Dimension does not execute subfile procedures, but rather the file procedure (if
any) for the parent file and the output layout procedute for the parent file. Only the
subfile layout appears on the screen.

When to use a subfile

Subfiles and subfile levels are part of the concept of data hierarchy, because a subfile
can generate a subfile for each record in a file. This subfile in its turn generates a
subfile, and so on. As an example, assume that you need to manage a file of
customers spread out over the country, which is divided into states, broken up into
regions, and further subdivided into counties.

Given the concept of hierarchy, you would create a file named Customers with a
State subfile, containing a Region subfile, entailing a subfile of lower level named
Counties, in which you would enter the customers’ addresses and phone numbers.
The structure of your database would thus reflect that of the country. Layouts in your

database would also reflect that hierarchy, because you’d have to work down the
different levels to access a given record.

Nevertheless, several operations would become difficult to perform, especially a
search by name or postal code. Sorting your customers by name will not be easy
either, because subfiles are not related to one another. In this particular case, a
hierarchical file structure is not an appropriate approach. Instead of using a

hierarchy, create fields for customer last names, first names, addresses, etc., and

three fields named State, Region, and County. This structure allows for easy search
operations.

66 Chapter 3: Files

RAM costs of subfiles

Because subrecords are components of a record, and subrecords are loaded into
memory whenever the parent record is, the number of subrecords you can relate to a
given record depends on the size of each subrecord and how much RAM you have.

Creating an invoice system

Suppose you create a structure to deal with invoices and customers. The first analysis
leads to the design shown in Figure 3-22.

Customers

City

Name
Address

State
Postal Code
Invoices

Outstanding
Sales

Invoices

DX 2>2>d>>D>

Invoice Number |
Entry Date DE
Total TNI R
Total TI R
Total Tax E T _5
et . Description Af
Unit Price R
Tax Rate RE
Total TNI RE
Total T RE

Figure 3-22
Invoice design with two levels of subfiles

This design lets you

O

search customer records, sort the file selection by name, ZIP code, sales, and so
on

access all a customer invoices, because such information is stored in the
customer’s record

calculate the total amount for every invoice using routines that 4th Dimension
provides to add the items in all invoices (you will also use routines to calculate a
customer’s sales and outstanding amounts due)

calculate annual sales by adding up all customers’ sales (you will also be able to
evaluate global outstanding by adding up all customers’ outstanding)

Subfiles

67

On the other hand, the structure has several drawbacks:

0 Whenever you wish to change a particular invoice, you have to select as the current
record the corresponding customer record and then the specific invoice record as
the current subrecord. In other words, you cannot search for a particular invoice
without searching for the customer to whom it is related.

O Printing invoices related to different customers is not an easy operation, because a
customer invoice consists of a customer subfile.

Sorting all invoices by number or date is impossible.

You may not have enough RAM space to load a customer’s record if the customer
has a lot of invoices with each having numerous items.

You soon realize that entering invoices into a Customers subfile is not appropriate

for “file-type” operations, such as sorting, searching, or printing invoices. Creating
two separate files in a relational database is a better solution. This structure is shown

in Figure 3-23.

Irewoe Murmber

|
Ertry Date D
Tuatal THI R
TI]*-’] T| R
Tatal Tas el ::
[ters F Rt
Custarmsr Marme A [ters
Customers Cezcription A
Mame A Unit Price R
AideRss A LHuantity 1 E
L & Taw Rate R
Al A Tatsl THI R
Postal Code A Total T R
Outstanding R
Sales -] [

Figure 3-23
Invoice system with two files and one subfile

Such a structure provides for easy searching, sorting, and printing of the Customers
file. It is designed for easy invoice management, because all information is now
stored in a different file named Invoices. Add the [Invoices]Customer Name field to
know the invoices belonging to a customer. A 4th Dimension relational database will
automatically carry over invoice totals into customer Sales and Outstanding fields
every time you add a new invoice. Refer to Chapter 5, “File Links,” in this manual.

68 Chapter 3: Files

Chapter 4

Layouts

69

This chapter covers areas that relate to the programming of layouts. For details on
how to work with layouts, layout tools, and various icons, see Chapter 2 of

4th Dimension User’s Guide, “Layout Design Basics.” This chapter discusses the
following topics:

O report layouts
field formatting

0

O picture fields

O layout variables
O

external areas

Report layouts

Look at the layout and the paper it will print on, shown in Figure 4-1. It raises the
question of how 4th Dimension distributes printing areas given different printing
scenarios. This section looks at three basic scenarios:

O Print a selection of unsorted records.
O Print a selection of sorted records.

O Print a selection of sorted records with subtotals and one break level.

ol

\ "Z.—: Layout: Output

..

]
i
=
0
&

I':; .. 1_

i v

Figure 4-1
Output layout and a piece of paper

70 Chapter 4: Layouts

Printing a simple list

Printing a list of records can be a simple activity: header contents print at the
beginning of every new page, detail prints as long as there are records to be printed,
break contents print once under the last record of every page, and footer contents
print at the end of every new page (see Figure 4-2).

<* Note: The layout break prints once under the last record on a page, because it
helps you frame a given group of records.

Page 1 Page 2 Page 3

Header - Break
Detail - Footer

Figure 4-2
Prinfout of a simple list

Printing sorted records

When you print sorted records, the header prints at the beginning of every new page,
detail prints as long as there are records to be printed, and the footer prints at the
end of every new page, just as when you print a simple list. But when working with
sorted records, a break prints when a value in a break field changes.

To print subtotals, statistics, or other information between records, you must create
a break area and insert the appropriate variables within it. To create a break area,
separate the D and B markers, and insert any areas you wanted printed in the
resulting break area. (See the section “Layout Variables” later in this chapter.)

Report layouts

/1

The 4th Dimension Subtotal function determines whether or not break processing
will be active. The 4th Dimension interpreter scans the output layout procedure for
the word Subtotal. If it finds Subtotal, it processes breaks. See Figure 4-3.

< By the way: 4th Dimension does not interpret or execute output layout
procedures when looking for Subtotal. It simply searches for the word, written

4s an instruction.

Subtotals |
—- Subtotals
| J
| ﬁi— Grand total
Page 1 Page 2
Figure 4-3

Breaks on sorted records with subtotals

Sort fields are fields that you have explicitly sorted. For example, if you included
the statement

SORT SELECTION ([SALES] ; SalesRegion ; SalesPerson ; CustomerNumber)

in a procedure, SalesRegion, SalesPerson, and CustomerNumber become the sort
fields. Break fields, on the other hand, include all the sort fields less the last sort
field. Thus, the break fields for this statement are SalesRegion and SalesPerson,
but not CustomerNumber.

Each break field has a different level. You can test this level with the Level

function. The first sorted field, SalesRegion, generates a level 1 break when the value
of SalesRegion changes. Likewise, the second sorted field, SalesPerson, generates
a level 2 break when the value of SalesPerson changes.

Thus, if you have three records in which SalesRegion has the value of “North”
followed by two records with the value “South,” 4th Dimension generates a level 1
break and prints the break area after printing the three “North” records. It then prints
the two “South” records, generates a level 2 break, and prints the appropriate break
area.

/2 Chapter 4: Layouts

4th Dimension also has a level 0 break. If the selection is unsorted, 4th Dimension
generates a level 0 break after printing the last record of each page. If the selection is
sorted, 4th Dimension generates a level 0 break after printing the last record in the

selection. The following is an example of how an output procedure processes breaks.

Figure 4-4 shows the form a printout would take under this procedure.
If (In break)

Case of
:(Level = 0)
bEnd := "Total for the file: "
bLine :=" "* 12 "Print 12 underscores
bTotal := Subtotal(SalesAmount) "Subtotal activates break processing
(Level = 1)
bEnd := "Total for region: "+vRegion
bLine := "#"* 12
(Level = 2)
bEnd := "Total for person: "+vPerson
bLine :="=""* 12
End case
End if

Header

Records with |
Salesperson = Jim

Records with Break (level = 2)
Salesregion = North

e — Break (level = 2)
- |~ Break (level = 1)

Records with {
Salesregion = South 1 — Break (level = 2)
ol | Break (level = 1)

[Break (level = 0)

Footer

Figure 4-4
Report form with breaks for region and sales person

Report layouts

73

Printing sorted records with subtotals and a page break

The header prints at the beginning of every new page, detail prints as long as there
are records to be printed, and footer prints at the end of every new page. The break
prints when the break field changes. That is, when the value in a given field changes,
4th Dimension does a page break on each break. Figure 4-5 shows the result of such a
scenario.

Break contents will print if you've assigned a subtotal variable to the values of a sorted
selection. When you view records, this area appears once in the bottom part of a
layout window, above the footer.

Page 1 Page 2 Page 3

Figure 4-5
Report with page breaks for each break

< Note: The break also prints once under the last record of the file selection to
display the grand total.

Formatting fields within a layout

Data and data display are two different concepts. Take a Real field in a given record
as an example. A numeric value stored in that field can have as many as 19 significant

digits. This value can be displayed as two decimal, three decimal, and so forth.
Whatever the format, the field contents remain unchanged.

74 Chapter 4: Layouts

Alphanumeric and Text fields

Displayed values stored in these fields can be left aligned, right aligned, or centered.
Choose the appropriate alignment using the Style menu when designing a layout.

< Note: Alphanumeric and Text fields display faster when you insert an
exclamation point () in format specifications. This usage only displays one line.
Inserting an exclamation point in a numeric field left justifies the display.

Real, Integer, and Long Integer fields

Displayed values stored in these fields can be left aligned, right aligned, or centered.
Choose the appropriate alignment using the Style menu. To format a numeric field,
double-click the field or choose Format from the Layout menu. The Format of field
dialog box, shown in Figure 4-6, will appear on the screen.

Format of field... Format:
Irvoice Nurnber | |
Entry Date ¥]
sununn
Total T F #an wuy
Total Tax F sas s
Custorner Marme P suman wEs8.
e wus uw see_
s tssf,:,o !
£ “..““I-II-I nEg w88 -
untuesf,&i :,';'ua"lsau E-.”-:,':,

e wuw wE swwCp
#“I“ﬂﬁ[:.glﬁﬁlﬁﬂﬂcipj

RS 8% OO 88 #2887
f*iaa.‘”“”_l:il:ll I'.}."“*-_**“_[nj-
1{:““;“““ oo .;ff"”"'_.”“” DOk
Fex #ex Q0 -F€s £ 00
v ;S o [B I S
| Ccancel | | 0K]

Figure 4-6
Format of field dialog box

You can format a numeric field using alphanumeric expressions. You can specify
three formats, each separated by a semicolon. The first format applies when the field
value is positive, the second when the field value is negative, and the third when the
value is null (zero).

Separate the expression into three parts, separating each part with a semicolon.
For example:

Positive;Negative;Zero

4th Dimension prints the first string (Positive) when you enter a positive value, the
second (Negative) is enabled when the field value is negative, and the third format
(Zero) when the value is null (zero).

Formatting fields within a layout

75

You may specify any formatting character except Tab, Return, or control characters.
Four specific symbols determine the maximum number of digits you wish to display
on the screen. These are

O number sign (#)
O asterisk (*)
O caret (A)

0 zero (0)

If you have no zero format, zero uses the positive format. If you have no negative
format, negative uses the positive format.

Number sign (#)

This symbol is replaced by a digit when the field value is displayed. When there are
fewer digits than number signs, leading number signs are disabled as well as any
other character surrounded by number signs.

Asterisk (%)

This symbol is replaced by a digit when the field value is displayed. When there are
fewer digits than asterisks, leading asterisks are forced and displayed; any other
character surrounded by asterisks also appears as an asterisk.

Caret (»)

This symbol is replaced by a digit when the field value is displayed. When there are
fewer digits than carets, leading spaces are forced. They appear as non-breaking
spaces, and any other character surrounded by carets also appears as a non-breaking
space.

<+ Note: The caret character does not generate a space character, but a non-breaking
space (ASCII code 202). This non-breaking space is not a word separator, and has the
same character width as a digit.

Zero (0)

This symbol is replaced by a digit when the field value is displayed. When there are
fewer digits than zeros, leading zeros are forced and displayed. Any other character
surrounded by zeros also appears as a zero.

76 Chapter 4: Layouts

What happens at display time

Whatever option you choose, the following rules remain in effect:
0 Characters placed to the left or to the right of the last symbol are displayed.

O Characters inserted between two symbols that are replaced by digits will be
displayed.

0 Whenever a formatting error prevents the entire value from being displayed, less-
than characters (<) appear instead.

O When a field value is negative, the sign is accounted for as a digit and is displayed
on your screen. It does not show if you've set a specific format for negative
numbers.

The Format of field dialog box lets you choose among default settings for numeric
values. Should these settings be inappriopriate, enter a format in the text area.

Numeric formatting examples

Table 4-1

How 4th Dimension displays numeric fields for various formats (for display purposes only) and in ifs

three different configurations (positive, negative, and zero)

Format 1234 -1234 0
HH#H <L <<<

HHHH 1234 <<<L<L

HHEBBY 1234 —-1234

HARBH HH 1234 ~1234

####0.00;-####0.00 1234.00 -1234.00 0.00
####() 1234 -1234 0
###0+###0~; 0~ 1234+ 1234 0~
###0~###0- 1234~ 1234 0~
#a#0,###0- 1234 1234— 0
+###0;,-###0:0 +1234 ~1234 0
####0CR 1234CR -1234CR OCR
###(Q~~###0CR 1234~~ 1234CR Qrre
###0DB;###0CR; 0~~ 1234DB 1234CR =~
###QCR;###0DB; 0~~ 1234CR 1234DB (==
###0~(###0) 1234~ (1234) 0~
##0 1,234 -1,234 0
##0.00 1,234.00 -1,234.00 0.00

Formatting fields within a layout

77

Table 4-1 (continued)
How 4th Dimension displays numeric fields for various formats (for display purposes only) and in its
three different configurations (positive. negative, and zero)

Format 1234 -1234 0
ANANA (see Note) ~1234 1234 = o~~~
AAANQ ~1234 -1234 ~~~~()
AN AN ~1,234 -1,234 = o~~~ 0
AN AND.00 ~1,234.00 -1,23400 @ ~~~~~ 0.00
L I I O t1234 _1234 * %k ¥k % ¥
tttto t1234 _1234 tttto
tt’tto t1’234 _1’234 ttttto
*+.%*0.00 *1,234.00 -1,234.00 $44220.00
$**.**0.00;-$**,**0.00 $*1,234.00 -$*1,234.00 S emrag 00
$AAANQ $~1234 $-1234 $~~~~0
~$AANQ—$AAAQ ~$1234 -$1234 ~$~~~0
~$AANO~;($AAND) ~$1234~ ($1234) o T i
~$A,AN0.00~;($A,AN0.00) ~$1,234.00 ($1,234.00) ~$~~~~0.00

Note: When you use the A character in your format, it generates the non-breaking space character (ASCII 202)
rather than the true space character (ASCII 20). Reals are accurate to 19 places total, on either side of the
decimal point. The ~ character represents a non-breaking space (used here only to show that 4th Dimension
shows a space). The <<< characters represent numbers too large for a given format to display.

Formatting a Date field

You can specify alignment and appropriate display format for dates, as shown in
Table 4-2. You cannot generate additional date formats.

Table 4-2

Date formats

Format Display

Short 1/1/90

Abbreviated Mon, Jan 1, 1990

Long Monday, January 1, 1990

Working with Picture fields

You may display Picture fields in three different ways:
0 Truncated

O Scaled to fit

O On background

78 Chapter 4: Layouts

Truncated pictures

4th Dimension centers a Truncated picture in the Picture field and trims the picture if
it's bigger than the Picture field. Figure 4-7 shows Truncated pictures.

Figure 4-7
Truncated pictures

Scaled to fit pictures

4th Dimension automatically enlarges or reduces a Scaled to fit picture to fit in the
Picture field. Figure 4-8 shows Scaled to fit pictures.

P—

Figure 4-8
Scaled to fit pictures

Working with Picture fields 79

On background pictures

A picture stored in an area designated as On background can be moved by the user by
dragging the picture. You first need to design the background in the layout. The user
can control the display of the picture on the background for each record. Figure 4-9
shows an example of an On background picture.

Figure 4-9
On background picture

Double-clicking anywhere in the Picture field brings up the Choice of mode dialog

box, shown in Figure 4-10. The user can select the display of the picture on the
background desired by clicking one of the eight mode choices.

Choice of mode

J

L "y

Figure 4-10
Choice of mode dialog box

80 Chapter 4: Layouts

Choosing any of these options determines the contrast between the picture and the
background. Pixels can be black or white. The combination of two pixels determines
the shade of the resulting point according to the background and picture patterns.
4th Dimension offers four basic operations—Copy, Or, Xor, and Bic (Bit Copy)—
and a Not operation for each operator for a total of eight modes. Table 4-3
summarizes the eight modes, showing the action taken on the destination pixel,
based on whether the source pixel is black or white.

% Note: Picture fields functions may be combined with arithmetic operations on
pictures (see Chapter 8, “Operations on Pictures”).

Table 4-3

Pixel transfer modes

Source transfer mode If black pixel If white pixel Figure reference
srcCopy Force black Force white Figure 4-11
srcOr Force black Leave alone Figure 4-12
srcXor Invert Leave alone Figure 4-13
srcBic Force white Leave alone Figure 4-14
notSrcCopy Force white Force black Figure 4-15
notSrcOr Leave alone Force black Figure 4-16
notSrcXor Leave alone Invert Figure 4-17
notSrcBic Leave alone Force white Figure 4-18

Figure 4-11
srcCopy example

Working with Picture fields

e

R
e

SOt
o i
o

3
&

,
3
L

e

Figure 4-12

srcOr example

Figure 4-13

srcXor example

Layouts

Chapter 4

82

Figure 4-14

srcBic example

Figure 4-15

notSrcCopy example

83

ields

icture fi

ing with Pi

Work

Figure 4-16
notSrcOr example

Figure 4-17
notSrcXor example

84 Chapter 4: Layouts

Figure 4-18
NnotSrcBic example

% Note: The combination of pixels is calculated only for the picture area; the
remaining background is unchanged.

Layout variables

In addition to fields, text, and graphic objects. 4th Dimension layouts can contain
variables. You can set up layouts for data entry using variables. You can also design
dialog boxes to suit Macintosh user interface standards. You can also create complex
page setups, which include data extracted from other files and substructures.

Figure 4-19 shows a layout containing text, fields, and all of the types of layout
variables.

Layout variables 85

= =——————= lLayout: VARIABLE EHAMPL HIE
L Iltems
0 :- B
: === Stock Number [Stock Nurnber] wSernl) *u‘
.- Description [Description |
E — Unit Price | i_i}'|TtF‘f=1-;e.____
] --Dutg Free? e
= (= [] Imported Item (7] Yes iy
R (LINo
il | 11 ' ‘ i ‘ '
=™ Enter ‘ ’ Cancel ‘ l Help
= 11T 1TQ1C 1110
| I k) 11 119 G 1 '
_g;i 1OV O 1000 O 1

Figure 4-19
Standard layout variables

When you create a variable within a layout, the Format of variable dialog box
appears (see Figure 4-20). Use the dialog box to specify the type, name, and format
for a variable and for labeling button variables.

Format of variable...)
Format:

UVariable name:

Numeric Formats

g
@ Enterable Uariable #aus suy
— a R 'y ###.##D
t,:::)Nnn enterable Uariable suwny swwa;
i "Accept” Button BE HHE 88 Bu8
3 "Don't accept"” Button #us wueOp
= ##I“##J:”j ;33|##3'|:|D_
"::‘l Button “#I.“““.UU ;iﬁ:““.,‘*“#ﬂl])
i Check BoH I e L i
() Radio Button ## HEULE w8 sReCp "

(_ Graph Area — —
("1 Scrollable Area |_Collapse |

-

) External Area 1 -
[Cancel | I 0K |

Figure 4-20
Format of variable dialog box

The dialog box shown in Figure 4-20 lets you specify the format for Numeric, Date,
and Picture type variables. You format variables in the same way, with the same
symbols, that you format a field. See the earlier section, “Formatting Fields Within a
Layout.”

86 Chapter 4: Layouts

Enterable and Non-enterable variables

Enterable and Non-enterable variables enable you to view, in a given layout, data
stored in a file other than the current file. 4th Dimension supports five types of
variables:

Alphanumeric

Numeric

O

O

O Date
0O Boolean
O

Picture

Variable typing takes place when a statement assigns a value to a variable. The
variable takes on the type of the value assigned. You can use variables in layouts for a
number of purposes:

0 By placing variables in a layout, you can view data contained in a linked record
you loaded during data entry.

O You can create a mailing label, in which the entire layout consists of a single
variable, by concatenating all necessary values into one extended string
(including carriage returns).

O You can concatenate data from a customer file and display it in a layout. For
example:

Title+" "+Last Name +" "+ First Name+" "+Age

O You can assign the total of numeric values stored in a substructure and display the
result.

4th Dimension ignores the Enterable or Non-enterable attributes in an input layout,
because you can’t enter data into variables in an input layout. You can only enter
data into variables in a dialog layout. When you use a layout as a dialog, you may
enter data into Enterable variables, and use Non-enterable variables to display data.
This becomes particularly handy for displaying instructions and values. You can
reuse the same dialogs and change text on the fly through procedures. Just change the
Non-enterable variable contents.

“+ Note: When you use a layout as a dialog, the layout displays current field values.
These fields are not enterable.

Enterable and Non-enterable variables

87

Accept, Don’t Accept, and Button buttons

A button variable generates a Macintosh-type button within a layout. A Macintosh
button is an area you click to validate a choice or confirm an action. The button
appears as a rounded-corner box containing a label. You choose the name of the
button variable and its label in the 4th Dimension Format of variable dialog box.

¢ Button: This book uses the term “button” to indicate any of the layout variables
the user can click to choose a state or action. Thus, “button” includes not only
Accept, Don’t Accept, and Button buttons, but radio buttons and check boxes.

Accept and Don’t Accept buttons

An Accept button validates a data entry. Thus, it is equivalent to the action of the
Enter button in a 4th Dimension record input layout and to pressing the Enter key. A
Don’t Accept button cancels data entry. Its action is similar to Cancel in a 4th
Dimension record input layout and to pressing the Command-. (period) key
combination.

Important

Including any kind of button in an input layout automatically cancels 4th
Dimension’s default button panel. Failing to supply both an Accept button and
a Don’t Accept button in a layout will leave you in an undesirable state. For
example, if you include only an Accept button or a Don't Accept button, you

can only Accept by pressing the Enter key or Cancel by pressing Command-.
(period).

Understanding how to test to see if a user has validated an entry is important. How
your tests work depends on what kind of buttons and how many of each kind you've
installed in your layout. Unless you've made assignment statements to the contrary,
all buttons are set to 0 when you summon a layout. Therefore, you can use a sequence
of If...End if statements or a Case of...End case construction to test button
values and take appropriate action. You can write tests either in a global procedure or
within a layout procedure.

For example, if you create a layout with one Accept button and one Don'’t Accept
button, you can find out which button was clicked by testing the OK system variable
or the Accept button variable. Both will equal 1 if the user clicked the Accept button
and O if the user clicked the Don’t Accept button.

On the other hand, if your layout includes more than one Accept button or more

than one Don’t Accept button, you need to test each button variable, rather than the
OK system variable.

88 Chapter 4: Layouts

Example

You create a procedure that lets the user choose options in a dialog box , like search,
print, view, change, or delete the current selection. The variables in this dialog box
include one Don’t Accept button whose variable is bCancel and whose label is

Cancel and five Accept buttons:

O bSrch labeled Search

O bList labeled List Selection

O bPrnt labeled Print Selection
O bMdfy labeled Modify Selection
O bDel labeled Delete Selection

Here is the procedure:

DEFAULT FILE ([filename])
bCancel ;=0
While (bCancel = 0)

"While the user does not cancel, display the dialog box layout named

strexpr belonging to the [filename] file.
DIALOG (strexpr)
If (bCancel = 0)
Case of 'User has not cancelled
: (bSrch = 1)
"DoSearch
. (bList = 1)
"DoDisplay
: (bPrnt = 1)
"DoPrint
: (bMdfy = 1)
"DoModify
: (bDel = 1)
"DoDelete
End case
End if
End while

Accept, Don’t Accept, and Button buttons

89

Button buttons

Button buttons react to clicks just like other buttons, except that they don’t complete
data entry when clicked. Thus, the user can perform actions without having to quit the
current entry (whether in a record or a dialog box). Examples of Button buttons
include summoning a help screen, advancing to the next page of a long input layout,
and performing calculations.

Unless you make an assignment to the contrary, 4th Dimension sets Button variables
to 0 before displaying the layout. When clicked, a Button variable returns 1. Always
test a Button button within its layout procedures and not from a global procedure.

To test a button, test the value of the Button variable. It contains 1 if the button was
clicked and O if not.

Check boxes

Use check boxes when you want the user to be able to make one or more choices from
among related alternatives. A check box is a rectangular area in which you can place
a mark (actually an X, not a check). The box’s label sits to the right of the check box.
When such a box is checked, its value is 1; if not, its value is 0. You set a check box by
assigning it a 1. To clear a check box, assign it a 0. Specify the variable name and
check-box title within the Format of variable dialog box. Assign and test check-box
values only in a layout procedure.

Radio buttons

Use radio buttons when you want to limit the user to one choice from among several
related alternatives. For example, choose one communications protocol. When the
user clicks a radio button, 4th Dimension sets its value to 1 and the values of all other
radio buttons in the group to 0. You should initialize a default radio button by
assigning it a 1. Assign and test radio buttons only in a layout procedure.

To create a set of radio buttons, begin the variable name of each button with the same
letter, for example, B1, B2, B3, and so on. When testing radio buttons, remember
that only one radio button within the group can be set to 1. The best testing strategy is
to test the value of each radio-button variable in the group inside a Case of...End
case structure. Only one button can be 1 at a given time.

4th Dimension automatically sets all radio buttons to 0 before the layout is displayed.
Initialize a default radio button for the layout by assigning it a 1 during the Before
phase. Specify variable names and labels in the Format a variable dialog box.

Q0 Chapter 4: Layouts

Graph areas

You draw a graph in a Graph area by executing a GRAPH command in a layout
procedure. You can choose among eight different graph types:

O column

O proportional column
stacked column

line

area

scatter

pie

picture

B O 8 8 0O B8

The GRAPH command requires an Alpha value to label the X-axis and one or
more Numeric values to graph on the Y-axis. You can have stored the numeric values
in a subfile, an array, or a variable table. Further, data in both subfiles and arrays
may be displayed on the same graph. Specify the name of the Graph area in the
Format of variable dialog box.

Scrollable areas

4th Dimension provides a Scrollable area to display any array of values.

Specify the name of the Scrollable area in the Format of variable dialog box. This
name is the same as the name of the array containing the data. As an example, give
the area and the array the name List. Values that will appear in this area when the
layout is displayed will belong to that variable table and will be named List1, List2,
through Listn. (The maximum value of n is 32,767.) Specify the number of items to
be contained in the table in the List0 variable. You can tell which value was selected
by testing the List variable. This variable contains the number of the item selected.

Different elements of the same array can contain different types of data.

¢ The O variable: The X0 variable contains the number of items shown in the
Scrollable area X. If you have 28 items to display, set X0 to 28. Additional
variables—X29, X30, etc.—may exist in memory. If X0 is greater than the
number of items in the list, 4th Dimension provides selectable blank lines.

Scrollable areas

91

If you change the value contained in an element of the array, you must explicitly
update the screen with the REDRAW command, which takes the Scrollable area

name as argument.

Example

Figure 4-21 shows a layout named “Generator.” The List variable at the top left of
the layout is the Scrollable area.

[T

s([=———— layout: Generator =——————1]

m List < (Add) :

= T () [

@ (Delete] I
i [190

| [Free——] :
il Artist Name: [[PREmE—— =

U
it {1

| [vSentence ———————]}

- 200

250

S|

Figure 4-21
Generator layout with Scrollable area List

List is a Scrollable area. Add (bAdd), Modify (bMod), and Delete (bDel) are Button
buttons. vName and vPhrase are Enterable variables, while vSentence is a Non-
enterable variable. OK is an Accept button. Cancel is a2 Don’t Accept button.

Create a menu bar with the menu item Writer to invoke the global procedure
WriteSentence :

"Procedure: WriteSentence
“Calls the dialog "Generator" which generates a sentence given a variable vName
“entered by the user and a choice from the list List in the scrollable area.
DIALOG([Writings];"Generator")
While(bOK=1) "User clicked the Accept button bOK
CREATE RECORD([Writings])
[Writings]Phrase:=vSentence "Assign sentence into field in record
SAVE RECORD([Writings])
DIALOG([Writings];"Generator")
End while

Q2 Chapter 4: Layouts

The WriteSentence procedure activates a dialog box using the Generator layout. Here
is the layout procedure for Generator:

“Layout procedure: "Generator"
"Manages the dialog that creates a descriptive sentence about an artist.
If (Before)
"‘Before the layout appears on the screen.

If (Undefined (List0)) "initialize array containing descriptive attributes for artists
"Undefined is a 4th Dimension standard function that returns TRUE when the variable
‘passed to the procedure is of type undefined.

"Here, check whether List0 is undefined to create the array. If it is
"defined,you won't go any further.
List1 := "Impressionism"
List2 := "painting cityscapes"
List3 := "fine sculptures”
List4 := "studying in Paris"
List5 := "many reasons”
"Assign the number of List items to ListO.
ListO =5
End if
"Disable the Delete and Modify buttons, before the layout is displayed.
DISABLE BUTTON (bDel)
DISABLE BUTTON (bMod)
“Initialize the dialog Enterable variables.

vName:= "Picasso"

vSentence:=""

vPhrase:=""

List:=0

End if ° End the Before phase
If (During)
"Here, the layout statements are invoked when you modify a variable or when you click a
"Button button or any value in the scrollable area.
Case of
. (bAdd = 1)
"The user clicked the Add button. Add new phrase to the end of the list.
If (vPhrase # ")
ListO := ListO + 1
List{ListO}:=vPhrase
List:=ListO
End if

Scrollable areas

Q3

. (bMOd = 1)
"The user clicked the Modify button.

If (vPhrase # ™)
"If the vPhrase Enterable variable is not empty, copy it to the selected item.

List{List}:=vPhrase
REDRAW (List)
Else "user has selected an item to modify.
vPhrase:=List{List}
End if
: (bDel = 1)
"The user clicked the Delete button.
If (ListO # 0)
"Copy the selected item number to i.
i ;= List
"While i is less than the number of items in the table.
While (i < List0)
"Copy the value of the i + 1 item to preceding item.
List {i} := List{i+1}
I=i+1
End while
"Specify in ListO that the table contains one item less.
ListO := ListO - 1
"Specify in List that there is no is selected item.
List:=0
End if
End case
If ((List # 0)&(vName#""))
‘If an item is selected in the scrollable area, calculate the following sentence:
Sentence := "The artist " + vName + " is known for " + List{List} + "."
"Enable the Delete and Modify buttons.
ENABLE BUTTON (bDel)
ENABLE BUTTON (bMod)
Else
"Else, place the empty string in the sentence:
Sentence = ™
DISABLE BUTTON (bDel)
DISABLE BUTTON (bMod)
End if "Test choice from List and name entered
End if 'End During phase.

94 Chapter 4: Layouts

The dialog box will look like the one shown in Figure 4-22.

|% [lialog

Impressionism 4> o Add]
painting cityscapes
fine sculptures

many reasons

Artist Name: |Picasso

The artist Picasso is known for studying in Paris.

(0K] [Cancel]

Figure 4-22
Working Generator dialog box displaying values

External areas

External areas call external routines written to augment 4th Dimension’s built-in
routines. See Appendix D in 4th Dimension Command Reference for a complete

discussion of external areas.

External areas

95

Chapter 5

File Links

Q7

Multiple-file databases have a number of advantages over single-file databases.
These advantages include

O
O

O

[]

more efficient use of development time
more efficient use of disk space
more efficient data entry

fewer errors during data entry

This chapter demonstrates these advantages through an example that begins with a

sin

gle-file database and develops it into a multiple-file database. Most particularly,

the chapter shows you how to use indexed searches and file links to work with multiple
files and follows this order:

O
O
O
O
O
(3

a single-file database
the SEARCH BY INDEX instruction

various link instructions, beginning with LOAD LINKED RECORD

mandatory links
handling duplicate linked records
using the at sign (@) with links

Single-file approach

The example deals with a typical business database situation: managing data about
professional associates. It begins with a single-file example, named Contacts.
Figure 5-1 shows its structure.

Contacts

Fig
Single-file database structure: Contacts file

98

Last Name A
First Name A
Title F:S
Position A
Company Name A
Addr 1 A
Addr 2 A
City A
State A
Postal Code L
Telephone A

ure 5-1

Chapter &: File Links

In the [Contacts]Last Name, [Contacts]First Name, [Contacts]Title fields, you store the
last name, first name, and title of a business associate. In the [Contacts]Position
field, you store the position of the person in the company. In the remaining fields,
you store the address and phone number of the company. Strictly speaking, this
structure looks correct. However, it's quite inadequate in practice, because

O every time the user enters a new name, the user must enter the address of the
company, even if the file already contains names of others belonging to the same
company

This is a waste of time and creates a strong potential for error when retyping data.

0 the redundant company information takes up unnecessary space on the disk

Suppose the file contains 5000 names, that there are approximately 10 persons for
every company, and that the alphanumeric fields are 75% entered. Table 5-1
shows the size of a record on disk.

Table 5-1

Record size for Contacts file

Field Type Size in bytes

Last Name Alpha 25 75% entered, 20
19 bytes + 1 for length

First Name Alpha 20 75% entered, 16
15 bytes + 1 for length

Title Alphal2 75% entered, 10
9 bytes + 1 for length

Position Alpha 20 16

Company Name Alpha 25 20

Company Adrl Alpha 25 20

Company Adr2 Alpha 25 20

City Alpha 25 20

State Alpha 2 2

Postal Code Long Integer 4

Telephone Alpha 12 10

The table shows that an average Contacts record takes up 158 bytes on the disk.

Single-file approach

Q9

If there are approximately 10 persons for every company and 500 different
companies in the file, the file will contain 5000 records for a disk storage total of
about 790,000 bytes. 4500 records contain redundant information. From the table,
you can see that company information takes up 96 bytes. The 4500 redundant records
contain approximately 432,000 bytes of redundant data. Thus, more than half of the
file contains duplicated information. Anyone with a hard disk might not have space
problems, but it still takes time to type and access 432,000 bytes of redundant
information.

Two-file solution

Because 4th Dimension can work with more than one file in a database, you can
create dramatic economies in entry time and disk storage by removing the redundant
information from the Contacts file and putting it in a second file, Companies.

Figure 5-2 shows the new database structure. Notice that the two files have one field of
information in common: [Contacts]Company Name and [Companies]Name. Having a
duplicate item of information is crucial when building relationships between files.

Contacts
Lazt Marne
Fir=t Mame

Companies
A Name
A Addr 1
Title A Addr 2
A
A

Fozitun City
State
Postal Code

Cormpany Marmos

> >> > > >

Telephone

Figure 5-2
Two-file database structure: Contacts and Companies files

Here’s how the new database works. The user stores the 500 companies in a file
named Companies and the 5000 persons in the Contacts file. You must, however,
keep the [Contacts]Company Name field in the Contacts file to know which company
the person belongs to. The Contacts file will take up approximately 410,000 bytes,
and the Companies file will take up approximately 48,000 bytes. Thus, the database
will take up about 458,000 bytes. This structure frees 332,000 bytes on disk. Further,
the user won't have to type redundant information. The two-file database saves disk
space and time by placing data in more than one file.

However, the structure needs some improvement. When the user enters a record in
the Contacts file, he needs to know right away whether the company specified
already exists in the Companies file. This means the user must make a quick search of
the [Companies]Name field. To do so, you must index the search field. For 500
records, the index file for the [Companies]Name field will take up about 33,000 bytes.
Even so, this database takes far less space than the first one.

100 Chapter 5: File Links

Once you have created the new structure, you build layouts and procedures to
manipulate the two files. You first create a layout for the Contacts file, which you
name Entry. Then you use it to enter business associates. You also create a layout

named List for listing data about associates. Figure 5-3 shows the Entry layout of
the Contacts file.

Contacts

Last Name
First Name

Title

ILazt Marne
[Fir=t Narne

|
|
[Tit1= |
J

Company Name |[Cornpany Marmns

VD

Enter

Cancel

Figure 5-3
Enfry layout for Contacts file

The vComp variable will display the address and phone number of the company
where the person works. The address and phone number will be taken from the
Companies file and placed in the variable by the layout procedures in the Entry
layout. Figure 5-4 shows the List layout of the Contacts file.

™ Name Company Name H:: y >
O |rA|xTitIe_NarTE I|Cornpanu Name —lmgj D I
o|o E

Figure 5-4
List layout for Contacts file

To concatenate and show the title, last name, and first name of the person, you

assign the three corresponding fields to the xTitle_Name variable using the layout
procedure for the List layout:

xTitle_Name := Title + " "+LastName + " " + First Name

You also create a layout for the Companies file, which will be used for entries and

another layout for listing companies. Figure 5-5 shows the Entry layout for the
Companies file.

Two-file solution

101

Companies

Name [rarne]
Addr 1 [Addr 1]
Addr 2 [Addr 2 |
City [City] Cancel
State Postal Code [FostslCo

Telephone [T&lephane |

Enter

Figure 5-5
Entry layout for Companies file

Figure 5-6 shows the List layout for the Companies file.

® File Edit Environment Design Font Style Layout Colors

[1]]
L)

Layout: List =FVF——————-1=
Name City Telephone 4>

N
O W Name]llﬂu]I[Telephone l

Figure 5-6
List layout for Companies file

102 Chapter 5: File Links

The layout procedure for the Contacts file Entry layout will manage the Companies
file when entering records into the Contacts file:

"Entry layout procedure for the Contacts file
If (During)
‘During data entry.
Last Name:= Uppercase (Name) "Automatically convert last name into uppercase letters.
"Automatically convert the first letter of the first name to uppercase and the
‘remaining letters to lowercase.
First Name := Uppercase (Substring (First Name ; 1; 1)) + Lowercase (Substring (First
Name ; 2; Length (First Name)))
If (Modified (Company Name))
"Modity is a 4th Dimension standard function. Modified returns TRUE if the user modifies
"the fieldname during data entry.
"If the user modified the Company Name field, proceed to a search by index in the
‘[Companies] file to find the company whose name is equal to the value the user typed.
SEARCH BY INDEX ([Companies]Name = Company Name)
If (Records in selection ([Companies]) # 0)
"Records in selection is a standard procedure returning the number of records belonging
"to the file selection given as parameter.
“If at least one record exists in the Companies file, assign 1 to Comp Exists variable.
Comp Exists := 1
Else
"If no record is found in the [Companies] file, assign 0 in the Comp Exists variable.
Comp Exists := 0
"Specify if you want to create the company record. CONFIRM is a built in
"4th Dimension command: it creates a dialog box displaying the strexpr as a
‘prompt message. A CONFIRM box has two buttons: OK and Cancel. If you click
"OK, the OK variable takes on the value 1, else it takes on the value 0.
CONFIRM ("The record " + Company name + " doesn't exist, do you want to create it?")
If (OK =1)
"The user is given the opportunity to add a record in the Companies file in the
‘[Contacts] field entry. Considering the user interface, take an additional
‘precaution. If the Entry layout of the Companies file is used to add the
‘company record, you might change the CompaniesName field by mistake. To
“prevent this, create another layout, named Entry2 in which a variable will
"be placed to display the company name instead of the Name field and name that
‘variable vName.
vName := Company name
"Select the Entry2 layout as the input layout of the Companies file.
INPUT LAYOUT ([Companies] ; "Entry2")
"Add the Companies record entry by using the ADD RECORD standard procedure.
ADD RECORD ([Companies])

Two-file solution

103

If (OK=1)
“If you validate the Companies record entry, assign 1 to the Comp Exists
‘variable.
Comp Exists := 1
End if
End if
End if
If (Comp Exists = 1)
"If the Comp Exists variable contains 1, it either means that the company exists
“or that it didn't exist but that the user added it during data entry: in that case,
“display the address and the phone number of the company in the relations layout
"with the help of the vComp variable.
CR := Char (13)
vComp := [Companies]Adr1 + CR + [Companies]Adr2 + CR + String ((Companies]Postal
Code ; "00000") + " "
vComp := vComp + [Companies]City + CR + [Companies]Phone Number
Else
vComp :=
End if
End if

Figure 5-7 shows the Companies file layout named Entry2.

Companies
Mame v H'::’ﬁ.'-e____‘_———__
Enter
Addr 1 [Addr | |
Addr 2 |Addr 2 | [. I
= ance
City [City | .

State Postal Code |Fa

Telephone [Telephone |

Figure 5-7
Entry2 file layout

To make sure the Companies record will be saved with the name, include the
following statement in the layout procedure:

Name := vName
Thus programmed, the application lets the user
O search records in a file, while entering data into another file

O add records to a file, while entering data into another file

In the above example, you've seen that you can copy some Companies record values
to variables and display them in the Contacts file layout. With the help of
procedures, you can copy the company name entered in the Contacts file to the
[Companies]Name field.

104 Chapter 5: File Links

The database lets you
O display file data in another file layout
O exchange data between files

Suppose that the user has already entered quite a number of records and then realizes
he entered the wrong phone number for company X. With the first structure
mentioned above, the user had to search all the business contacts belonging to that
company and change the phone number in all the records found in the Contacts
file. With the second structure, the user has to change the value only in one record of
the Companies file. Thus, the database saves time when processing data.

Suppose you’re dealing with the three-file database structure shown in Figure 5-8.

File C

File A

File B

Figure 5-8
Three-file database structure

This database consists of three files: [A], [B], and [C]. If you search one of the
files—for example, file [C]—4th Dimension changes the file selection and the
current record. It’s important to note that the [A] and [B] files are not modified
nor are their current selections, if any. This means that

O a table representing the current selection is kept in memory for every file of the
database

O there is one current record, at the most, loaded in memory for every file of the
database

See Figure 5-9.

Two-file solution

105

i

File C 1
[1| +— Empty
File A L] selection

Current —
record

File B

1
=
1
——
———
———
l?l

— Current
record

Figure 5-9
Current record and current selection for three files

Linking files

The above example shows that every time you work on a Contacts record (whether
you're entering or modifying data) you have to do a search by index in the
Companies file to find the company record of a business contact. What happens
when 4th Dimension searches by index?

Figure 5-10 illustrates the use of the index table in the search process. This process
takes four steps:

1. 4th Dimension goes through the index table until it encounters the searched
value.

2. When 4th Dimension finds the value, it also finds the pointer to the record in the
data file.

3. Using the record pointer, 4th Dimension reads the record directly.

4. 4th Dimension loads the record into memory.

106 Chapter 5: File Links

Index table

Search @ Reg:ord
Value | pointer

Data file

Find value and
record pointer

Record
| poinfer record

Go to pointer
in data file

Load record
infto memory

Figure 5-10
Searching and the index table

If you could store the pointer from step 2, subsequent searches would not be
required. This is exactly what links do.

To create a link, make sure you’re in the Structure window and drag the pointer from
one field in the linking file to the appropriate field in the linked file. See Figure 5-11.
(Refer to Chapter 1, “Database Structures,” in 4th Dimension User’s Guide for
details.)

Linking file Linked file
Contacts <> Companies Contacts Companies

Last Narne A Nzme A Last Name A —— % HMarne A
First Name A AdX 1 A First Name AT Addr 1 A
Title Afid Addr 2 A Title Afi Addr 2 A
Position & City A Position Af: City A
Company Name —&}::: State A State A
Postal Code L Postal Code
i Telephone A i Telephone A

4 15

Figure 5-11
Drawing a link in Structure window

Always drag the pointer from the field in which you will enter an identifier, like a stock
number (the linking field), to the field containing similar information (the linked
field). These fields are the basis of the link. Through them, the linking record can
draw data from the linked file and save data to the linked file.

4th Dimension automatically indexes linked fields.

Linking files

107

How links work

When 4th Dimension establishes a link for the first time, it does an indexed search
through the linked file to find the matching record. That record is loaded into

memory and its pointer saved with the linking record.

Loading a linked record for the first time

Loading a linked record for the first time takes 4th Dimension five steps (shown in

Figure 5-12):

1. 4th Dimension goes over the index table until it encounters the searched value.

2. When 4th Dimension finds the value, it also finds the pointer to the record in the

data file.

3. Using the record pointer, 4th Dimension reads the record directly from the file.

4. 4th Dimension loads the record into memory.

S. 4th Dimension copies the pointer of the linked record into a special area of the

linking record.

Index table

Record
SEaich @ Value | pointer

Find value and é)’
record pointer

Data file
Record

|pointer | record

Go to pointer
in data file

Copy pointer 55
into linking record

Figure 5-12
Loading a linked record for the first fime

108 Chapter 5: File Links

Load linked record
info memory

]

The next time you load a linked record

Once 4th Dimension has established a link for a record, getting the linked record
takes only two steps (shown in Figure 5-13):

1. Because the pointer of the linked record is saved in the linking record, 4th
Dimension can read it directly from the data file.

2. 4th Dimension loads the record into memory.

Data File

Record
| pointer | Record

Readrecord Load record
directly from
data file

based on pointer

2 info memory

Figure 5-13
Loading subsequent linked records

Important considerations

Keep three things in mind when dealing with links:

1. When working with links, 4th Dimension takes care of record modification and
deletion. All the records of all the files of a database are saved one after the other
in a single file: the data file. If, when you modify a linked record, you change its
size, the record might not necessarily be saved in the same place as before.
Moreover, you can delete a linked record. Thus, the pointer to a linked record
saved in a linking record can become incorrect while you’re operating the
database.

4th Dimension automatically detects the problem and finds the new pointer to the
linked record which changed after you modified the record. If the record has been
deleted, 4th Dimension places a special value in the linking record to indicate that
it no longer links to the record which has been deleted.

Linking files 109

2. Using a link changes the current selection and the current record of the linked file.
Upon loading a linked record for the first time, 4th Dimension does a search by
index to find the record. Consequently, the file selection is changed and the
linked record becomes the current record. The subsequent loading of that linked
record will change the current selection of the linked file, and the linked record
will become the current record.

3. A link handles records differently than a search by index when the linked file has
two or more equal field values. In a file, you may have more than one record with
the same value in a single field. Doing a search by index on that field will return a
selection containing all those records and the first record of the selection. That is,
the first record 4th Dimension encounters becomes the current record.

If there are duplicate values in a particular field of a linked file, the LOAD
LINKED RECORD command returns the first record of the selection. Unlike a
search by index, which returns the selection of records containing the value and
the first record of the selection as the current record, loading on link returns as a
selection only the first record encountered with the correct value. The linked
record becomes the current record. See “Dealing With Duplicate Values in Linked
Fields” later in this chapter.

LOAD LINKED RECORD command

You establish a link between two fields with the LOAD LINKED RECORD
command.

Let’s go back to the example above and see what happens to the layout procedure for
the Contacts file Entry layout when using a link:

"Layout procedure for the Contacts file "Entry" layout:
If (During)
Last Name:= Uppercase (Last Name)
First Name := Uppercase (Substring (First Name ; 1; 1)) + Lowercase (Substring (First
Name; 2; Length (First Name)))
If (Modified (Company Name))
LOAD LINKED RECORD (Company Name) “<--- the link is activated
If (Records in selection ([Companies]) =1)
CR = Char (13)
vComp := [Companies]Adr1 + CR + [Companies]Adr2 + CR + String ((Companies]Postal
Code ; "00000") + " "
vComp := vComp + [Companies]City + CR + [Companies]telephone
Else
vComp =™
End if
End if
End if

110 Chapter &: File Links

Notes

1.

This procedure has the same effect as a search by index and the procedures as they
were originally written. There are, however, two differences. The next time the
user accesses the record, 4th Dimension won'’t have to do a search by index. The
linked record will automatically be loaded into memory. However, if the
Companies record doesn’t exist, the procedures won’t allow the user to create a
record during data entry. Later on, you'll see how to deal with this problem.

. Every record of the Contacts file points, at the most, to one record of the

Companies file. This means that a Contacts record points either to a single
record in the Companies file or to no record at all.

. Many business colleagues can belong to a single company. This means that a

record in the Companies file can be linked to more than one Contacts file
record.

What this means is that numerous records in the linking field can point to one record
in the linked field. Thus, a link always proceeds from the many to the one. See

Figure 5-14.
File 1 |
Several records can point fo
_ the same record in a linked file
File 2
—
Linking file Linked file

Linked
record

Figure 5-14
Linking from the many to the one

LOAD LINKED RECORD command

111

Mandatory attribute

The question may arise, how do you create a linked record when the record doesn’t
exist? This section provides two solutions. If a person belongs to a company,
Solution 1 does the job, using the Mandatory attribute. Solution 2 works if the person
doesn’t belong to a company.

Solution 1

In the Contacts and Companies files example, you establish that an entry for an
associate cannot be validated, if the company for which the contact works hasn'’t
been specified. You give the [Contacts]Company name field the Mandatory attribute.
This means that a Contacts record can be validated only if a Companies record is
linked to it. 4th Dimension will automatically manage the creation of a new
Companies record if the record doesn’t exist. When you have given the linking field
the Mandatory attribute, the LOAD LINKED RECORD command automatically
displays the dialog box shown in Figure 5-15, if the Companies record doesn’t exist.
4th Dimension use the current input layout to create the new record.

ﬁ This record does not exist in file
"Companies”.

What do you want to do?

[Create It |

Figure 5-15
Create a record dialog box

If the user clicks the Create It button, 4th Dimension will create a Companies record
linked to the Contacts. If the user clicks Try Again, the company record name can be
entered again in the Contacts record, if it was incorrectly spelled the first time. The
user can go to the next field of the Contacts record only after creating the company
record or after specifying the name of an existing company.

In summary, if the field where the link originates is mandatory, 4th Dimension will
automatically manage record creation during data entry, if the linked record doesn’t
exist.

112 Chapter 5: File Links

Solution 2

A user may decide that a business colleague does not necessarily belong to a
company. In that case, the [Contacts]Company Name field won’t be Mandatory.
You'll have to explicitly manage the creation of the linked record in the Companies
file, if the record doesn’t exist. Use the procedure mentioned earlier that works with
the SEARCH BY INDEX command and replace it with LOAD LINKED RECORD.
In most cases, it’s necessary for an entered record to have a linked record. In that
way, you take advantage of the automatic creation of the linked record if the record
doesn’t exist.

Dealing with duplicate values in linked fields

Let’s go back to the Contacts and Companies files example. It's possible that two
different companies bear the same name. In that case, LOAD LINKED RECORD
will return the first company encountered with the entered name. It may be that this is
not the desired record.

A second syntax for the LOAD LINKED RECORD command
There is a second syntax for LOAD LINKED RECORD:
LOAD LINKED RECORD (fieldnamel;filenamelfieldnameZ2)

fieldnamel is the linking field of the file where the link originates.
[filenamelfieldname?2 is a field belonging to the linked file, which is usually different
from the field to which fieldnamel points.

With this syntax, the linked record is loaded in the same way as with the regular syntax
with one exception. If more than one record is found in the linked file, 4th
Dimension displays a list of those records, so that the user can choose the desired
record. The window lists the records showing the matching values contained in the
field which fieldnamel points to and to the values contained in the

[filename] fieldname2. In that way, the user can differentiate among records in
which duplicate values exist in linked fields.

In the Contacts and Companies example, you replace in the layout procedures:
LOAD LINKED RECORD (Company Name)

with

LOAD LINKED RECORD (Company Name;Companies]City)

For instance, if the user types SMITHS LTD in the Contacts record and there is
more that one SMITHS LTD record in the Companies file, 4th Dimension displays a
window similar to the one shown in Figure 5-16.

LOAD LINKED RECORD command

113

=[|==——=——= Selection

SPITHS LTC Mew fark alis
SMITHS LTL Bozton

SMITHS LTC Lz Angeles

SMITHS LTL Crallaz
Figure 5-16

Scrollable window of duplicate values

Here, the user chooses the Companies record which will be linked to the Contacts
record entered by clicking the desired name in the window.

\/

% Note: If in the Companies file, there are two SMITHS LTD’s in the same city, the
case looks quite hopeless, because the user won't be able to differentiate the two
companies. However, you can use a second argument for LOAD LINKED
RECORD, different from [Companies]City for which you know no duplicate will
exist. For example: [Companies]Phone Number.

Wildcards and the LOAD LINKED RECORD command

You can gain additional benefits from the second syntax

LOAD LINKED RECORD (fieldnamel;[filenamelfieldname?2)

by placing the at sign (@) wildcard character at the end of a search string.

In the User environment, you can do a search on an alphanumeric field by typing
some characters (the beginning of a name, for example) followed by an at sign. Such
a search returns all file records containing a value beginning with the letters you
typed. This possibility has been extended to LOAD LINKED RECORD using the
second syntax. In the Contacts and Companies example, if you type SMI@ in the
[Contacts]Company Name field, 4th Dimension displays the Selection window listing
all Companies records with names beginning with “SMI” (see Figure 5-17).

114 Chapter 5: File Links

Selection

SHITHS LTD

SEITHS LTD

SEITHS LTD

SHUTHS LTD

SHILEY " T AR REFAIF
SEUT, LARSOM 20
SHILEC AFFERS DEMNTIST
S TH-HEMDLEY
SHITH, LOGAN & SI0ONE
SPUTHSOMN AN IMST
SHITTY S CAFE

fde o ark
Bozton

Loz Angeles
Crallas

I hé'l:i =il
Fortland
Santa Fe
Loz Angeles

San Francizoo

Wazhngtan
CtakTand

Figure 5-17

Selection window after wildcard search

Using the at sign is convenient, because the user doesn’t have to memorize all the

company names or enter an entire value.

SAVE LINKED RECORD command

This section introduces a new example database: an invoice system. The rest of the
chapter concentrates on using various link commands to implement this system and
add inventory and sales files to it. This section introduces the SAVE LINKED

RECORD command and the OIld function.

SAVE LINKED RECORD command

115

The database: an analysis

Figure 5-18 shows the database’s structure. Notice that it includes a subfile for invoice
detail and that it links to a customer address file.

Iranes
Number |
Entry [ate D
Coge [rate D
Cuztormer Code A
Tiatal THI R
Tital T R
[terns =

Custamers

Name
Adr 1

Adrl

I” 1f|:]

State
Foztal Code
Telephonse

Iterns
Dezcrmiption A
it Froce R
i1y anhh:] |
Ta: Fate *4
Tiatal THI R
Total T R
OOT OO OO OB OO DO GO0t
Figure 5-18

) Customer Code
Cytztanding
Zgles THI

Zales TI

XX 222> >

Structure window view of Invoices database

Figure 5-19 shows a printout of the structure for the linked Customers file. In the
Customers file, the Customer Code field has Unique and Indexed attributes, because
you’ll search that field to find a customer when issuing an invoice. This field cannot
be modified. The outstanding Total TI and Total TNI fields cannot be entered.
These fields will be updated automatically every time an invoice is issued.

o Field-name abbreviations:

The field name Total Tl stands for 7otal tax

included and Total TNl stands for 7otal tax not included.

Structure: Customers

Name Alpha 20 Indexed; Enterable; Modifiable
Adrl Alpha25 Enterable; Modifiable

Adr2 Alpha 25 Enterable; Modifiable

City Alpha20 Enterable; Modifiable

State Alpha 20 Enterable; Modifiable

Postal Code Long Integer Enterable; Modifiable
Telephone Alpha20 Enterable; Modifiable
Customer Code Alpha8 Indexed: Unique; Enterable
Outstanding Real Enterable; Modifiable

Sales TNI Real Modifiable

Sales TI Real Modifiable
Figure 5-19

Structure for Customers file

116 Chapter 5: File Links

Figure 5-20 shows the structure for the linking Invoices file. In the Invoices file, the
Total TI and Total TNI fields have the Non-enterable attribute, because the input
layout Invoices file layout procedure will assign them the sum of the values
contained in the Total Tl and Total TNI fields of the subfile [Invoices]ltems
subrecords. The [Invoices]Due Date field is Non-enterable, because it will be
calculated from the [Invoices]Entry Date field.

Structure: Involces

Number Integer Indexed; Enterable; Modifiable
Entry Date Date Enterable: Modifiable

Due Date Date Enterable; Modifiable
Customer Code Alpha8 Enterable; Modifiable

Total TNI Real Modifiable

Total Tl Redl Modifiable

ltems Subfile

Figure 5-20

Structure for Invoices file

Figure 5-21 shows the structure for the [Invoices]ltems subfile. In the [Invoices]ltems
subfile, the Total TI and Total TNI fields have the Non-enterable attribute, because
they’ll be calculated by subfile procedures from the Unit Price, Quantity, and Tax
Rate fields. In the [Invoices]ltems subfile procedures or in the layout procedures of
the input layout Invoices file, you write the following statements to calculate the

Total TNI and the Total Tl for the line:

Total TNI := Quantity * Unit price
Total Tl := Total TNI + ((Total TNI * Tax Rate) / 100)

Structure: ltems

Description Alpha 20 Enterable; Modifiable
Unit Price Real Enterable; Modifiable
Quantity Integer Enterable; Modifiable
Tax Rate Real Enterable; Modifiable
Total TNI Real Modifiable

Total Ti Real Modifiable

Figure 5-21

Structure for [Invoices]ltems subfile

SAVE LINKED RECORD command

117

Managing the link between Invoices and Customers files

You want to update the outstanding balance, the total sales tax not included (TNI),
and the total sales tax included (TD) of a customer automatically every time the user
makes out a bill in the customer’s name. The LOAD LINKED RECORD routine lets
you link the searched customer to an invoice. Once the customer record is modified,

the SAVE LINKED RECORD routine saves the linked customer record you've
loaded.

SAVE LINKED RECORD saves a loaded linked record. You always give the field in
which the link originates (the linking field) to the SAVE LINKED RECORD
command. With links, you can load a record linked to another record and change a
record, by calculating the values contained in the record it is linked to.

The input layout procedure for the Invoices file is as follows:

LOAD LINKED RECORD (Customer Code)
"When applied to a subfield, the SUM function returns
"the sum of the values contained in the subrecords of the current record only.
Total TNI := Sum (ltems’Total TNI)
Total Tl := Sum (ltems'Total Tl)
If (After)

"The user validates the bill entry:

"The customer accounts will be incremented by the bill amount:
[Customers]Outstanding := [Customers]Outstanding + Total Tl
[Customers]Sales TNI := [Customers]Sales TNI + Total TNI
[Customers]Sales Tl := [Customers]Sales Tl + Total Tl

"SAVE LINKED RECORD updates the customer record on the disk.

SAVE LINKED RECORD (Customer code)
End if

“* Note: The Invoices file Customer Code field has the Mandatory attribute. 4th
Dimension will manage the creation of the Customers record during an invoice
entry if the record doesn’t exist.

Improving procedures

The above procedure only manages the addition of items in an invoice; it does not
handle invoice modifications. This can create problems. As an example, let's say
SMITHS LTD phones in an order. The user makes out an invoice for $15,000.00 TNI
($17,790.00 TI). When the user validates the record, SAVE LINKED RECORD
adds these numbers to the SMITHS LTD account balance. Then, a few minutes later,
SMITHS LTD phones back with additional purchases on the same invoice worth
$18,000.00 TNI ($21,348.00 TI). When the user validates the modified invoice,
SMITHS LTD’s balance shows a balance of $33,000.00 TNI and $39,138.00 TI. This
substantial over-ring happens because the current procedure doesn’t subtract old
invoice totals before adding modified totals.

118 Chapter 5: File Links

To solve this problem, you can use the 4th Dimension Old function. When the user
modifies a record, Old returns the value the record contained before the change.
Thus, you can use it maintain correct amounts for things like account balances. In
essence, Old has no effect when a new record is added, because it returns a null
string, a zero, or the null date depending on field type. Rewrite the procedure as
follows:

If (After)
[Customers]Outstanding := [Customers]Outstanding - Old (Total Tl) + Total Tl
[Customers]Sales TNI := [Customers]Sales TNI - Old (Total TNI) + Total TNI
[Customers]Sales Tl := [Customers]Sales Tl - Old (Total Tl) + Total Ti
SAVE LINKED RECORD (Customer code)

End if

Here are the numbers calculated by the revised procedure. The invoice shows
[Invoices]Total TNI equals $15,000.00

[Invoices]Total Tl equals $17,790.00

After the new invoice is entered, the SMITHS LTD customer accounts shows
[Customer]Outstanding equals $0.00 — $0.00 + $17,790.00

[Customers]Sales TNI equals $0.00 — $0.00 + $15,000.00

[Customers]Sales Tl equals $0.00 — $0.00 + $17,790.00

After modifying the invoice,

[Invoices]Total TNI equals $18,000.00

[Invoices]Total Tl equals $21,348.00

and in the SMITHS LTD customer accounts

[Customer]Outstanding equals $17,790.00 — $17,790.00 + $21,348.00, which is
$21,348.00

[Customers]Sales TNI equals $15,000.00 — $15,000.00 + $18,000.00, which is
$18,000.00

[Customers]Sales Tl equals $17,790.00 — $17,790.00 + $21,348.00, which is
$21,348.00

With the OIld function, the database remains accurate. Whether adding or
modifying an invoice, the carried-over amounts are always correct in the customer
accounts.

SAVE LINKED RECORD command

119

Working with old links

This section introduces two link commands that work on old links: LOAD OLD
LINKED RECORD and SAVE OLD LINKED RECORD. LOAD OLD LINKED
RECORD loads the previously linked record. SAVE OLD LINKED RECORD
saves the previously linked record. You always pass these two instructions to the
record where the link originates. They become important for maintaining records so
that no discrepancy appears between the sum of all customer balances and the sum of
all the invoices made out to these customers.

Let’s look at another problem, by modifying the previous scenario. A data entry user
makes out the earlier invoice using the SMITHS LTD customer code; then, as
previously described, modifies the record from $15,000 to $18,000 (TNI). The user
realizes that the invoice was meant for BROWN LTD instead of SMITHS LTD. The
user’s solution is to change the customer number to that of BROWN LTD. Under the
revised procedure, here’s what happens with this series of actions.

After adding the invoice, the SMITHS LTD account will be incremented:
[Customer]Outstanding equals $0.00 — $0.00 + $17,790.00
[Customers]Sales TNI equals $0.00 — $0.00 + $15,000.00
Customers]Sales Tl equals $0.00 — $0.00 + $17,790.00

After modifying the invoice, BROWN LTD accounts will first be decremented before
being incremented:

[Customer]Outstanding equals $0.00 — $17,790.00 + $21,348.00, which is $3,558.00
[Customers]Sales TNI equals $0.00 — $15,000.00 + $18,000.00, which is $3,000.00
Customers]Sales Tl equals $0.00 — $17,790.00 + $21,348.00, which is $3,558.00

As you can see, the results are incorrect and the procedures are inadequate. You
have to decrement the old customer’s accounts and increment the new customer’s
accounts. To do this, you will use two 4th Dimension commands: LOAD OLD
LINKED RECORD and SAVE OLD LINKED RECORD. LOAD OLD LINKED
RECORD loads the record previously linked to another record. SAVE OLD

LINKED RECORD saves a linked record previously loaded in memory by LOAD
OLD LINKED RECORD.

120 Chapter 5: File Links

Here is the final version of the procedure:

If (After)
[Customers]Outstanding := [Customers]Outstanding + Total T
[Customers]Sales TNI := [Customers]Sales TNI + Total TNI
[Customers]Sales Tl := [Customers]Sales Tl + Total Ti
SAVE LINKED RECORD (Customer Code)
LOAD OLD LINKED RECORD (Customer Code)
[Customers]Outstanding := [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI := [Customers]Sales TNI - Old (Total TNI)
[Customers]Sales Tl := [Customers]Sales Tl - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)

End if

Considering the SMITHS LTD and BROWN LTD example, after adding the invoice,
the SMITHS LTD accounts will be incremented:

[Customers]Outstanding equals $0.00 + $17,790.00
[Customers]Sales TNl equals $0.00 + $15,000.00
[Customers]Sales Tl equals $0.00 + $17,790.00

The added invoice doesn’t yet have a loaded linked customer record. Here LOAD
OLD LINKED RECORD and SAVE OLD LINKED RECORD have no effect.

After modifying the invoice, the BROWN LTD accounts will be incremented:
[Customers]Outstanding equals $0.00 + $21,348.00

[Customers]Sales TNI equals $0.00 + $18,000.00

[Customers]Sales Tl equals $0.00 + $21,348.00

This is carried out by SAVE LINKED RECORD. The SMITHS LTD accounts will
then be decremented:

[Customers]Outstanding equals $17,790.00 — $17,790.00, which is $0.00
[Customers]Sales TNI equals $15,000.00 — $15,000.00, which is $0.00
[Customers]Sales Tl equals $17,790.00 — $17,790.00, which is $0.00

Working with old links

121

CREATE LINKED RECORD command

The CREATE LINKED RECORD routine is more sophisticated than the LOAD
LINKED RECORD routine. If the file contains a record corresponding to the search
requirements, the record is selected and loaded into memory just as with LOAD
LINKED RECORD. If that record doesn’t exist, 4th Dimension creates it. You must

then assign values to the record’s fields through calculations, and save the record
with SAVE LINKED RECORD.

To demonstrate CREATE LINKED RECORD, we’ll add a linked Products file to
improve the efficiency of the invoice system. Such a file can supply the invoice with a
product’s unit cost and tax rate, while maintaining figures on the quantity of the item
sold. Figure 5-22 shows the database with the linked Products file.

Invoices Customers
Number i Name A
Entry Date D Adr1 A
Due Date D Af:irE A
Customer Code A City A
Total TNI R State A
Total Tl 2 Postal Code L
ltems ¥ Telephone A

JCustomer Code A

Outstanding R

Sales TNI R

Iterns Sales Tl R

Description A

Unit Price R

$::n;1:?e :; Products

Total TNI R JDescription A

Total TI 24 Unit Price R
Tax Rate R
Quantity Sold L

Figure 5-22
Structure showing addition of linked Products file

Figure 5-23 shows the field structure of the Products file.

Structure: Products
Description Alpha20 Indexed; Modifiable
Unit Price Real Modifiable
Tax Rate Real Mcodifiable
Quantity Sold Long Integer Mcodifiable
Figure 5-23

Field structure of Products file

122 Chapter &: File Links

All fields of the Products file are Non-enterable. Every time the user makes out an
invoice, you want to create the Products record automatically if the record doesn’t
exist. You also want to increment the [Products]Quantity Sold field. To do this, you'll
use the CREATE LINKED RECORD command. In the above example, you create
the input layout of the Invoices file, shown in Figure 5-24.

Layout: INPUT = His

Number Murriber Customer Code |Cuztormer Cs I) | s
| Enter

Entry Ertriy Date Total THI [Total THL | L ; 88

Due Date Loy [rate Total TI Tetsl T ' ,] i

e D3 (Tats | | Cancel l :

I i

s L

DL . Outstanding | [T+ tE it

e Sales TNl [“ZETEsFM____ =

.| sales TI wEaTEeF—0—__ o

lterms

l‘«@l

Figure 5-24
Input layout for Invoices file

In the subfile area, you specify the [Invoices]ltems subfile with the layout shown in
Figure 5-25.

® File Edit Environment Design Font Style Layout Colors
=] Layout: INUOICE LINES = =
Description Unit Quant Total TNl |Total Ti i
Y ;‘5{: [Cezcription [Unit Frice ||[Quantit)|[Ta: Rate WTT-:-M! Tl] et
Figure 5-25

Subfile layout for (Invoices)ltems subfile

Working with CREATE LINKED RECORD 123

You're going to modify the invoice input layout procedures, so that the Products
file will be changed automatically every time an invoice is created or modified. The
subfile layout procedures remain unchanged:

“Input layout procedure (final version) of the Invoices file.
If (Before)
If (Entry Date = 100/00/0000!)
"If entry date equals null date, you're dealing with a created invoice.
"Enter the current date in the field by using the Current date standard routine.
Entry Date := Current date
End if
End if
"Load the linked customer record
LOAD LINKED RECORD (Customer Code)
"Display the customer accounts by using the vOutstand, vSalesTNI and vSalesTI variables
“specified in the invoice layout.
vOutstand = [Customers]Outstanding
vSalesTNI := [Customers]Sales TNI
vSalesTl := [Customers]Sales Tl
"Calculate vComp to display the customer's address and phone number in the invoice layout.
vCR := Char (13)
vComp := [Customers]Name + VCR + [Customers]Adr1 + vCR + [Customers]Adr2 + vCR
vComp := vComp + String ([Customers]Postal Code) + " " + [Customers]City
“Calculate the total amount, tax not included, and the total amount, tax included, of the invoice.
Total TNI := Sum (ltems'Total TNI)
Total Tl := Sum (ltems'Total TI)
"Calculate the due date at 30 days following the invoice creation date.
Due date := Entry date + 30
If (After)
"If you validate the invoice entry, increment the customer accounts.
[Customers]Outstanding := [Customers]Outstanding + Total TI
[Customers]Sales TNI := [Customers]Sales TNI + Total TNI
[Customers]Sales Tl := [Customers] Sales + Total Tl
SAVE LINKED RECORD (Customer Code)
“If the invoice is modified, decrement the old customer accounts.
LOAD LINKED RECORD (Customer Code)
[Customers]Outstanding := [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI := [Customers]Sales TNI - Old (Total TNI)
[Customers]Sales Tl := [Customers] Sales - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)

124 Chapter 5: File Links

"You must now carry over the sales in the Products file.
"To do this, select all items in the invoice with ALL SUBRECORDS.

ALL SUBRECORDS (ltems)
While (Not (Last subrecord (ltems)))

"While you don't try to go below the last item of the invoice. Assign the
“Items'Designation field to itself to force the link to the Products file. This is
‘necessary because you're in the after step of the record, and that at that point,
“4th Dimension, no longer considers the entry fields as modified. The link is not

“activated by calling LOAD LINKED RECORD or CREATE LINKED RECORD because

‘these routines are optimized: they only activate the link on the first call, if the field
"has been modified. Assigning the field to itself forces the field to be modified. This
‘method is necessary only if you call a link activation routine in an after step.
ltems'Description := ltems'Description
"Call CREATE LINKED RECORD:
“if the Products record exists, 4th Dimension loads that linked record.
"If it doesn't, 4th Dimension creates the linked record.
CREATE LINKED RECORD (ltems'Description)
"Assign to the Products record fields, the values contained in the invoice item:
[Products]Description := ltems'Description
[Products]Unit Price := ltems'Unit Price
[Products]Tax Rate := ltems'Tax Rate
‘Increment the sales with the invoiced quantity.
[Products]Quantity Sold := [Products]Quantity Sold + ltems'Quantity
"Save the Products record
SAVE LINKED RECORD (ltems'Description)
"As for the customer accounts, if you modified the invoice, look for the old product
‘record linked to the item:
LOAD OLD LINKED RECORD (ltems'Description)
"Decrement these sales from the previously invoiced quantity.
[Products]Quantity sold := [Products]Quantity Sold - Old (ltems'Quantity)
"Update the record on the disk.
SAVE OLD LINKED RECORD (ltems'Description)
"The carry over of the items being made, go to the next item:
NEXT SUBRECORD (ltems)

End while

End if

CREATE LINKED RECORD command

125

In the User environment, you enter the invoice shown in Figure 5-26.

Entry for Invoices =E|
Number 1 Customer Code MAROO1
[Enter J
Entry 10/17/86 Total TNI 38,400.00
Due Date 11/16/86 Total TI 40,896.00 [—]
MARTINSON CONSTRUCTION —
350 Fifth Ave. intandiny 40,896.00
San Ramon, CA 99935 Sales TNI 38,400.00
Sales TI 40,896.00
Description Unit Quant [Tax Total TNI |Total Tl
Norton Fitting Mach 15,000.00 2 0.065 30,000.00 31,950.00 |,
Reversing Gasket 1.50| 2000 0.065 3,000.00 3,195.00 |
Straight Seal Gasket 360| 1500 0.065 5,400.00 5,751.00
H
i
0‘-1 L
K)
Figure 5-26

Completed invoice form

You then have to select the Products file to display the result of the procedures

(shown in Figure 5-27).

Products: 3 of 3

Figure 5-27

Description Unit Price |Tax Rate |Quantity Sold

Norton Fitting Mach 15,000.00 D085 2
Reversing Gasket 1.50 0.065 2000
Straight Seal Gasket 260 0065 1500

Products file output displaying results

126

Chapter 5: File Links

E'.:::- l[“%

You've just seen that a link can originate in a subfield. In such a case, every subfield of
the record points to at most one record and not that one record points to many
records. See Figure 5-28.

Filel File2

Subfile

Figure 5-28
How a subfile links to a record in a file

To reach linked records, you must call LOAD LINKED RECORD for each
subrecord. See Figure 5-29.

Linking File
File 1

-

]
L |
I i
L B Linked file
I | File 2
| — [o
Current — | I R — \]
record B
L |
L |
l |
—> | I | Record linked
r] to current
I subrecord
Subfile
belonging o the ——
current record

— __ Current subrecord

Figure 5-29
Current subrecord pointing to one record in file linked to subfile

Working with CREATE LINKED RECORD 127

In the above example, the [Invoices]Customer Code field is Modifiable. To manage a
customer change when modifying an invoice, you must include procedures to
decrement the old customer’s accounts. Here the LOAD OLD LINKED RECORD
and SAVE OLD LINKED RECORD routines were used.

If the [Invoices]Customer Code field is not modifiable, the customer won’t change
when you modify the invoice, so you won't have to write statements to decrement the
old customer’s accounts. However, you’ll have to decrement the old totals of the
customer accounts. This case refers to the procedures written in the section above,
“Working With Old Links.”

Linking to a subfile

The database will undergo a last change: you’ll add a subfile called Sales to the
Products file. Figure 5-30 shows the revised structure.

Custarmers
Mame A
Adr 1 A Froducts
Adrs A ————3Description A
City A nit Frice R
il State A Taw Fate R
Number | Fastal Code L Quantity Sold R
Entry Date D Telephone A S3les EY
Cue Date D Customer Code A
Custormer Code & Cutztanding R
Total THI R Ciales T R
Tatal Tl R Sales TI R
lters F R —

[terns E
Cezcription A Sales
Imt Frice R ———} Invoice Number |
Duantity I [ate Sold D
Taw Fate R Lantity N
Tatal THI R :
Total T R
Irwce Murnber

Figure 5-30
Structure with addition of Sales subfile

You want to save the chronology of the sales for every item in that subfile. You create
a field called Invoice Number in the [Invoices]ltems subfile and link
[Invoices]ltems'Invoice Number to [Products]Sales'Invoice Number. You'’ll use

CREATE LINKED RECORD.

In the layout procedure for the [Invoices]ltems subfile, you add a procedure to carry
over the invoice number:

Total TNI := Quantity * Unit price
Total Tl := Total TNI + ((Total TNI * Tax Rate) / 100)
Invoice Number := [Invoices] Number

128 Chapter &: File Links

You modify the Invoices layout procedures to create the linked Sales record in the
[Products] file:

If (Before)
If (Entry Date = 100/00/0000!)
Entry Date := Current date
End if
vComp := 33
vOutstand := 0
vSalesTNI := 0
vSalesTl =0
End if

LOAD LINKED RECORD (Customer Code)
vOutstand := [Customers]Outstanding
vSalesTNI := [Customers]Sales TNI
vSalesTl := [Customers]Sales Tl
vCR := Char (13)
vComp := [Customers]Name + VCR + [Customers]Adr1 + vCR + [Customers]Adr2
vComp := vComp + VCR + String ([Customers]Postal Code) + " " + [Customers]City
Total TNI := Sum (ltems'Total TNI)
Total Tl := Sum (Items'Total TI)
Due Date := Entry Date + 30
If (After)
[Customers]Outstanding := [Customers]Outstanding + Total Tl
[Customers]Sales TNI := [Customers]Sales tNI + Total TNI
[Customers]Sales Tl := [Customers] Sales + Total Tl
SAVE LINKED RECORD (Customer Code)
LOAD LINKED RECORD (Customer Code)
[Customers]Outstanding := [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI := [Customers]Sales TNI - Old (Total TNI)
[Customers]Sales Tl := [Customers] Sales - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)
ALL SUBRECORDS (ltems)
While (Not (Last subrecord (ltems)))
Items'Description := ltems'Description
CREATE LINKED RECORD (ltems'Description)
[Products]Description := ltems'Description
[Products]Unit Price := ltems'Unit Price
[Products]Tax Rate := ltems'Tax Rate
[Products]Quantity Sold := [Products]Quantity Sold + Items'Quantity
“You're in the after step, so you must assign the field to itself to make it modified.
ltems'Invoice Number := ltems'Invoice Number

Linking to a subfile

129

"Create the sales linked record in the [Products]Sales subfile.

CREATE LINKED RECORD (ltems'Invoice Number)
"Assign the sales fields as follows:

[Products]Sales'Invoice Number := Items'Invoice Number

[Products]Sales'Date Sold := Entry Date
“Increment the quantity sold:

[Products]Sales'Quantity := [Products]Sales'Quantity + Iltems'Quantity
"IMPORTANT:
"CREATE LINKED RECORD creates or loads a Sales subfile subrecord. This operation
"takes place in memory. You must then save the changes made to the subrecord.
"The subrecord will be saved when you'll save the record containing it. SAVE
"LINKED RECORD of the products record will save the record along with its
"subrecords. Therefore, you don't have to call SAVE LINKED RECORD for the subrecord.

SAVE LINKED RECORD (ltems'Description)

LOAD OLD LINKED RECORD (ltems'Description)

[Products]Quantity Sold := [Products]Quantity Sold - Old (ltems'Quantity)

SAVE OLD LINKED RECORD (ltems'Description)

NEXT SUBRECORD (ltems)

End while
End if

A link can point to a subfield. When a linked subrecord is created or loaded, the
record containing that subrecord must be saved to save the subrecord. Similarly, to
create or load a linked subrecord, you must select the record which contains the
subfile and load it as the current record.

After entering two invoices, you obtain the list of items shown in Figure 5-31.

Products: 5 of 5 P
Description Unit Price |Tax Rate |Quantity Sold s
Morton Fitting MMach 1500000 0 0es = :.
Feversing Gashket 1.50 CL0es 20000
Straight Sesl Gasket T A0 0 0ES 1500
Morton SO00 FH 20,000 00 0 0Es 1
Marton 10000 Fr 25, 00000 00ES 1
Figure 5-31

Five new records in Products file

130 Chapter 5: File Links

Figure 5-32 displays a particular product so the user can see its sales history.

& iie Edit Enehanment fpter Saelect Hepart Spedind

Enlrg for Products

Enter Products
g _:m & Description |Norton 10000 FM
H Unit Price | 35,000.00
Delete Quantity Sold | 1
Invoice Date Sold Quantity s
2 |01/17/86 1

Figure 5-32
Displaying a product’s sales history

<+ Note: The example studied here for creating linked subrecords doesn’t manage

bill modifications or deletions.

Linking to a subfile

131

Chapter 6

Sets

133

4th Dimension sets offer the developer a powerful, swift means for manipulating file
selections. Besides the ability to create sets, relate them to the curent selection, and
store, load, and clear sets, 4th Dimension offers three standard set operators:

O Intersection
O Union

0O Difference

Sets defined

The idea of sets is closely bound to the idea of the current selection. The current
selection is a list or table in memory that can point to all records in the file or any
subset of them (including a null selection). Whatever the case, the list exists in
memory. A selection doesn’t actually contain the records, but only a list of the
records. Only the current record of the file is in memory. When you work on a file,
you always work with the records in the current selection.

A selection and a set are two different kinds of objects. A selection is the list of the file
records you're working on. A set is an object you create in memory, consisting of one
bit for every record in the file to which it belongs. Set.operations are, in effect,
binary operations on the bit array portion of the set and are thus very fast. For
example, the UNION command performs an OR operation on the bit arrays of
the two specified sets. Table 6-1 compares the current selection with sets.

Table 6-1

Current selection and sets concepts compared

Comparison Current selection Sets

Number per file 1 0 to many

Sortable Yes No

RAM per record 4 bytes 1 bit (1/8 of a byte)

Combinable No Yes

Contains current record Yes Yes, as of the last time the set was
used

4th Dimension has commands with which you can create a set from a file selection or
create a new file selection from a set belonging to that file. Set operations make it easy
to store and combine results from several searches. You can either create an empty
set or create a set from a selection or from existing sets. As a result, a given set may
contain more, fewer, or the same number of records as the current selection. The

two are not necessarily related. You always name the sets you create. For example:
Mail Dupes.

134 Chapter 6: Sets

< Note: The size of a set, in bytes, is always equal to the total number of records
contained in the file to which it belongs divided by 8. If you create a set
belonging to file containing 10,000 records, the set will take up 1250 bytes, which
is about 1.2K in RAM. Sets are very economical in terms of RAM and disk space.

Important

When you create a set, it belongs to the file under which you created it. The
operations you perform on sets can only be performed on sets belonging to the
same file.

Operations on sets

The seven primary set commands in 4th Dimension are (in alphabetical order)
O ADD TO SET: Put a record in the set.

CREATE EMPTY SET: Create an empty set.

CREATE SET: Put all records in the current selection into a new set.
DIFFERENCE: Put unique records from two sets into a third set.
INTERSECTION: Put common records of two sets into a third set.

UNION: Put elements belonging to set 1, set 2, or both into a third set.

0 & B 0 8 O

USE SET: Make the current selection reflect the contents of a set.

This section describes each of these seven commands with graphic depictions of
their workings.

4th Dimension also has set commands that return the number of records in a set
(Records in set), clear a set from memory (CLEAR SET), save a set to disk (SAVE
SET), and load a set into memory that you previously saved to disk (LOAD SET).

Operations on sets

135

CREATE EMPTY SET command
CREATE EMPTY SET («filename;» strexpr)

Figure 6-1 illustrates the CREATE EMPTY SET command. This command creates
an empty set belonging to filename and gives the empty set the name strexpr.

Current
selection Set

Current record

Figure 6-1
CREATE EMPTY SET command

CREATE SET command
CREATE SET («filename;» strexpr)

Figure 6-2 illustrates the CREATE SET command. This command creates a set

named strexpr. strexpr will belong to filename. The records belonging to the set are

the ones contained in the current selection of filename. Compare CREATE SET
and USE SET.

Current
selection Set

Current record

Figure 6-2
CREATE SET command

136 Chapter 6: Sets

USE SET command
USE SET (strexpr)

Figure 6-3 illustrates the USE SET command. This command creates a new current
selection for filename from the set named strexpr. strexpr must belong to filename.

The records of the new selection are the ones belonging to the set. Compare USE
SET and CREATE SET.

“* The current record and sets: The first record in a set does not necessarily
become the current record under USE SET.

Current
selection Set

Current record

Operations on sets 137

ADD TO SET command
ADD TO SET («filename;» strexpr)

Figure 6-4 illustrates the ADD TO SET command. This command adds the current
record to a set named Strexpr. strexpr must belong to filename. 1f the current record
doesn’t exist, ADD TO SET has no effect.

ADD TO SET has two common uses. First, inside a global procedure called by the
APPLY TO SELECTION command, you can use ADD TO SET to create sets
based on complex criteria. Second, to keep track of records that have changed since
some specific event. You might want to track modified records.

Current
selection Set

Current record

Figure 6-4
ADD TO SET command

138 Chapter 6: Sets

INTERSECTION command
INTERSECTION (strexpri;strexpr2;strexpr3)

Figure 6-5 illustrates the INTERSECTION command. This command creates a set
named sirexpr3. Its records are the ones belonging to both the strexprl and strexpr2
sets. strexpr3 can be a third set name or it can be the same as strexprl or strexpr2.

Intersection
Is record in set number n?

< | <12Z2| 2
L1 Z2|<]| 2]
<|Z2|2Z2| 2] ®

Shaded area goes to set 3

Figure 6-5
INTERSECTION command

UNION command
UNION (strexpri;strexpr2;strexpr3)

Figure 6-6 illustrates the UNION command. This command creates a set named
strexpr3. Its records are the ones belonging to either the strexprl or strexpr2 set or
to both sets. strexpr3 can be a third set name or it can be the same as strexprl or
Strexpr2.

Union
Is record in set number n?

<| <| 2| Z
< | 2Z2|I <| 2N
<|<|<|Z]| w

Shaded area goes to set 3

Figure 6-6
UNION command

Operations on sets 139

DIFFERENCE command
DIFFERENCE (strexpri;strexpr2;,strexpr3)

Figure 6-7 illustrates the DIFFERENCE command. This command creates a set
named strexpr3. Its records represent the difference between the strexpri and
Strexpr2 sets. strexpr3 can be a third set name or it can be the same as strexpri or
strexpr2. A record will appear in the strexpr3 set if it is in the strexprl set and not in
the strexpr2 set.

Difference
Is record in set number n?

<LK | <|Z | &
< | Z2]| <] 2|8
Z | <|Z| 2| w

Shaded area goes to set 3

Figure 6-7
DIFFERENCE command

Using sets: deleting duplicate records

Clearing duplicate records out of mailing lists is a perfect job for sets. In this
example, the procedure tests to see if two records have the same last name, first
name, and title. If they do, the procedure assigns one of the records to a set named
Doubles and continues the search. Once the search is over, the USE SET
command puts everything in Doubles into the current selection. The procedure
then deletes the current selection. The file structure is shown in Figure 6-8.

Feople
Lazt Marms A
Firz=t Marme &
Title A

Figure 6-8
File structure

140 Chapter 6: Sets

Here is the procedure named Destroy doubles:

“You're going to work on the [People] file. Select it as if it were the default file.
"Thus you won't have to enter the filename as parameter for routines requiring that
‘parameter. This will simplify the writing of the algorithm.
DEFAULT FILE ([People])
"Select all records in the [People] file with the ALL RECORDS command.
ALL RECORDS
“Initialize the three variables, vLast Name, vFirst Name and vTitle, in which you'll
“store the name, first name and status of the record preceding the one studied in order
'to compare values.
vLast Name :=""
vFirst Name :=""
vTitle :=""
"Sort the [People] file by last name, first name and title in ascending order.
SORT ([People]Last Name ; > ; [People]First Name ; > ; [People]Title ; >)
"Assign an empty set named "Doubles" to the [People] file.
EMPTY SET ("Doubles")
“Start at the first sorted selection.
While (Not (End selection))
"While you don't try to go beyond the last record of the sorted selection.
If ((People]Last Name = vLast Name)
‘Is that last name equal to the preceding last name?
“If so, check whether the first name is equal to the preceding one.
"Note: For the first selected record there obviously cannot be a preceding record.
"This is why you must initialize the variables.
If ((People]First Name = vFirst Name)
"Both names being identical, try to determine whether the first name is equal to
“the preceding first name. If so, check whether the title is equal to the preceding one.
If ((People]Title = vTitle)
“Is the title equal to the preceding one?
“If so, that record is redundant. Add the record (which is the current
‘record) to the"Doubles" set.
ADD TO SET ("Doubles")
Else
"The title is different. Place it in the vTitle variable.
vTitle := [People]Title
End if
Else
"Only the last name is different. Place the title and first name in the
“corresponding variables.
vTitle := [People]Title
vfirst name := [People]First Name
End if

Using sets: deleting duplicate records

141

Else
"Everything is different.
vTitle := [People]Title
vFirst Name := [People]First Name
vLast Name := [People]Last Name
End if
"Move to the next record.
NEXT RECORD
End while
"When exiting the "Doubles” set loop, the set contains all double records.
"Create a new file selection from that set by calling USE SET.
USE SET ("Doubles")
"Delete the selection of records.
DELETE SELECTION
"Delete in memory the set and the unwanted variables.
CLEAR VARIABLE ("v")
CLEAR SET ("Doubles")

Figure 6-9 shows the file before the procedure was executed.

People: 7 of 7 HIE
Title First Name Last Name o
Haon, Jean Diaviz
My Henry Crurmrmiond
[[Henry Crurnrmond
The Rewv. wWilharm Mackenzie
Ms. Anne Fartin
Mre. Anne FMartin
Mrs. |sabe] Martin
“ o
Figure 6-9

Output of file before removing duplicates

Figure 6-10 shows the file after the procedure was executed.

People: 6 of 6 == ——1
Title First Name Last Name ais
Hior Jean Dawis 3as
M. Henry Crurnrnond
The Few, wWilharn Mackenzie
M= Anne Martin
Frz. A Fartin
Mz lzabie] Martin
Figure 6-10

Output of file after removing duplicates

142

Chapter 6: Sets

UserSet system set

4th Dimension has a system set named UserSet. UserSet automatically stores the
most recent set of selections by the user. Thus, you can display a group of records,
ask the user to select from among them, and turn the results of that selection into a set

that you name or into a selection. The brief procedure below illustrates how you can
do this:

"Userpick
"Display all records and allow user to select any number of them.
"Then display this selection by using UserSet to change current selection.
DEFAULT FILE([Models])
OUTPUT LAYOUT("Display")
ALL RECORDS
ALERT("Press Command and Click to select a document required")
DISPLAY SELECTION
USE SET("UserSet")
ALERT("You chose the following documents")
DISPLAY SELECTION
OUTPUT LAYOUT("Screen1")

UserSet system set 143

Chapter 7

Menus

145

Pull-down menus have become one of the hallmarks of the Macintosh user interface.
Thanks to menus, users can choose activities by name, rather than relying on often-
cryptic typed command codes. Through custom menus, you can create applications
that look to the user as if you built them “from scratch.” 4th Dimension contains a
complete menu construction kit with which you can create menus and Command key
combinations to select items without resorting to a2 menu, you can password-protect
menu items, and you can enable and disable items. See Chapter 6 of 4th Dimension
User’s Guide for details on implementing these features. This chapter concentrates
on issues involving programming and menus.

Menu components

The bar at the top of the screen is called the menu bar. Each name on the bar
represents a menu. When you pull down the menu, you see the menu’s items.
Figure 7-1 shows these components.

Menu
" & File Edit JUEIEIN Invoices ; Menu bar
sty fdd Record SRS
Modify Record
Delete Record
Itfems
List #L
Print

Figure 7-1
Menu components

You create menus in the Design environment’s Menu window. Unlike other 4th
Dimension entities, menus are identified by number, rather than name. The first
menu is named Menubar #1. It is also the default menu. If you wish to open an
application with a menu other than Menubar #1, you must force it with the MENU
BAR command in a startup procedure.

146 Chapter 7: Menus

Each item can have one and only one developer-written procedure attached to it.
You associate a procedure with an item by naming the procedure in the Procedures
column of the Menu window. The user executes the procedure by selecting the item to
which the procedure belongs. If you don't assign a procedure to an item, selecting
that item causes 4th Dimension to quit the menu system. In the case of run-time
installations, this means returning to the Finder.

A menu bar comes pre-equipped with three menus—the Apple, Edit, and File
menus. The Apple menu contains “About 4th Dimension” and any desk accessories
currently installed in the System file. The Edit menu contains the editing commands.
File has only one item—Quit. Notice that Quit has no procedure associated with it.
That's how it causes a quit. You can rename the File menu, add items to it, or keep it
as is. It is recommended that you always keep the File menu with Quit as the last item.
The Apple and Edit menus are permanent.

< Quitting time: Any time you execute a menu item that has no procedure attached
to it, you leave the Custom environment.

If 4th Dimension encounters an ABORT command in a global procedure, it stops
execution and returns to the menu bar. This is like clicking the Abort button in the
debugger.

Like menu bars, menus themselves are numbered. The Apple and Edit menu are not
counted. Instead, File is menu 1. Thereafter (reading from left to right), menus are
numbered sequentially (2, 3, 4, and so on). Menu numbering becomes important
when working with the Menu selected function. Similarly, items within each menu

are numbered from 1 for the topmost item down. Item numbering comes into play
when working with the CHECK ITEM command.

Menu window features

When you select a particular item within the Items column in the Menu window, you
apply any of five features to the selected item (see Figure 7-2):

m Keyboard: Checking the Keyboard box and typing a character assigns the
character as a command character. The user can call an item by typing the
appropriate Command key combination.

m Line: Checking the Line box draws a dividing line between two menu items. You
should disable any lines you create.

m Enabled: The default state for any item is enabled. You can toggle the enabled
state off and on by clicking this box.

m Font styles: Check the style(s) you want for the menu item. The default is Plain.
Use styles only in a Style menu.

m Passwords: You can block unauthorized users from gaining access to particular
items by assigning a password to the item. For details on passwords, see Chapter 6
of 4th Dimension User’s Guide.

Menu window features

147

S[=———=——————— Menubar #| =— =HE
Menus Items Procedures
File ‘1_r &dd Fecord | Addiyst M
Customers FAodify Fecord FladCuszt
Invoices Celete Fecord Celluyst
. Lizt ,.J_l. L1-_='rI:1u_:+i .J_L
Keyboard: || []Bold
[]Line [] Italic
Enabled (] Underline
[] Outline
Fazzward | | (] Shadow
0
Figure 7-2

Menu window

Of these five features, only Enabled is programmable. A line is normally used to
group items on a menu. In 4th Dimension, a line is an enabled item unless you
disable it. This means that if someone selects an enabled line and you have
associated a procedure with it, 4th Dimension will execute the procedure. If you have
not associated a procedure with an enabled line, selecting the line will cause the 4th
Dimension to quit the Custom environment. As a general rule, disable all lines.

When you disable an item, the selection bar skips over it as you drag down the menu.
Enabled and disabled lines look the same.

Do not use the following command keys:
0O Z: Undo

0O X: Cut

O C: Copy

O V: Paste

0 Q: Quit (except for the Quit menu item)

148 Chapter 7: Menus

Programmable menu features

4th Dimension has a number of programmable menu features:

m ENABLE ITEM and DISABLE ITEM programmatically toggle the Enable state
on and off.

m CHECKITEM places a check mark next to the designated item.

m MENU BAR takes a menu bar number as an argument and activates the menu bar
identified by this number.

m Menu selected returns either the menu or the item selected, depending on how
you manipulate it.

You can enable and disable items as appropriate from within procedures with
ENABLE ITEM and DISABLE ITEM. As a general rule, if you find yourself
disabling a particular item a lot, set it as disabled in the menu window. The same
principle works for enabling items.

CHECK ITEM comes in handy as a way of reminding the user what item is in effect.
You can either write constants into CHECK ITEM or feed CHECK ITEM the
necessary arguments with the Menu selected function. A check is generated with
an ASCII code 18. To erase a check mark, use a null string or a space.

When you are entering or modifying a record or working with a dialog, you can select
menu items, but nothing will happen unless you have written a procedure to execute a
command. To do this, you can read the menu and menu item positions with Menu
selected and evaluate the numbers returned through a case statement. Each case
should have a procedure name to execute if the number is found to be the case.

Programmable menu features

149

Chapter 8

Operations on Pictures

151

Infroduction

In the preceding sections of this manual, you've seen that you can define Picture
fields and use Picture variables. These fields support Macintosh pictures.

Picture type fields and variables can be displayed and printed in three different ways:

0 The picture can be truncated: 4th Dimension centers the graphic in the Picture
area and trims any part of the graphic that is bigger than the size of the Picture
area.

0 The picture is scaled to fit: It’s automatically enlarged or reduced to fit in the
Picture area.

0O The picture can be placed on background: The picture can be moved with the
pointer over the layout background. The user can control the contrast between the
picture and the layout background.

With picture arithmetic operations, you can build more complex pictures:
calculations are performed on Picture expressions and the results are placed in
Picture fields or variables. In the same way you assign Alphanumeric, Numeric, or
Date expressions, you assign a graphic to a field or variable with the assignment
operator (:=).

Consider the two-file database structure shown in Figure 8-1.

Customers
Last Name
First Name
Title
Addr 1
Addr 2
City
State
FPostal Code
Hobby

Headers
Type A
FPicture P

>>>>>>>r>

Figure 8-1
Two-file database structure

You want to send a customized letter to every customer and place a picture in the

header reflecting the customer’s hobby, which you stored in the [Customers]Hobby
field. You create the Letter 1 layout shown in Figure 8-2.

152 Chapter 8: Operations on Pictures

vDate variable

vHeader variable

vAddress variable

Text area

Figure 8-2
Overview of layout for Letter 1

You assign the header picture to the vHeader variable, the customer’s address to the
vAddress variable, and the date to the vDate variable. In the layout text, you can
insert variables enclosed between angle brackets (<>). They’ll be replaced by their
values upon printing. The layout procedure will calculate the variables:

If (Before)

“If the customer doesn’t have any hobby, or if his hobby is unknown in the [Headers]
“file, copy to the IDefault variable the standard picture stored in the [Headers] file
“for that purpose.

If (Undefined (IDefault))
SEARCH SELECTION ([Headers]Type= "Standard")
IDefault := [Headers]Picture

End if

vDate := String (Current date)

CR := Char (13)

vAddress = Title + " " + First Name + " " + Last Name + CR + Adr1 + CR +
Adr2 + CR

vAddress := vAddress + City + " " + State + " " + String (Postal Code ; "000000")
"Search for the header corresponding to the customer’s hobby.

SEARCH SELECTION ([Headers]Type = Hobby)

If (Records in selection ([Headers]) # 0)
vHeader := [Headers]Picture

Else

"If the header doesn'’t exist, use the default header.

vHeader := IDefault

End if

"And so on...
End if

Intfroduction 183

Operations on Picture expressions

4th Dimension offers nine arithmetic and one logical operation on pictures. These
are

0 horizontal concatenation (+)

vertical concatenation (/)

-

r

]

exclusive superimposition (&)

O

inclusive superimposition ()

O

horizontal move (+)

1 vertical move (/)

O point symmetry (*)

O horizontal scaling (*+)
0 vertical scaling (*/)

0 negation (Not)

Table 8-1 demonstrates how the concatenation and superimposition operators work.
A description of each command follows.

Table 8-1

Concatenation and superimpaosition operations

Operation First picture Second picture Resulting picture
+ Horizontal concatenation ‘

/ Vertical concatenation l.,.

& Exclusive superimposition .

| Inclusive Supefimposition

154 Chapter 8: Operations on Pictures

Horizontal concatenation (+)
NewPic = picturexpri+picturexpr2

Horizontal concatenation places the picturexpr2 expression to the right of the
picturexprl expression. Both expressions are top aligned. picturexprl +
picturexpr2 and picturexpr2 + picturexprl are two different statements. There is no
commutation in horizontal concatenation.

Vertical concatenation (/)
NewPic := picturexprl/picturexpr2

The picturexpr2 expression is placed under the picturexpril expression. Both
expressions are left aligned picturexpri/picturexpr2 and picturexpr2/ picturexpri
are two different statements. There is no commutation in vertical concatenation.

Exclusive superimposition (&)
NewPic := picturexpri&picturexpr2

The picturexpr2 expression and the picturexprl expression are superimposed and
centered. One point of the resulting picture expression is black, if only one
corresponding point of the picturexprl and picturexpr2 expressions is black, and
not both.

Inclusive superimposition (1)
NewPic := picturexprl | picturexpr2

The picturexpr2 expression and the picturexprl expression are superimposed and
centered. One point of the resulting picture expression is black, if one of the
corresponding points of picturexprl and picturexpr2 expressions is black or if both
points are black.

The following sections discuss and illustrate the rest of the operations in detail.

< Background: In the following discussion, picture movement is relative to the

background only if it applies to placing pictures on a background. Pictures
remain centered within individual display areas.

Operations on Picture expressions

155

Horizontal move (+)
NewPic := picturexpr+numexpr

The picturexpr expression is moved horizontally by a number of pixels equal to
numexpr. If numexpr expresses a positive value, the picture is moved from left to
right. If numexpr expresses a negative value, the picture is moved from right to left.
See Figure 8-3.

s T,
= 2 i

e

Figure 8-3
Horizontal move

156 Chapter 8. Operations on Pictures

Vertical move (/)
NewPic := picturexpr/ numexpr

The picturexpr expession is moved vertically by a number of pixels equal to
numexpr. If numexpr expresses a positive value, the picture is moved from top to
bottom. If numexpr expresses a negative value, the picture is moved from bottom to
top. See Figure 8-4.

Figure 8-4
Vertical move

Operations on Picture expressions 157

Point symmetry(*)
NewPic := picturexpr* numexpr

The picturexpr expression is resized according to the numexpr coefficient. When
numexpr is positive, either of two things can happen, depending on the value of
numexpr. If numexpr is less than 1, the picture is reduced. If numexpr is greater than
1, the picture is enlarged. When numexpr is negative, either of two things can
happen, depending on the value of numexpr. If numexpr lies between 0 and -1, the
picture is reduced and flipped both horizontally and vertically. If numexpr is less
than -1, the picture is enlarged, but the picture is drawn by point symmetry through
to the upper-left corner of the picture. See Figure 8-5.

Figure 8-5
Point symmetry

158 Chapter 8: Operations on Pictures

Horizontal scaling (*+)
NewPic := picturexpr*+numexpr

The picturexpr expression is scaled horizontally according to the numexpr
coefficient. When numexpr is positive, either of two things can happen, depending
on the value of numexpr. If numexpr lies between 0 and 1, the picture is reduced. If
numexpr is greater than 1, the picture is enlarged. When numexpr is negative, either
of two things can happen, depending on the value of numexpr. If numexpr lies
between 0 and -1, the picture is reduced. If numexpr is less than -1, the picture is
enlarged. In either case, the picture is flipped horizontally. picturexpr*+-1 returns
the horizontal “flip” of picturexpr. See Figure 8-6.

Figure 8-6
Horizontal scaling

Operations on Picture expressions 159

Vertical scaling (*/)
NewPic := picturexpr* / numexpr

The picturexpr expression is resized vertically according to the numexpr coefficient.
When numexpr is positive, either of two things can happen, depending on the value
of numexpr. If numexpr lies between 0 and 1, the picture is reduced. If numexpr is
greater than 1, the picture is enlarged. When numexpr is negative, either of two
things can happen, depending on the value of numexpr. If numexpr lies between 0
and -1, the picture is reduced. If numexpr is less than —1, the picture is enlarged. In
either case, the picture is flipped vertically. picturexpr* /-1 returns the vertical
“flip” of picturexpr. See Figure 8-7.

Figure 8-7
Vertical scaling

160 Chapter 8: Operations on Pictures

Not (picturexpr)

Not, applied to a Picture expression, returns a Picture expression where all points

Negation (Not)

NewPic

8-8.

igure

ted. See F

arc inver

Picture operations examples

Figure 8-8
Negation

icture

is created wi

on’s pi

1mension

9

.

ing 4th D

You can create interesting and useful graphics us
operators. The moving process flow bar shown

procedure that follows.

th the

in Figure 8

Fri

ing Data,

CESE

Figure 8-9
Process

tor

ICcda

d

ing in

161

Picture operations examples

This routine
1. Reads a black box and an (almost) empty box into picture variables.

2. Scales the black and empty boxes, adds them together, and assigns them to a File
field.

3. Copies the % done to a variable.
4. Does a DISPLAY RECORD to cause the variables to be updated on the screen.

"Global Procedure: Run Thermo
"Get the boxes for displaying
SEARCH BY INDEX([PictureFile]PictureName="Black Box")
Box:=[PictureFile]Picture "Get a filled box
SEARCH BY INDEX([PictureFile]PictureName="Blank")
Blank:=[PictureFile]Picture "Get a filled box
Empty:=Blank&Blank "Create even more empty box, remove 2 pixels
ALL RECORDS([PictureFile]) ‘restore selection
CREATE RECORD([PictureFile])
INPUT LAYOUT([PictureFile];"d.Thermometer") INPUT layout is used to DISPLAY records
"Main loop, Display progress
;=0 " "I" represents the % complete
Scale:=10
[PictureFile]Picture:=Empty ‘“start at 0%
While (i<=100)
VarLabel:=String(i)+"% "
[PictureFile]Picture:=(Box*+(i/Scale))+(Empty*+((100-i)/Scale))
If (i>=95)
Ok, now near 100%. If we don't do this, we get blanks for 95% and above.
[PictureFile]Picture:=Box
End if
DISPLAY RECORD([PictureFile])
I:=i+4
End while
"Don't save record!
UNLOAD RECORD([PictureFile])
INPUT LAYOUT([PictureFile];"Picturelnput") ‘Restore old input layout as the default.
CLEAR VARIABLE("Box")
CLEAR VARIABLE("Blank")

CLEAR VARIABLE("Empty")
CLEAR VARIABLE("VarLabel")
CLEAR VARIABLE("Scale")

162 Chapter 8: Operations on Pictures

Figure 8-10 shows a bar chart drawn with the procedure that follows.

Annual Sales figures |

\—/

P 1u1h;h~r

Figure 8-10
Bar graph

This routine:

1. Demonstrates the power of 4th Dimension picture arithmetic by creating a graph

from a series of existing pictures.

2. Creates random sales figures for each month (from 0 to MaxSales).

3. Plots a scaled box and either a happy or a sad face for each month—happy if sales

are up, sad if sales are down.

4. Sums plots into a single picture variable for display.

5. Supports the user by allowing changes to the scaling factors and recomputing the

graph based on these factors.

"Layout procedure: d.graph

“File: [PictureFile] Even though this dialog box is within the [PictureFile]

‘file, there is no requirement that it be.

"You will likely have to adjust the size of the picture variable in the dialog
“layout if you want your patterned areas to come out consistent.
"Remember that the entire variable is scaled to fit in the variable

“layout region at the time it is displayed.

If (Before)
"Define constants.
ScaleMul:=3.6
ScaleOff:=0.55

MaxSales:=120 “Just pick a figure for the maximum sales value. Normally, you'd have to compute

“this figure from the file data.

"Note: The pictures read are all the same size, 38 pixels wide.

Picture operations examples

163

SEARCH BY INDEX([PictureFile]PictureName="Box") "Box with vertical stripes
pBox:=[PictureFile]Picture
pBlank:=[PictureFile]Picture "Assign blank to the same size/shape box
pBlank:=pBlank&pBlank “XOR to remove all black lines, leaving white that is just the right size.
SEARCH BY INDEX([PictureFile]PictureName="Happy") "Happy face
pHappy:=[PictureFile]Picture
SEARCH BY INDEX([PictureFile]PictureName="Sad") "Sad face
pSad:=[PictureFile]Picture
ALL RECORDS([PictureFile])

"Create sales figures (Mostly random)
Sales0:=0 “Just to have something to compare against.
Sales1:=0 “Start with a very small sales month. Done for range checking of the result.
month:=2 First month assigned, now do months 2—11. |

While (month<=11)
Sales{month}:=Int((Random/32676)*MaxSales) ‘range from 10 to 120
month:=month+1

End while

Sales12:=MaxSales "End on a high note.

End if “(Before)
If (During)&(bCompute=1)|(Before)) "The before is here just to save the user

‘from having to press the [Compute] button.

"Compute Vertical Bar and picture for each month.

"Valid values for "SolidScale" seem to be limited to: 0.0666 to 1.333

month:=1

While (month<=12)
SolidScale:=(ScaleMul*(Sales{month}/MaxSales))
pBarSolid:=pBox*/(SolidScale+ScaleOff)
pBarEmpty:=pBlank*/((ScaleMul-SolidScale)+ScaleOff)

"Put it all together with the appropriate face.
If (Sales{month}>=Sales{month-1})
pMonth{month}:=pBarEmpty/pHappy/pBarSolid
Else
pMonth{month}:=pBarEmpty/pSad/pBarSolid
End if
month:=month+1
End while

“String them all together for a complete graph for 1 month
month:=1

CLEAR VARIABLE("var")
While (month<=12)
var:=var+pMonth{month}
month:=month+1
End while
End if

164 Chapter 8: Operations on Pictures

Chapter 9

ASCIl Maps

165

This chapter looks at ASCII maps—what they are and how to use them—in the context
of file import and export. (ASCII stands for American Standard Code for
Information Interchange.)

File import and export

In the User or Custom environment, you may exchange, import, or export data
between your 4th Dimension database and other documents stored on disk or in
another computer. A 4th Dimension ASCII map is a table that translates from one
character representation code to another. The table can be active during an
application’s storage operation or while exchanging data through the serial port, a
network, or a direct connection between computers.

Several 4th Dimension commands that take advantage of the ASCII map facility work
in the User and Custom environments. They can read from or write documents to
disk and communicate with a Macintosh or other computer through the serial port.
To work with documents on disk, choose EXPORT DIF, EXPORT SYLK, and
EXPORT TEXT, to export data and IMPORT DIF, IMPORT SYLK, and
IMPORT TEXT to import data.

When in the User environment, choose the Export Data command from the File
menu to export data stored in records belonging to the current file selection. Choose
the Import Data command from the File menu to add records to the current file. You
can export or import data in the SYLK, DIF, or TEXT formats.

Using 4th Dimension’s communications commands—SET CHANNEL, RECEIVE
PACKET, SEND PACKET, and RECEIVE BUFFER—you can read from and
write to documents stored on disk and communicate with another computer through
the serial port.

Uses for an ASCIl map

There are any number of reasons for exchanging data. Here are a few of the things
you may want to do:

O Import text documents stored on another computer.

O Replace carriage return characters (ASCII decimal code 13) with line feed
characters (ASCII decimal code 30).

0 Do rudimentary substitution encryption for file security.

O Send 8-bit ASCII codes directly to an ImageWriter printer (7 bit) which only uses
ASCII characters 1 through 127.

166 Chapter 9: ASCIl Maps

Exchanging data between several 4th Dimension databases, or between one 4th
Dimension database and a document created with another Macintosh application, is
a simple procedure. Conversely, if you want to exchange data between a 4th
Dimension database and a document created with an application program designed
for another type of computer, you may have to use the ASCII map.

In a computer, each character is assigned a unique ASCII code number from O to 255.
When two computers communicate, they exchange codes corresponding to
characters. There is, however, a problem: while all computers use the same code for
the first 128 characters, they use different codes for all the remaining characters. For
example, a Macintosh computer assigns the 131 code to an accented capital E (E),
whereas another type of computer may assign the 144 code to that character. The
host computer sends ASCII code 144 standing for E, and your Macintosh looks it up
in its code table and “translates” the 144 code as an €.

Working with ASCII maps

An ASCII map can solve this communication problem.. When creating an ASCII
map, you create a correspondence between the ASCII table of your Macintosh and
that of the host computer. For instance, you will specify that ASCII code number 131
on your Macintosh is equivalent to number 144 on the host computer. Then you
select the appropriate map as the current ASCII map; that is, the default map that 4th
Dimension will use during a communication session.

Important

Once invoked, an ASCIl map remains in effect until you leave the database in
which you created it. Therefore, If you choose to use an ASCIl map, be sure to
reset the map with the command USE ASCII MAP (*). This way, after you have
finished an ASCIl map setup, you can return to your Macintosh’s standard ASCI
interpretation.

The way maps work is rather simple. When 4th Dimension sends a given character to
a disk or to a serial port, it actually sends the corresponding map character. When
4th Dimension receives a given character from a disk or serial port, it displays the
corresponding map character on screen.

You may create any number of maps. You will thus have the ability to communicate
with many types of computers. You won’t need to exchange SYLK, DIF, or ASCII
documents through character-converting utilities, but rather you can work with
documents directly in the 4th Dimension environment. This means you don’t have

to modify your application; you just create a new map where necessary.

Working with ASCIl maps

167

You create maps in the User environment; choose the Edit Map command from the
Special menu. (For details on creating and using ASCII maps, see Chapter 3 of

4th Dimension User’s Guide.) You can also use maps from within the User
Environment. When in the Custom environment, select any map as the current map
with the USE ASCIlI MAP command. Figure 9-1 shows the Edit map dialog box.

Edit an ASCII map...
Ascil code ([}
1 1
: : | Load... |
4 4
5 S e i
o & O £ |, Saue |
D 2 7 E] _r"
0 : 8 O 2
3 . g | Cancel |
o : 10 g . 1o
s SEN § o 11 .
BE O | Use Map |
Figure 9-1

Edit map dialog box

168 Chapter 9: ASCIl Maps

Cast of Characters

" (accent mark) 32

<> (angle brackets) 153

:= (assignment operator) 17-18,
152

* (asterisk) 76

@ (at sign) 32, 114

A (caret) 76

$ (dollar sign) 9, 28

= (equal sign) 17

& (exclusive superimposition) 155

+ (horizontal concatenation) 155

+ (horizontal move) 156

*+ (horizontal scaling) 159

| (inclusive superimposition) 155

(number sign) 76

* (point symmetry) 158

= (relational operator) 17-18

/ (vertical concatenation) 155

/ (vertical move) 157

*/ (vertical scaling) 160

A

ABORT command 147

accent mark) 32

Accept buttons 88-89

ADD SUBRECORD command 61
ADD TO SET command 135, 138
ALL RECORDS command 49

ALL SUBRECORDS command 58
alphanumeric constants 9, 13
Alphanumeric field type 3, 31, 37

formatting 75
alphanumeric variables 87

And operator 5

angle brackets (< >) 153

Apple menu 147

applications, writing 31-32

APPLY TO SELECTION command
138

Index

array table 33-34

ASCII map 166-168

assignment operator (:=) 17-18,
152

asterisk (*) 76

at sign (@), as wildcard character
32, 114

attributes. See field attributes

B

bar graph 163
Boolean variables 32, 87
branching structure 19-20
break field 72
button(s)
Accept 88-89
Button 90
Don’t Accept 88-89
radio 90
Button buttons 90

C

Cancel 88

Can't modify field attribute 3, 41

caret (A) 76

Case of command 19, 21-22, 88,
90

Change Field command 36

check boxes 90

CHECK ITEM command 147, 149

Choose File Layout command 43

CLEAR SET command 135
CLEAR VARIABLE command 28

command(s) 4, 8
ABORT 147
ADD TO SET 135, 138
ADD SUBRECORD 61
ALL RECORDS 49
ALL SUBRECORDS 58

APPLY TO SELECTION 138

Case of 19, 21-22, 88, 90

Change Field 36

Choose File Layout 43

CHECK ITEM 147, 149

CLEAR SET 135

CLEAR VARIABLE 28

communications 166

CREATE EMPTY SET 135, 136

CREATE LINKED RECORD
122-128

CREATE SET 135, 136

Delete Field 36

Delete File 36

DIFFERENCE 135, 140

DISABLE ITEM 149

ENABLE ITEM 149

EXECUTE 13

EXPORT DIF 166

EXPORT SYLK 166

EXPORT TEXT 166

FIRST SUBRECORD 58

GRAPH 91

If 21, 22, 88

IMPORT DIF 166

IMPORT SYLK 166

IMPORT TEXT 166

INTERSECTION 135, 139

LOAD LINKED RECORD 98,
110-115, 118, 122, 127

LOAD OLD LINKED RECORD
120-121, 128

LOAD SET 135

MENU BAR 146, 149
MODIFY SUBRECORD 61

New Field 36

New File 36

NEXT RECORD 51

NEXT SUBRECORD 58
PREVIOUS RECORD 51
PREVIOUS SUBRECORD 58

169

RECEIVE BUFFER 166
RECEIVE PACKET 166
REDRAW 92
Rename File 36
SAVE LINKED RECORD
115-119, 121
SAVE OLD LINKED RECORD
120-121, 128
SAVE RECORD 51
SAVE SET 135
SEARCH 49
Search and Modify 49
Search by Formula 49
SEARCH BY INDEX 49, 98,
113
SEARCH SELECTION 49
SEND PACKET 166
SET CHANNEL 166
UNION 134, 135, 139
USE ASCII MAP 167, 168
USE SET 135, 137, 140
Command-. (period) 88
communications commands 166
comparison operators 15-16
concatenation operations 154, 155
constants 9, 13
CREATE EMPTY SET command
135, 136
CREATE LINKED RECORD
command 122-128, 128
CREATE SET command 135, 136
Current date function 34
current record 49-51
current selection 49, 134
sorting 51
Custom environment

5, 166

D

database(s)
file structures 3

modularizing 25-26
multiple-file 98

passed arguments in 27
passwords 4

single-file 98-100
structure of 116
three-file 105-106
two-file 100-105, 152

170 Index

data types. See field types
date constants 9, 13
date expression operators 15
Date field type 3, 38
formatting 78
date variables 32, 87
Delete Field command 36
Delete File command 36
Design environment 5, 23, 30, 36,
41, 146
Design menu 23, 30
dialog box(es)
field 75
Layout 43, 44, 60-61
mode 80
record 112
Sort 52
Standard Choices 41-42
variable 86, 91
DIFFERENCE command 135, 140
DISABLE ITEM command 149
dollar sign (§) 9, 28
Don’t Accept buttons 88-89

E

Edit menu 147
Else. See If command
Enabled box 147
ENABLE ITEM command 149
End case. See Case of command
End if. See If command
Enterable field attribute 3, 87
Enterable variables 87
Enter key 88
entry layouts 101, 102
Enumerated field attribute 3
environments 5. See also specific
environment
equal sign (=) 17
Except operator 5
exclusive superimposition (&) 155
EXECUTE command 13
execution cycle
for input to a record with a subfile
64
layout procedures and 45-48
for output with subfiles 65

EXPORT DIF command 166
EXPORT SYLK command 166
EXPORT TEXT command 166
expressions 8

External areas 95

F

False function 17
field attributes 3. See also specific
field attribute
specifying 39-42
field dialog box 75
field names 11
fields
break 72
formatting within a layout 74-78
linked 113-115
sort 72
field types 8-9. See also specific
field type
specifying 37-39
file box 36, 40
File menu 147
Choose File Layout command
43
filenames 10
file procedures 3, 44
files
creating 36-37
fields of 37
importing and exporting 166
linking 106-110
selecting 49
FIRST SUBRECORD command 58
Fixed Frame (Multi-line) 62, 65
Fixed Frame (truncation) 62, 65
Flowchart editor 4, 5, 23, 31, 32
font styles 147

functions 4, 8, 13, 19, 30-31. See
also specific function

G

global variables 28-30
Graph area 91
GRAPH command 91

H

horizontal concatenation (+) 155
horizontal move (+) 156
horizontal scaling (*+) 159

i 4

identifiers 10
If command 21, 22, 88
IMPORT DIF command 166
IMPORT SYLK command 166
IMPORT TEXT command 166
inclusive superimposition (1) 155
Indexed field attribute 3, 39-40
indexing linked files 107
index table 107
indirection 33
input
execution cycle for 4647
phase functions for 45
input layouts 42-43, 123
default 61
procedures 064, 124-125
Integer field type 3, 38
formatting 75-78
INTERSECTION command 135,
139

K

Keyboard box 147
keywords 8, 19, 21, 59

L

Layout dialog box 43, 44, 60-61
layout names 10
layout procedures 3, 44-48, 153
entry 103-104
execution cycle and 45-48
input 64, 124-125
subfile 64-65, 124-125
layouts 3, 42-43
entry 101, 102
formatting fields within 74-78
input 42-43, 60-61, 123
list 101, 102

output 42-43, 60-61, 70
report 70-74
subfile 60-61, 123
layout variables 85-86
Level function 72
Line box 147
linked fields, duplicate values in
113-115
linked records 108-110
Listing editor 32
list layouts 101, 102
LOAD LINKED RECORD command
98, 110-115, 118, 122, 127
LOAD OLD LINKED RECORD
command 120-121, 128
LOAD SET command 135
local variables 28-30
logical functions 17
logical operators 5, 16
Long Integer field type 3, 38
formatting 75-78
loop structure 19-20

M

Make A List procedure, flowchart
procedure for 26
Mandatory field attribute 3, 40,
112-113
menu bar 146-147
MENU BAR command 146, 149
Menu editor 23
menus 4
components of 146-147
programmable features of 149
Menu selected function 147, 149
Menu window 146, 147-148
metasymbols, syntactic 6
mode dialog box 80
Modifiable field attribute 3
Modify option 41
MODIFY SUBRECORD command
61

N

Negation (Not) 17, 161
New Field command 36
New File command 36

NEXT RECORD command 51

NEXT SUBRECORD command 58

Non-enterable field attribute 3, 40,
87, 1253

Non-enterable variable 87

Not (Negation) 17, 161

number sign (#) 76

numeric constants 9, 13

numeric expression operators 14

numeric field types 75-78

numeric variables 32, 87

O

offspring data structure 54, 64
Old function 115, 119

On background pictures 80-85,
152
operands 8
operators 8, 14-17. See also
specific operator
OR operation 134
Or operator 5
output
execution cycle for 47-48
phase functions for 45
output layouts 42-43, 70
default 61
with subfiles 65

P, Q

page breaks 74

parent data structure 54, 64

passwords 4, 147

Picture field type 3, 39
displaying 78-85, 152
operations on 154-164

picture operators 16-17

pictures
On background 80-85, 152
Scaled to fit 79, 152
Truncated 79, 152

picture variables 32, 87
displaying and printing 152

pixels 81

pixel transfer modes 81

point symmetry (*) 158

PREVIOUS RECORD command 51

Index 171

PREVIOUS SUBRECORD command
58

printing

flowchart procedure for 25

lists of records 71

options 62-63

records 606, 71-74
Procedure editor 4
procedures 4, 8, 13, 19, 23

calling 24

file 3, 44

layout 3, 44-48

modular approach to 23-24
processing indicator 161
programming language 4
programming structures 19-20

R

radio buttons 90
RAM, variable table in 9
Real field type 3, 38
formatting 75-78
RECEIVE BUFFER command 166
RECEIVE PACKET command 166
record(s)
linked 108-110
printing 66, 71-74
structure 57
record dialog box 112
REDRAW command 92
relational operator (=) 17-18
Rename File command 36
report layouts 70-74
routines 19

S

SAVE LINKED RECORD command
115-119, 121

SAVE OLD LINKED RECORD
command 120-121, 128

SAVE RECORD command 51

SAVE SET command 135

Scaled to fit pictures 79, 152

Scrollable area 91-95

Scrollable window 114

Search and Modify command 49

Search by Formula command 49

172 Index

SEARCH BY INDEX command 49,
98, 113
SEARCH command 49
search criteria 50
SEARCH SELECTION command
49
Selection window 115
SEND PACKET command 166
sequence structure 19
SET CHANNEL command 166
sets 12
defined 134-135
operations on 135-140
using 140-142
Sort dialog box 52
sort field 72
sorting 51-53
flowchart procedure for 25
Standard Choices dialog box 41-42
statements 8
string expression operators 15
Structure menu 36
Structure window, drawing a link in
107
Style menu 75, 147
subfields 3, 11-12, 54
subfile(s) 3, 11-12, 54-68
Layout dialog box 60-61
layout procedures 64-65,
124-125
layouts 60-61, 123
levels 60
linking to 128-131
multiple-level access 60
searching 59
structure 57
subfield 37
when to use 66-68
Subfile field type 3, 39
subrecord(s) 54, 57
data entry 60-61
searching 58
substructures 54
Subtotal function 72
Sum function 55
superimposition operations 154,
155
syntactic metasymbols 6
syntactic symbols 6

T

Text field type 3, 38
formatting 75

True function 17

Truncated pictures 79, 152

U

UNION command 134, 135, 139

Unique field attribute 3, 40

USE ASCII MAP command 167,
168

User environment 5, 57, 126, 166

UserSet system set 143

USE SET command 135, 137, 140

\'

variable(s) 4, 8, 9-10, 12

button 88

Enterable 87

global 28-30

layout 85-86

local 28-30

Non-enterable 87
variable dialog box 86, 91
Variable Frame 62
variable table 33-34
variable type 32
vertical concatenation (/) 155
vertical move (/) 157
vertical scaling (*/) 160

W, X, Y, 2
wildcard character 32, 114

M=
e "

. M 1 |
,ﬂv.._.s

e

M_H..,
Ads

A
i)
A

£

e

A,

ey

"

)
}
7

" \rﬂwc e .,

e

).
¥

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190

