

Acius 4th DimensionTM
Programmer's
Reference

4th Dimension by Laurent Ribardiere

Copyright © 1987 Acius, Inc .
All rights reserved .

This manual was written by
Dominique Hermsdorff, Will
Mayall, Bruce Barrett, and Bill
Kling .

Cover design by Patrick Chedal
C&C.

This manual and the software
described in it may not be
copied, in whole or in part,
without written consent of
Acius, Inc., except in the
normal use of the software or to
make a backup copy. It is against
the law to copy 4th Dimension
on magnetic tape, disk, or any
other medium for any purpose
other than the purchaser's
personal use .

Even though Acius has tested
and reviewed the software and
documentation, ACIDS
MAKES NO WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED,
WITH RESPECT TO SOFT-
WARE, ITS QUALITY,
PERFORMANCE, MERCHANT-
ABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE IS
SOLD "AS IS," AND YOU
THE PURCHASER ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND PERFORMANCE. IN NO
EVENT WILL ACIDS BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT IN THE SOFTWARE
OR ITS DOCUMENTATION,

even if advised of the possibility
of such damages . In particular,
Acius shall have no liability for
any applications developed
with, or data stored in or used
with, 4th Dimension, including
the costs of recovering such
programs or data.

Apple, AppleShare, AppleTalk,
ImageWriter, LaserWriter,
MacDraw, Macintosh, and
MacPaint are trademarks of
Apple Computer, Inc.

Contents

Figures and tables ix

Preface xiii
Manual overview xiii
Aids to understanding xiv
Vocabulary xiv

Chapter 1 Overview 1
Tools 2

Database structures 3
Layouts 3
Layout procedures and file procedures 3
Procedures and functions 4
Programming language 4
Menus 4
Passwords 4

Environments 5
Design environment 5
User environment 5
Custom environment 5

Syntactic definitions 6

Chapter 2 Programming 7
Types, constants, and variables 8

Data types 8
Constants 9
Variables 9

Identifiers 10
Filenames 10
Layout names 10
Field names 11
Subfields 11
Variables 12

iv

	

Contents

Sets 12
Procedures and functions 13
Constants 13

Operators 14
Numeric expression operators 14
String expression operators 15
Date expression operators 15
Comparison operators 15
Logical operators 16
Picture operators 16
Three logicial functions 17

Equality test and assignment operation 17
Programming structures 19
Case of: a structuring command 21
Procedures and arguments 23

Procedures 23
Structuring and simplifying large procedures 23
Calling procedures 24
Modularizing your application 25
Parameter passing 27

Scope of arguments, global variables, and local variables 28
Functions 30
Tips for writing applications 31
Variable types 32
Variable tables : indirection and index notation 33

Chapter 3 Files 35
Creating a file 36
Specifying field types 37

Alpha 37
Text 38
Real 38
Integer 38
Long Integer 38
Date 38
Picture 39
Subfile 39

Specifying field attributes 39
Indexed 39
Unique 40
Mandatory 40
Non-enterable 40
Can't modify 41
Standard Choices 41

Layouts 42

Output layouts and input layouts 43

Layout procedures and file procedures 44

File procedures 44

Layout procedures 44

Layout procedures and the execution cycle 45

Execution cycle for input to a record with no subfiles 46

Execution cycle for output with no subfiles 47

Current selection and current record 49

Selecting a file 49

Current record 51

Sorting 51

Subfiles 54

Subfiles defined 54

Subfile example 1 54

Subfile example 2 56

Subfile example 3 59

Subfiles and layouts 60

Printing options in the subfile area 62

Subfile layout procedures and the execution cycle 64

Execution cycle for input to a record with a subfile 64

Execution cycle for output with subfiles 65

Output from a record having at least one subfile 66

When to use a subfile 66

RAM costs of subfiles 67

Creating an invoice system 67

Chapter 4 layouts 69

Report layouts 70

Printing a simple list 71

Printing sorted records 71

Printing sorted records with subtotals and a page break 74

Formatting fields within a layout 74

Alphanumeric and Text fields 75

Real, Integer, and Long Integer fields 75

Number sign (#) 76

Asterisk (41) 76

Caret (A) 76

Zero (0) 76

What happens at display time 77

Numeric formatting examples 77

Formatting a Date field 78

vi

	

Contents

Working with Picture fields 78
Truncated pictures 79
Scaled to fit pictures 79
On background pictures 80
Picture modes 80

Layout variables 85
Enterable and Non-enterable variables 87
Accept, Don't Accept, and Button buttons 88

Accept and Don't Accept buttons 88
Button buttons 90

Check boxes 90
Radio buttons 90
Graph areas 91
Scrollable areas 91
External areas 95

Chapter 5 File links 97

Single-file approach 98
Two-file solution 100
Linking files 106

How links work 108
Loading a linked record for the first time 108
The next time you load a linked record 109
Important considerations 109

LOAD LINKED RECORD command 110
Notes 111
Mandatory attribute 112

Solution 1 112
Solution 2 113

Dealing with duplicate values in linked fields 113
LOAD LINKED RECORD: a second syntax 113
LOAD LINKED RECORD and wildcards 114

SAVE LINKED RECORD command 115
The database : an analysis 116
Managing the link between Invoices

and Customers files 118
Improving procedures 118

Working with old links 120
CREATE LINKED RECORD command 122
Linking to a subfile 128

Chapter 6 Sets 133

Sets defined 133

Operations on sets 135

CREATE EMPTY SET command 136

CREATE SET command 136

USE SET command 137

ADD TO SET command 138

INTERSECTION command 139

UNION command 139

DIFFERENCE command 140

Using sets: deleting duplicate records 140

UserSet system set 143

Chapter 7 Menus 145

Menu components 146

Menu window features 147

Programmable menu features 149

Chapter 8 Operations on Pictures 151

Introduction 152

Operations on Picture expressions 154

Horizontal concatenation (+) 155

Vertical concatenation (/) 155

Exclusive superimposition (&) 155

Inclusive superimposition (I) 155

Horizontal move (+) 156

Vertical move (/) 157

Point symmetry () 158

Horizontal scaling (#+) 159

Vertical scaling (V) 160

Negation (Not) 161

Picture operations examples 161

Chapter 9 ASCII Maps 165

File import and export 166

Uses for an ASCII map 166

Working with ASCII maps 167

Index 169

Contents

	

vii

Chapter 1 Overview 1
Figure 1-1
Table 1-1
Table 1-2

Chapter 2 Programming
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9a
Figure 2-9b
Figure 2-10a
Figure 2-10b
Figure 2-11
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8

Chapter 3 Files 35
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8

Figures and tables

4th Dimension general architecture 2
Syntactic symbols 6
Syntactic metasymbols 6

1
Variable table in RAM 9
Equality test 18
Assignment operation 18
Sequence structure 19
Branching structure 20
Loop structure 20
Breaking a large procedure into modules 24
Flowchart procedure for sorting and printing 25
Procedure that calls Make A List 26
Flowchart for Make A List procedure 26
Procedure that calls Make A List 27
Flowchart for new Make A List procedure 27
Global and local variables in two procedures 29
4th Dimension naming conventions 14
Numeric operators 14
String operators 15
Date operators 15
Comparison operators 15
Logical operators 16
Picture operators 17
Logical functions 17

Parts of the file box 36
Add or Change Field dialog box 37
Standard Choices dialog box 41
Input and ouput layouts 42
Input template and output printout 43
Student data input layout with Age variable 45
Two search criteria applied to the same file 50
Records in the order entered 52

ix

x Figures and tables

Figure 3-9

	

Sort dialog box : Sort
on Last Name field

descending
52

Figure 3-10

	

Students
and

sorted with
last name in ascending

average in descending order
order 53

Figure 3-11

	

Detail file for an invoice 54
Figure 3-12

	

Alternatives 1 and 2 55
Figure 3-13

	

Subfile alternative 55
Figure 3-14

	

Invoice file with its detail subfile 56
Figure 3-15

	

Structure of records and their subfiles 57
Figure 3-16

	

Subrecord
of

Figure 3-17

	

Search
records

search
58

within a subfile

returning current selection

59
Figure 3-18

	

Multiple-level subfile access 60
Figure 3-19

	

Layout dialog box for a subfile 61
Figure 3-20

	

A file with its related record, subrecord layouts,
and record/subfile output 62

Figure 3-21

	

Three options for printing subrecords 63
Figure 3-22

	

Invoice design with two levels of subfiles 67
Figure 3-23

	

Invoice system with two files and one subfile 68

Chapter 4 layouts 69
Figure 4-1

	

Output layout and a piece of paper 70
Figure 4-2

	

Printout
Figure 4-3

	

Breaks
of a simple

on sorted records
file list 71

with subtotals 72
Figure 4-4

	

Report form with breaks
and sales person 73

for region

Figure 4-5

	

Report with page breaks for each break 74
Figure 4-6

	

Format of field dialog box 75
Figure 4-7

	

Truncated pictures 79
Figure 4-8

	

Scaled to fit pictures 79
Figure 4-9

	

On background picture 80
Figure 4-10

	

Choice of mode dialog box 80
Figure 4-11

	

srcCopy example 81
Figure 4-12

	

srcOr example 82
Figure 4-13

	

srcXor example 82
Figure 4-14

	

srcBic example 83
Figure 4-15

	

notSrcCopy example 83
Figure 4-16

	

notSrcOr example 84
Figure 4-17

	

notSrcXor example 84
Figure 4-18

	

notSrcBic example 85
Figure 4-19

	

Standard layout variables 86
Figure 4-20

	

Format of variable dialog box 86
Figure 4-21

	

Generated layout with Scrollable area list 92
Figure 4-22

	

Working Generator dialog box displaying values 95

Table 4-1

Table 4-2

Table 4-3

Chapter 5 File Links 97

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

Figure 5-12

Figure 5-13

Figure 5-14

Figure 5-15

Figure 5-16

Figure 5-17

Figure 5-18

Figure 5-19

Figure 5-20

Figure 5-21

Figure 5-22

Figure 5-23

Figure 5-24

Figure 5-25

Figure 5-26

Figure 5-27

Figure 5-28

Figure 5-29

Figure 5-30

Figure 5-31

Figure 5-32

Table 5-1

How 4th Dimension displays numeric fields

for various formats (for display purposes only)

and its three different configurations

(positive, negative, and zero) 77

Date formats 78

Pixel transfer modes 81

Single-file database structure : Contacts file 98

Two-file database structure : Contacts

and Companies files 100

Entry layout for Contacts file 101

List layout for Contacts file 101

Entry layout for Companies file 102

List layout for Companies file 102

Entry2 file layout 104

Three-file database structure 105

Current record and current selection

for three files 106

Searching and the index table 107

Drawing a link in Structure window 107

Loading a linked record for the first time 108

Loading subsequent linked records 109

Linking from the many to the one 111

Create a record dialog box 112

Scrollable window of duplicate values 114

Selection window after wildcard search 115

Structure window view of Invoices database 116

Structure for Customers file 116

Structure for Invoices file 117

Structure for [Invoices]Items subfile 117

Structure with addition of linked Products file 122

Field structure of Products file 122

Input layout for Invoices file 123

Subfile layout for [Invoices]Items subfile 123

Completed invoice form 126

Products file output displaying results 126

How a subfile links to a record in a file 127

Current subrecord pointing to one record

in file linked to subfile 127

Structures with addition of Sales subfile 128

Five new records in Products file 130

Displaying a product's sales history 131

Record size for Contacts file 99

Figures and tables xi

xii

Chapter 6 Sets 133

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Table 6-1

Chapter 7 Menus 145
Figure 7-1
Figure 7-2

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Table 8-1

CREATE EMPTY SET command 136
CREATE SET command 136
USE SET command 137
ADD TO SET command 138
INTERSECTION command 139
UNION command 139
DIFFERENCE command 140
File structure 140
Output of file before removing duplicates 142
Output of file after removing duplicates 142
Current selection and sets concepts compared 134

Menu components 146
Menu window 148

Chapter 8 Operations on Pictures 151

Chapter 9 ASCII Maps 165
Figure 9-1

	

Edit map dialog box 168

Figures and tables

Two-file database structure 152
Overview of layout for Letter 1 153
Horizontal move 156
Vertical move 157
Point symmetry 158
Horizontal scaling 159
Vertical scaling 160
Negation 161
Processing indicator 161
Bar graph 163
Concatenation and superimposition operations 154

Preface

This reference manual gives an overview of the 4th Dimension TM program, describes
its language and structures, gives programming tips, and shows how to use its
features .

Manual overview
Here's a quick overview of the manual :
•

	

Chapter 1 gives an overview of 4th Dimension .
•

	

Chapter 2 discusses the programming language and use of variables .
•

	

Chapter 3 covers files, records, substructures, layouts, and sorting .
•

	

Chapter 4 gives detailed instructions on working with layouts and their
components .

•

	

Chapter 5 looks at the advantages of multi-file databases and the use of links .
•

	

Chapter 6 shows you how to use sets .
•

	

Chapter 7 covers menu setup and use .
•

	

Chapter 8 discusses manipulation of pictures .
a Chapter 9 shows you how to write and use ASCII maps .

For a "how to" approach to 4th Dimension, see 4th Dimension User's Guide .

Aids to understanding
Look for these visual cues throughout the manual :

	.• By the way. Text set off in this manner presents sidelights or interesting pieces of
information .

Important
Text set off in this manner presents important information that you should read
before proceeding .

Warning
Warnings like this alert you to situations where you could lose data or damage
hardware or software .

This manual uses a special typeface for samples of code and procedure listings :

It looks like this .

In syntax statements, metasymbols are shown in italic .

Vocabulary
A 4th Dimension command always appears in all capital letters . For example,
DEFAULT FILE . A 4th Dimension function, on the other hand, always returns a
value and appears with an initial capital letter . For example, End selection. The
Procedure editor groups 4th Dimension commands and functions together in a
window under the term Routines . It groups control of flow and assignment terms as
Keywords in another window .

When referring to user-written code, routine means any programming entity you
might create . (Developer-created routines appear on the screen in italic type at the
end of the list of 4th Dimension routines in the Procedure editor . Externally written
and compiled routines appear in bold italic .) When referring specifically to a
developer-created procedure or function, the book uses the term procedure or
function, accordingly .

The term numeric refers to any data object on which you can perform arithmetic .
Thus, numeric comprises the data types Real, Integer, and Long Integer .

x i v

	

Preface

Chapter 1

Overview

This chapter provides a general overview of 4th Dimension tools, environments,
and syntactic definitions .

Tools
4th Dimension offers the application designer powerful tools : database data
structures, easy creation of layouts (input and output forms and dialogs), and a
powerful programming language for handling input, output, processing, and
interfacing . You can also set up complete menu systems and password protection .
Figure 1-1 shows 4th Dimension's general architecture .

Layout procedures
and file procedures

r

Layout procedures
are called when the layout
Is used for data entry,
modification, or output

Layouts

File procedures are called
when the file's records
are entered or modified

Passwords for layouts

Procedures and functions
executed within layouts

Layout and file procedures
are called by global procedures
and functions

figure 1-1
4th Dimension general architecture

2

	

Chapter l ; Overview

Database structure

W
r

Global procedures
and functions
v

ISwM •vYY

	t

Access to the database :
Structure window,
Custom environment,
startup procedure

Passwords

f

Menu bars
Iti
IMI.w.

Passwords for
menu items

ZLw

	

ZrI+.
®Irw ..

	

~.wr
Mr

Calling procedures after	
user clicks a menu item

Procedural modifications
of menu bars, menus,
and menu items

Here is a quick overview of 4th Dimension's features . The rest of this book details
these features and how to use them .

Database structures
A database can contain as many as 99 files ; every file can contain up to 511 fields .
You can assign any of eight types to a field : Alphanumeric, Text, Real, Integer, Long
Integer, Date, Picture, or Subfile . A subfile can in turn contain up to 511 subfields .
You can define up to five subfile levels per file . You can also assign attributes to a
field; attributes include Enumerated, Indexed, Unique, Enterable, Non-enterable,
Modifiable, Can't modify, and Mandatory. You can create relationships between
files by drawing lines to link files . Links are activated through procedures .

Layouts
Once you've created a file, you can specify layouts for entering records, for
displaying records on the screen or printing them on the printer, and for importing
or exporting data. You can also create layouts for custom dialog boxes . You can
define up to 32,767 layouts in a single database . 4th Dimension features a layout
generator and a highly sophisticated graphics editor ; with the editor, you can
include all or some of the file's fields in a layout .

You can add variables to display fields from another file, buttons, radio buttons,
check boxes, scrollable variable tables, and graph areas for graphing subfile numeric
values . You can draw boxes, lines, ovals, create text, and paste in custom MacPaint ®
or MacDraw® pictures. You can adjust layout details to produce the kind of printed
reports you want.

Layout procedures and file procedures
Once you've created a file and its layouts, you can write procedures that 4th
Dimension executes every time you enter or modify a record using that layout . With
layout and file procedures, you can control new entries, create your own error and
range checking, test the validity of values, and access records from other files . You
can also change the way a record is printed according to the values it contains .

Procedures and functions

4th Dimension provides you with approximately 200 standard commands and func-
tions. In addition, you can create your own procedures and functions, which you
either call directly or execute from a custom menu, a layout procedure, or a file
procedure .

Programming language
You can write your procedures and functions in the Flowchart editor, where the
various steps of the procedure are graphically displayed and where tests are linked
together. You can also use the Procedure editor and type your statements . This
editor features automatic statement indentation .

4th Dimension uses a structured language similar to Pascal . The language structures
are the sequence, the branch, and the loop . Macintosh developers can add to 4th
Dimension's built-in command set by writing external routines written in a compiled
language or in assembly language . You can assign external routines to external areas
created in your layouts . A procedure can call an unlimited number of standard or
custom procedures and functions . Variables can be either globally or locally related
to the routines you write .

Menus
You can create custom menu systems . Every menu item you create can have a
corresponding keyboard character, and a check mark . You also can choose the
typeface you want for your menu item text. Every time the user chooses a menu item,
the procedure assigned to that item executes . In addition, you can assign a
customized picture to each menu bar which will be displayed in the middle of the
screen .

Passwords
You can protect your database with passwords . A password can protect access to the
structure of your database, menu items, and layouts .

4

	

Chapter 1 ; Overview

Environments

4th Dimension has three environments in which to create, test, and run custom

applications: the Design environment, the User environment, and the Custom

environment .

Design environment

The Design environment lets you create and modify the design of your database,

layout and file procedures, global procedures and functions, and menus and

passwords. You can change the structure of your database at any time, even if it

already contains data .

User environment

In the User environment, you can

•

	

add, modify, and delete records for any file in the database

•

	

add records to the file you're using or to a different file through the use of layout

procedures, file procedures, and links

•

	

report (on screen or to the printer) a record or a list of records in any layout

•

	

print multi-file reports showing subtotals with the Quick report generator

•

	

print (on the screen or to the printer) graphs with the Graph Generator (you can

also print labels)

•

	

do a multi-criteria search by index

•

	

do a multi-criteria search with logical conditions associated with And, Or, and

Except operators

•

	

do a sequential search with the help of test procedures written in the procedure or

the Flowchart editor

•

	

sort a selection of records with up to 30 different sort levels

•

	

execute procedures

a import or export data in SYLK, DIF, or Text format with character mapping

Custom environment

Use the Custom environment to execute applications . While still enjoying User

environment features, you use your database as if it were an off-the-shelf application

for the MacintoshTM computer with its own menus, dialog boxes, and password

protection .

Environments

	

5

Syntactic definitions
This manual uses a consistent set of metasymbols to express command arguments .
This section gives you the symbols and syntactical expressions used throughout this
guide. Metasymbols appear in italic throughout this book. Table 1-1 summarizes the
syntactic symbols; Table 1-2 shows the syntactic metasymbols .

Table 1-1
Syntactic symbols

Symbol

	

Description

	

Example

Repeat preceding statement up to last

	

{statement}«{ ;#}»
required statement .

{ }

	

Repeatable any number of times

	

{statement}
« »

	

Optional argument

	

BEEP«(posintexpr)»
I

	

One (and only one) of two options

	

vanl subfieldname
. . .

	

Intervening code

	

While . . .End while

Note: Both the asterisk (') and the vertical bar (I) also appear as arguments and operators.

Table 1-2
Syntactic metasymbols

Metasymbol

boolexpr
buttonvar
date
docname
expr
fleidname
filename
tntexpr
numexpr
numvar

picturexpr
posintexpr
strexpr
stwar
statement
subfieldname
subfilename
var

b

Description

Boolean expression
Button variable
4th Dimension date
Desktop document name
An expression of any type
Name for field
Name for file
Integer expression
Numeric expression
Numeric variable

Picture expression
Positive integer
String expression
String variable
Logical line of code
Name for field in a subfile
Name for a subfile
Any variable

Chapter 1 ; Overview

Example

If (boolexpr) . . . End if
BUTTON TEXT (buttonvar,strexpr)
Day of (date)
DELETE DOCUMENT (docname)
SEARCH BY INDEX « (fieldname{= I ±}expr«{ ;#}») »
CREATE LINKED RECORD (fieldname)
ADD RECORD« (filename) >>
TRUNC (numexpr,intexpr)
Arctan (numexpr)
GET HIGHLIGHTED TEXT (van I fieldname;numvarl ;
numvarl)
pfcturexpr + numexpr
BEEP« (posintexpr) »
Ascii (stnexpr)
GRAPH (var,posintexpr,st varX;numvarY)
APPLY TO SELECTION («filename;» statement)
Squares sum (subfieldname)
End subselection (subfilename)
Undefined (var)

Chapter 2

Programming

This chapter discusses the fundamentals of programming in 4th Dimension . It
includes
•

	

constants, variables, and arrays
•

	

identifiers
•

	

operators
•

	

basic structures of the language
•

	

procedures, functions, and arguments
•

	

modularizing procedures

People program to automate activities . Programming amounts to writing routines
that perform actions (procedures) and return values (functions) . These routines,
in turn, are composed of one-line statements . You create statements by
combining 4th Dimension keywords and commands with expressions . Here are
some examples of expressions :

42
-5
''Hello"+" "+"World"

Total*1 .07

The simplest expression is a single operand (like 42), although usually an expression
contains an operand and an operator (like -5) or multiple operators and operands
(like the last two examples above) . An operand can be a constant or a variable . A
constant is a fixed value . Program execution does not change it . A variable is a
name for a place in memory where you can store a value, a value that program
execution can change .

Types, constants, and variables
This section looks at data types, constants, and variables .

Data types
Expressions can evaluate to any of five data types :
a Alpha expressions yield a series of Macintosh characters, including alphabetic,

numeric, and punctuation characters . (Fields can be typed as Alpha or Text .)
•

	

Numeric expressions yield a numeric object . (Fields can be typed as Real, Integer,
or Long Integer .)

•

	

Date expressions yield a calendar date in 4th Dimension format .

8

	

Chapter 2 ; Programming

o• Boolean expressions return either True or False .
•

	

Picture expressions contain Macintosh pictures .

Constants
A constant is an expression which always has a fixed value . There are three types of
constants :
•

	

"4th Dimension" is an Alpha type constant .
•

	

!11/28/1990! is a Date type constant .
a 123 .78 is a Numeric type constant .

Variables
A global variable has a name consisting of a maximum of 11 characters . A local
variable name begins with a dollar sign ($), followed by up to 11 characters . The first
character of a variable name must be alphabetic . Thereafter, you can use alphabetic
and numeric characters, the space character, the underscore, and the period
character .

In 4th Dimension, a variable is an object whose type and value can change when your
procedures execute . Variables are used to keep intermediate results in the Macintosh
RAM which routines can access . You create a variable by naming it in a procedure .
4th Dimension keeps a variable table in RAM . Figure 2-1 illustrates such a table .

Names of variables

Figure 2-1
Variable table in RAM

Values assigned to variables

Types, constants, and variables 9

vNum 124,56
L1 0 .13
L2 1 .123
vName Mr Dupont
bOK 1
C 1 !11/28/1990!
02 !12/25/1990!

If you assign a value to a variable, 4th Dimension puts the value in the variable table
and gives the variable the same type as the value . If you assign a value to a non-
existing variable, 4th Dimension automatically creates the variable and places it in
the variable table . If you try to read a variable to which you haven't yet assigned a
value, that variable is considered undefined. It contains no value and remains
untyped. 4th Dimension provides you with all the necessary programming tools to
test whether or not a variable is undefined and to delete variables from RAM to gain
memory .

Identifiers
This section describes the various identifiers used in the 4th Dimension language .
All names for files, fields, and variables follow these rules :
•

	

A name must begin with an alphabetic character .
•

	

Thereafter, the name can include alphabetic characters, numeric characters, the
space character, and the underscore character .

•

	

Periods, slashes, and colons are not allowed .
•

	

4th Dimension will clip any trailing spaces .

Filenames
You designate a filename by placing its name between square brackets . The
maximum number of characters in a filename is 15 .

Examples

[Orders] [Customers] [Letters]

Layout names
A layout name is a string expression . When written as a constant, put a double
quotation mark on each side of the layout name . The maximum number of
characters in a layout name is 15 . You can also write an alphanumeric expression
whose value is equal to its name .

Examples

"Input" "Output" "Label" "Dialog" + String (i)

10

	

Chapter 2: Programming

Field names
You indicate a field in one of two ways, depending on the procedure's context . The
maximum number of characters in a field name is 15 .

In a global, file, or layout procedure, write the field name prefixed by the name of
the file to which it belongs .

Examples

[Orders]Total [Customers]Name [Letters]Text

Important

In a global procedure, you must always prefix the field name with the filename .

In a file or layout procedure, you need specify only the field name as long as the field
belongs to the current file .

Examples

Total Name Text

Subfields
Subfield naming follows the same principles as field naming .

When writing a file procedure or a layout procedure for the file to which the subfield
belongs, you must precede the subfield name with the name of its subfile and an
apostrophe .

Examples

Rows'Items Addresses'ZIP Code Keywords'Word

You can write the subfield name without its filename only when working in a subfile
procedure or a subfile layout to which subfield belongs .

Examples

Items ZIP Code Word

When writing a global procedure or a layout procedure or a file procedure in another
file, you must precede the subfield name with the name of its file, its subfile, and an
apostrophe .

Examples

[Orders]Rows'Items [Clients]Addresses'ZIP [Letters]Keywords'Word

Identifiers

	

11

A reference to a subfile at any level must include a reference to its parent file(s) .

Example

Suppose you have a file named Estimates containing a subfile named Sector which

in turn contains a subfile named Row and that Price is a subfield of the Row

subfile :

In a Row layout procedure, you access the subfield by typing Price .

In a Sector layout procedure, you access the subfield by typing Row'Price .

In an Estimates layout procedure, you access the subfield by typing

Sector'Row'Price .

In a global procedure, you access the subfield by typing [Estimates]Sector'Row'Price .

Variables

A variable is a named area in memory where you store, modify, and retrieve values .

A variable is always referred to by its name or, when using indirection, an

alphanumeric expression whose value is equal to the variable name . A global

variable name can be a maximum of 11 characters . A local variable begins with a

dollar sign ($) with the remaining characters (up to 11 allowed) following variable

naming rules. The indirection symbols are the section symbol (§) or the curly braces

({}),

Examples

GrandTot

	

A1

	

§("AA"+String(i)) R{k}

In the above examples, using the indirect references § and { }, if i is equal to 23, the

name of the variable is AA23, and if k is equal to 52, the name of the variable is

equal to R52 .

Sets

A set is always indicated by its name placed between double quotation marks (with a

maximum of 80 characters) or by an alphanumeric expression whose value is equal to

its name .

Examples

"Records to be deleted" "Customer Orders" "Good"+"Deal"

1 2

	

Chapter 2 : Programming

Procedures and functions

A procedure, like a function, is always indicated by its name (with a maximum of 15
characters) or by an alphanumeric expression whose value is equal to its name if you
use the EXECUTE command .

Examples

Add Customer List 4rd EXECUTE ("PRINT"+String(]})

Here, if j is equal to 30, EXECUTE ("PRINT"+string(])) invokes the PRINT30
procedure .

Important

When choosing a name for a field, a variable, a procedure, or a function, make
sure you don't use 4th Dimension keywords, such as structure commands If or
End case, procedures or standard functions like Date, Uppercase, Time, or
names of system variables like OK or Document .

Constants

An alphanumeric constant is always placed between quotation marks . It is limited to
80 characters .

Examples

"Smith" "Beware! This operation destroys the record!"

A numeric constant consists of arabic numerals, a decimal point for non-integer
numbers, and a minus sign for negative values .

Examples

12732.56 1000 -0.34

A date constant is always written as follows : exclamation mark, two digits for the day,
slash, two digits for the month, slash, four digits for the year, and an exclamation
mark.

Example

!611411990!
Table 2-1 summarizes 4th Dimension naming conventions .

Identifiers

	

13

Table 2-1
4th Dimension naming conventions

Type

	

Length

	

Case sensitive

Filename

	

15

	

No
Layout name

	

15

	

No
Variable name

	

11

	

No
Field name

	

15

	

No
Procedure name 15

	

No
Menu title

	

15

	

No
Menu item

	

30

	

No
Password

	

13

	

Yes

Operators
Operators are symbols used to perform calculations . When combined with different
expressions, they generate new expressions .

Warning
4th Dimension has a left to right precedence . Only parentheses can override
this evaluation. As a result, you must use parentheses to ensure proper
evaluation of expressions and statements . Lack of or incorrect use of
parentheses can cause either erroneous answers or invalid expressions . For
example, 3 + 4 * 5 evaluates to 35 . However, if you meant this expression to
return 23, you should write 3 + (4 * 5) . Likewise, the test expression
50 * 2 = 25 * 4 is invalid . It should be written (50 * 2) _ (25 * 4) .

Take care to ensure that each left parenthesis character has a matching right
parenthesis character .

Numeric expression operators
Table 2-2 shows 4th Dimension's numeric operators .

Table 2-2
Numeric operators

Operation

	

Symbol

	

Syntax

Addition

	

+

	

numexpri +
Subtraction

	

-

	

numexpri -
Multiplication

	

*

	

numexxri *
Division

	

/

	

numexpri /
Exponentiation

	

numexpri ^ numexpr2

	

2"3 returns 8

14

	

Chapter 2 ; Programming

Example

numexpr2 2 + 3 returns 5
numexpr2 3-2 returns 1
numexpr2 20 * 2 returns 40
numexpr2 20/2 returns 10

String expression operators
Table 2-3 shows 4th Dimension's string expression operators .

Table 2-3
String operators

Operation

	

Symbol

	

Syntax

	

Example

Concatenation

	

+

	

strexprl + strexpr2

	

"Pre"+"fix" returns "Prefix"
Repetition

	

*

	

strexpr * numexpr

	

"AB"*3 returns "ABABAB"

Date expression operators

Table 2-4 shows 4th Dimension's date operators .

Table 2-4
Date operators

Operation

	

Symbol

	

Syntax

	

Example

Difference

	

-

	

datexprl - datexpr2

	

!0711011990!-!0711711990! returns
-7, the number of days between
the two dates

Addition

	

+

	

datexpr + numexpr

	

!0711011990!+7 returns
!0711711990!

Comparison operators
Table 2-5 shows 4th Dimension's comparison operators .

Table 2-5
Comparison operators

Operation

	

Symbol

	

Syntax

	

Example

Equality

	

=

	

exprl = expr2

	

(50 *2) _ (25 * 4) returns TRUE
"Good bye" _ "Hello" returns FALSE
"a"="A" returns TRUE

Inequality

	

#

	

exprl # expr2

	

(50 * 2) # (25 * 4) returns FALSE
"Good bye" # "Hello" returns TRUE

Operators

	

15

Table 2-5 (continued)
Comparison operators

Operation

	

Symbol

	

Syntax

Greater than

	

>

Less than

	

<

Greater than
or equal to

Less than
or equal to

	.• Note: In 4th Dimension, the way to test to see if the case of two characters is
different is to compare their ASCII codes . For example, the following statement
returns FALSE :

Ascii ("A")=Ascii ("a")

Logical operators
4th Dimension supports two logical operators: conjunction (AND) and disjunction
(OR), both of which work on Boolean expressions . A logical AND returns a TRUE if
both expressions are true . A logical OR returns a TRUE if at least one of the
expressions is true . See Table 2-6 .

Table 2-6
Logical operators

Operation

	

Symbol Syntax

Conjunction &

Disjunction

	

I

>_

<_

Example

exprl > expr2

	

18> 10 returns TRUE
"B" > "D" returns FALSE

exprl < expr2

	

27<42 returns TRUE
<"B" returns FALSE

exprl >= expr2

	

25 >= 25 returns TRUE
25 >= 24 returns TRUE

exprl <= expr2

	

25 <=25 returns TRUE
25 <= 24 returns FALSE
25 <=36 returns TRUE

Example

boolexprl & boolexpr2 ("A" _ "A") & (15 #3) returns TRUE
(5 >= 7) & ("Z" # "ER") returns FALSE

boolexprl I boolexpr2 ("A" _ "A") 1(15 #3) returns TRUE
(5 >= 7) ("Z" # "ER") returns TRUE

Picture operators
Table 2-7 summarizes 4th Dimension's picture operators. Picture operators are
described in Chapter 8, "Operations on Pictures ." Some picture elements are also
discussed in Chapter 4, "Layouts ."

16

	

Chapter 2 : Programming

Table 2-7
Picture operators

Operation

	

Symbol

Horizontal

	

+
concatenation

Vertical

	

/
concatenation

Horizontal move

	

+

Vertical move

	

/

Exclusive

	

&
superimposition

Inclusive
superimposition

Table 2-8
Logical functions

Syntax

Function

	

Syntax

	

Example

exprl + expr2

exprl / expr2

expr + numexpr

expr/ numexpr

exprl & expr2

exprl I expr2

Three logical functions
4th Dimension offers three logical functions : True, False, and Not .

Not

	

Not(boolexpr)

	

While (Not (End selection)) continues the
operation until End selection returns TRUE

True

	

True

	

Always returns TRUE

Fa I se

	

Fa I se

	

Always returns FALSE

Description

Move exprl to the right

Move exprl to the top

Move expr numexpr pixels to
the right

Move expr numexpr pixels to
the bottom

XOR exprl and expr2

Put expr2 on top of exprl

Equality test and assignment operation
It is important to distinguish between the 4th Dimension relational operator, the
equal sign (_), and the assignment operator, a colon followed by an equal sign (:_) .
Some languages, like BASIC, use the equal sign to indicate both equality and
assignment .
Use the equal sign to see if two expressions of the same type are equal, that is, contain
the identical values (exprl and expr2 must be of the same type) . Figure 2-2 shows the
equality test, a logical expression that returns either TRUE or FALSE .

Equality test and assignment operation 1 7

Equal sign

Figure 2-2
Equality test

Assignment operator

Variable or field to
receive the value

Figure 2-3
Assignment operation

exprl - expr2

X := expr

Example

MyVar := Length ("Macintosh')

The example places the value 9 (the number of characters in the word Macintosh)
into the variable named MyVar .

18

	

Chapter 2 : Programming

Expressions of the same type

Examples

[filename]fieldname = "Tax"

This expression returns TRUE if the fieldname field of the filename file contains the
string value "Tax" .

Substring (var ;1 ; 1) _ "T"

This expression returns TRUE if the alphanumeric type variable var starts with the
letter "T" or "t" .

Important

4th Dimension evaluates the lowercase and uppercase form of any letter as
equal . Thus, "a"="A" returns TRUE .

The assignment operator (:_) assigns or copies the value of the expression to its right
into the variable or field to the left of the assignment operator . Figure 2-3 illustrates
the assignment operation .

Value to be assigned to X

Programming structures

A routine is a series of statements which accomplishes a given task . This book uses

the term procedure to indicate any kind of routine . Strictly speaking, a procedure

carries out programmable tasks or actions, whereas a function also returns a value .

Regardless of the complexity of a programming task, you will always use one or more

of three language structures. The three structures are the sequence structure, the

branching structure, and the loop structure .

A sequence is a series of statements that 4th Dimension executes one after the other,

from top to bottom. See Figure 2-4 .

[:'EFAULT FILE' [F'hil€.]'

ALL RECi iR[:'

[ILITF'LIT L Ai ILIT,: "Output

	1	
CiI=;F'LA ' SELE'=TIiira

l

Figure 2-4

Sequence structure

The branching structure tests a condition to determine which of two alternate courses

of action to execute. When a logical expression returns a TRUE, 4th Dimension

executes the statement(s) following the condition test . If the expression returns a

FALSE, 4th Dimension executes any statement(s) following the Else keyword . If

you omit Else, 4th Dimension continues execution with the first statement (if any)

following the branch terminating keyword, End if . Compare the simple branching

structure with the Case of, discussed below in the section "Case of: A Structuring

Command." See Figure 2-5 .

DEFAULT FILE' [Fhi1}i
ALL RECORDS
OUTPUT LAYOUT : "i iutpijt" i
DISPLAY SELECTION

Programming structures

	

1 9

DEF AULT F ILE([Phile])
ALL RECORDS
If (Records in file=0)
ALERT("The file contains no records .")

Else
OUTPUT L AYOUT("Output")
PRINT SELECTION

End if
ALERT(Operation complete")

Figure 2-5
Branching structure

The loop executes a sequence as long as a logical expression returns a TRUE . See
Figure 2-6 .

MyStr :="Hello"
n :=1
Yhile (n<=Length(MyStr)')
ALERT("The ASCII code for character n° "+String(n)+" is "+String(Ascii(Substring(Mystr ;n ;1))))
n :n+1

End while
ALERT(Loop finished")

yStr :="Hello"

ALERT(The ASCII code for character n
"+String(n)+" is
+String(Ascii(Substring(MyStr)n ;1))))

	

J

:=n+1

Figure 2-6
Loop structure

20

	

Chapter 2 : Programming

(ALERT("Loop finished")
	 J

bLITF I_IT L AUl_ITI' Output

PRINT '=ELECTIurJ

ALERTI 'Thi_ file c: intain_ ra '
rep:gird= "1

rULEF'T("i ipera ian c: irrplete"

1

Case of : a structuring command
The Case of structure works like several If. . .Else . . .End if commands. It tests a
series of Boolean expressions and executes the statement(s) following the first
Boolean expression that returns TRUE . If none of the expressions evaluates as TRUE
and you have included an Else clause, 4th Dimension executes any statement(s) in
the Else clause . If none of the expressions evaluates as TRUE and you have not
included an Else clause, 4th Dimension continues execution with the first
statement if any, following the End case keyword .

You use the Case of structure when you want to test several expressions
consecutively and only perform an action if one of the expressions is true . Case of
can be easier to write and it performs more efficiently than a series of If statements .
The two listings below do exactly the same thing : return the day of the week from a
day number. The first uses the Case of structure . The second listing uses the
If . . .Else . . .End if command .

'DayCase using Case statement
r:="It must be"
d :=Request("Enter a day number .")
If (OK=1)

d:=Num(d)
Case of

(d=1)
r:=r+"Sunday ."
(d=2)
r:=r+"Monday ."
(d=3)
r:=r+"Tuesday ."
(d=4)
r:=r+"Wednesday."
(d=5)
r:=r+"Thursday ."
(d=6)
r :=r+"Friday ."
(d=7)
r:=r+"Saturday ."

Else
r:="No such day."

End case
ALERT(r)

End if

Case of: a structuring command

	

21

Here's the If. . . End if version:

DayCase using If statements
r:="it must be"
d :=Request("Enter a day number .")
If (OK=1)

d:=Num(d)
If (d=1)

r:=r+"Sunday ."
Else

If (d=2)
r:=r+"Monday."

Else
If (d=3)

r:=r+"Tuesday ."
Else

if (d=4)
r:=r+"Wednesday."

Else
If (d=5)

r:=r+"Thursday."
Else

If (d=6)
r :=r+"Friday ."

Else
if (d=7)

r:=r+"Saturday ."
Else

r:="No such day ."
End if

End if
End If

End if
End if

End if
End if
ALERT(r)

End if

When 4th Dimension encounters the Case of command, it executes only the
sequence following the first true case it encounters and then goes directly to End
case

	:• Pascal programmers . The 4th Dimension Case of is more powerful than the
Pascal Case. While the conditions are related in Pascal, they don't have to be so
in 4th Dimension . For example, you can use as test conditions :(A#12) and
:(M="aa") in a single Case of.

22

	

Chapter 2 : Programming

Procedures and arguments
Procedures and functions are two essential parts of a structured language .

Procedures
A procedure is one or more statements written to perform one or more tasks . You
create a procedure by choosing Procedure from the Design menu while in the Design
environment. You can write a procedure in either the Listing (line-by-line) editor or
the Flowchart editor. You construct a procedure from flow control keywords, 4th
Dimension's built-in commands and functions (routines), assignments, variables,
fields, and expressions, and from your own procedures . Once you create a
procedure, it becomes part of the language for the database in which you created it .

You can set up a procedure to be called from a menu item by entering the procedure
name next to the menu item name in the Menu editor . When the user selects the
menu item, 4th Dimension executes the procedure associated with the item .
(Selecting an item that has no procedure causes 4th Dimension to leave the Custom
environment or runtime program.) You can also call a procedure from another
procedure, from a layout procedure, or from a file procedure by typing the
procedure name in a flowchart step or in a listing line . Writing modular procedures
improves and simplifies the writing of applications .

Structuring and simplifying large procedures
Suppose you need to construct a procedure, called ProcO, that does a number of
things. First, study the various aspects of the problem at hand and outline the things
you want the procedure to do before coding. Then, build a series of smaller
procedures: Prod, Proc2, and so forth . See Figure 2-7. Writing ProcO will take less
time and its overall structure and legibility will appear clearer if you choose this
modular approach . It also makes modification easier .

Procedures and arguments

	

23

ProcO

Proc 1

Proc2

Proc3

Proc 1

Proc4

Proc2

Proc 3

Figure 2-7
Breaking a large procedure into modules

Calling procedures

When a procedure is associated with a menu item, 4th Dimension executes that
procedure when the user chooses the menu item or types the corresponding
keyboard shortcut .

When you call a procedure from a procedure, 4th Dimension first saves the return
statement, which is the statement that follows the calling statement in the calling
procedure. 4th Dimension then executes the called procedure . At the end of the
called procedure, 4th Dimension returns to the calling procedure and resumes its
execution from the return statement.

A procedure called by another procedure can in turn call a procedure and so on . In
this way, you can build complex procedures containing many levels . The 4th
Dimension language lets you create as many levels as you want . The return statements
for the calls are stored in memory . The number of levels you can create is limited by
the RAM size .

24

	

Chapter 2; Programming

Proc4

Modularizing your application
Supposing your database contains 40 files and that you want to implement a special
procedure for 20 of those files in order to generate a specific sorted selection and
display the selection on the screen or print it on paper . The procedure filenameX
might look like the one shown in Figure 2-8 .

[:'EFALILT FILE([r1I4File

IrIF'UT LA`;'iil_IT(."Iriput

~il_ITF'LIT LA i'i iI_ITi iijtFiijt"

EAF:CH

rJc~

ALERT("i ip?r -.~tion c .~ric~l?d" . i

ALEF:T("rlo record= f ''jnd"

'F' IrJT

	

ELE: T Ii ir4

, ':'FT :=ELECT Ii irJ

Wa

Figure 2-8
Flowchart procedure for sorting and printing

i
'NFL A ' : :;ELE :T Ii ir'J

(:i irJFIF'ri': "F'rirtt thi=
el~caicr~"1

t

You can see that except for the first three steps, which are different for every file, all
the remaining steps are common to the 19 other procedures . You can easily avoid
this repetition .

Instead of typing 20 nearly identical procedures, you create a procedure containing
the part of the application they all share and then create 20 procedures determining
the default file, the input layout, and the output layout of that file, which will call the
procedure you can name MAKE A LIST .

In the same way, when you plan an application, look for operations that do the same
thing and try to reduce them to shared procedures that will be called from other
procedures .

Procedures and arguments

	

25

This approach has many advantages :
•

	

You save time when you write your applications .
a You gain disk space. In the above example, 20 identical procedures would have

taken up 280 steps and tests . By calling a common procedure, you have 11
(common procedure) + (3 + 1) # 20 (three different steps, plus the call for the
shared procedure for the 20 different procedures), which comes to 91 steps and
tests. This means that you have three times fewer steps to write .

•

	

Debugging takes less time .
•

	

Your code is more legible and easier to maintain .

Suppose that in the above example, you write = instead of # in the (Records
found # 0) test. You've already created 20 identical procedures when you realize while
in the Custom environment that you made a mistake . You now have to correct 20
procedures. If you had created a common procedure, you would have had to correct
only one procedure .

Once a procedure is corrected and works smoothly, it can later be called by other
procedures and you know for sure that it will work . You won't have to go into
debugging at all . See Figure 2-9 .

DEFAULT FILE([MyFile])

l
NPIJT LA'trJUT("Input')

	f

5UTFUT LAYOUT("IJutput")

flake A Lis

Figure 2-9a
Procedure that
calls MAKE A LIST

:; E ARCH

rid

ALEFTI "i iper atl0rl c : iri : :eled' i

26

	

Chapter 2; Programming

kt'RIr'1T _;ELECTi'r

ALEF:Ti "rJ' rei ::ord= fo'md"l

Figure 2-9b
Flowchart for MAKE A LIST procedure

i iF'T ;ELECTIC iN

(:'ISF'LA`r' ELECTIi iN

fair1F IF:r1("F'rir t trn

Parameter passing

You can further improve the legibility and simplicity of your application by passing
arguments .

To pass arguments to a procedure, specify the procedure name followed by the list of
arguments in parentheses, separating each argument with a semicolon :

Proc (Expr1 ; Expr2 ; . . . ; Exprn)

When you pass arguments to a procedure, 4th Dimension stores the arguments in
memory. The number of arguments you can pass to a procedure is only limited by
the RAM size .

In a called procedure, the passed arguments become parameters with local variable
names $1, $2, and so on through $n . $1 stands for the first argument, $2 for the
second argument, and so on .

If in the MAKE A LIST example you explicitly indicate that the input layout name will
be passed as first argument and the output layout name as second argument, the
procedures will look like the one shown in Figure 2-10 .

DEFAULT FILE(.(C•i File

~1~k:e A Li_

	

Input ; i iUtpU+

Figure 2- l Oa
Procedure that
calls MAKE A LIST

NPUTLAYOUT($1)

(OUTPUT LAYOUT($2))

(SEARCH

No

(PRINT SELECTION

Figure 2-lOb
Flowchart for new MAKE A LIST procedure

Procedures and arguments

No

(DISPLAY SELECTION

ALERT(" No records found ."))

	

(CONFIRMCPrInt this list?")

ALERT(" Operation canceled .")

Yes OK= 1

27

Scope of arguments, global variables,
and local variables
Because 4th Dimension supports both global and local variables, it becomes
important to understand the difference between the two and when you should use
each type for best programming results . It is also important to understand that 4th
Dimension manufactures its own local variables, while allowing you to create local
variables. As an example, suppose a procedure contains a call to a procedure :

If(MyVar >1000)
START ALERT (MyVar)

End if

With the START ALERT procedure written as follows :

ALERT (String ($1) + " is too large! ")

When you pass the argument to the START ALERT procedure, 4th Dimension
automatically creates a new variable to which- it copies the value of the argument and
specifies the argument type . This new variable is only known to the START ALERT
procedure and referenced as $1 . It is a local variable .

If you were to change the $1 variable in the START ALERT procedure by assigning it
a new value, the variable alone would be affected, and not the passed argument. The
$1 local variable only exists in the START ALERT procedure . At the end of the
procedure, 4th Dimension automatically clears the $1 variable from memory
before returning to the calling procedure .

Conversely, the MyVar variable is a global variable . It is known to all procedures for
as long as it exists in memory . (The CLEAR VARIABLE command and quitting a
database clear global variables .) If START ALERT were to assign it a new value upon
resuming the calling procedure, the value of the MyVar variable would be changed
and might even be of a different type .

Generating a local variable when passing an argument is an overall 4th Dimension
concept: you explicitly create local variables for a procedure or a function by placing
a dollar sign ($) before a variable name . (The variable name must still begin with an
alphabetic character.) If you create a local variable in a procedure, it will only exist
in that procedure and will be cleared from memory at the end of the procedure .

Figure 2-11 illustrates a procedure calling a second procedure . Global and local
variables are involved .

28

	

Chapter 2 : Programming

Proc 1

$v := 1
v :=0
While ($v<=10)

ALERT ("$v="+String($v)+",v="+String(v))
Proc
ALERT ("$v="+String($v)+",v="+String(v))
Sv :_ $v+1

End while

Figure 2-11
Global and local variables in two procedures

Proc2

In the Prod1 procedure, you use two variables : $v and v. The variable $v is a
Prod1 local variable, while v is a global variable . In the Proc2 procedure, you use
two variables : $v and v. The variable $v is a Proc2 local variable, while v is a
global variable . The $v variable in Prod1 is different from the $v variable in
Proc2 . When Prod1 is called, $v is created and it will only be deleted from
memory at the end of the procedure. When Proc2 is called, a new copy of $v is
created and will be deleted from memory when returning to Prod . The v variable
is a global variable common to both procedures. When $v is reset in Proc2, $v in
Prod1 remains unchanged. Upon execution, subsequent alerts will display the values
listed below:

1st passage in the loop :

$v=1,v=0

$v=1,v=1

2nd passage in the loop :

$v=2,v=1

$v=2,v=2

10th passage in the loop :

$v=10,v=9

$v=10,v=10

Scope of arguments, global variables, and local variables

	

29

Thus, local variables and global variables are different kinds of variables, and any
confusion between the two may lead to programming errors. If in a procedure called
up in certain cases (following tests in the calling procedure), you change the value or
the type of a global variable that will be used when returning to the calling procedure,
you'll get error messages from time to time which may seem random but which are
quite logical.

You'll then have to find out in which cases the procedure is called upon and in which
cases it generates an error message only to realize that you are modifying a variable .
However, if you want a procedure to modify or return certain values and avoid the
above-mentioned problem, you should use a function .

As a general rule, use local variables whenever possible . This practice greatly
simplifies modularization and program logic. Local variables reduce the
unnecessary duplication of variables that makes complex procedures difficult to read
and prone to errors . Use global variables primarily when calling a series of
procedures between which parameters will be passed .

Functions
A function is a routine that returns a value . You create a function by choosing
Procedure from the Design menu while in the Design environment. Built-in 4th
Dimension functions begin with an initial capital letter with the rest of the name in
lowercase. For example, Current date .

A function is always called by a global procedure, a layout procedure, a file
procedure, or another function . Because a function returns a result, it can only exist
in an expression or to the right of the assignment symbol .

Just as with procedures, you can pass arguments to a function . The arguments are
named $1, $2, through $n . The result returned by the function is named $0
inside the function. A function can call a procedure or another function . A user-
defined function acts just like a built-in function . That is, you write a statement
containing the name of the function and giving its necessary arguments, if any .

Example 1

You are going to create Initial, a function returning the first character of an
alphanumeric expression . For example, the statement Initial ("Foo") returns "F"

$0 := Substring ($1 ;1 ; 1)

Thus, you may write in your procedures

var := Initial ([MyFile]MyField)

30

	

Chapter 2: Programming

and write a test like

If (Initial ([MyFile]MyField) # Initial ([YourFile]YourField))

Example 2

You've retrieved data from an application in which all records have a fixed size .
"Whiter", for instance, is a 70-character alphanumeric field, which takes up 70
characters: 6 letters followed by 64 spaces . In 4th Dimension, fields take up only the
space they need, and "Whiter" in an alphanumeric field would take up 7 characters :
6 letters plus 1 byte for the length .

To recover the space taken up by the 64 trailing blanks, you need to delete spaces at
the end of the string . To do this, create a function named Clean up :

'Clean up function to delete trailing spaces
vChar :_""
n := Length ($1)
While ((vChar =" ") & (n > 0))

vChar := Substring ($1 ; n ;1)
If (vChar="")

n .=n-1
End if

End while
If (n = 0)

$0 :_ ""

Else
$0 := Substring ($1 ;1 ; n)

End if

If you invoke Clean up with the argument "spaces5 ",it returns "spaces5"

Tips for writing applications
You can edit procedures either in the Flowchart editor or in procedure (listing)
mode. Flowcharts are helpful for beginners, because the graphic depiction of
structures helps them rapidly master test and loop structures . For large procedures,
however, choose the listing mode ; automatic indentation in the Procedure editor
lets you see the different levels of the application clearly .

:• Incompatibility: A procedure written in one editor cannot be read or translated
by the other editor .

In addition, it's easier to change a large procedure in listing mode, because you can
delete or add lines . Changing steps and tests graphically can be quite time-
consuming in a flowchart . When writing in the listing form, the results of complex
applications are more structured, thus more legible . You can use both forms in a
single database .

Tips for writing applications

	

31

Whatever the form you choose to write applications, you call a 4th Dimension
standard procedure or function by typing its name at the keyboard or by clicking its
name in the list displayed on the screen . The same goes for keywords .

The names of 4th Dimension commands are always in uppercase . For example :
DISPLAY SELECTION .

The names of 4th Dimension functions begin with an uppercase character with the
rest of the function name in lowercase . For example : Current date .

You call a procedure or function you created by typing its name on the keyboard or
by clicking its name in the list displayed on the screen . Your global procedures
appears in italic toward the bottom of the Routines list .

If you type the name of a 4th Dimension command or function on the keyboard,
you can use the "at" sign (@) as a wildcard. For instance, if you type DEF@,
4th Dimension will look for a procedure or a function beginning with DEF . When the
procedure or function is found, it's added to your application . Here you'll get
DEFAULT FILE .

You can insert comments into your procedures, regardless of the form you're
working in. Whether in the Listing or Flowchart editor, you begin every comment
with a grave accent C) .

	:• Editor tip. If you write a statement that creates a syntax error, the editor surrounds
the statement with bullets. Fixing the error removes the bullets .

Variable types
You've seen earlier that a variable takes on the type of its assigned value . An
alphanumeric variable accepts up to 32,000 characters . For example :

Today :_ "Today is " + String (Current date)

A numeric variable accepts any numeric value with up to 19 significant digits . For
example :

StateTax :_ (Invoices]Total * .065

A date variable accepts 4th Dimension dates between !00/00/00! and !12/31/32000! .
For example :

GetDate := Date ("01/011' + String (Year of (Current date) + 1))

A Boolean variable accepts any logical argument. For example :

v := End selection & ({Invoices]Paid # 1)

A picture variable accepts a Macintosh picture . For example :

vNewHome :_ [Houses]Pictl

The 4th Dimension language introduces arithmetic operations on Macintosh
pictures . This aspect is discussed in detail in Chapter S, "Operations on Pictures ."

32

	

Chapter 2: Programming

Variable tables: indirection and index notation
When executing procedures, you may create several variables in memory, some of
which pertain to a set of variables such as v1, v2, through vi 00 . To process these
variables, you could write 100 lines of code, like this :

v1 := exprl
v2 := expr2

v100 := expr100

To simplify programming, you can use the array or variable table constructs
instead. Both are forms of indirection. You can choose either of two symbolic
notations :

§(strexpr)

var{ numexpr}

The §(. . .) notation introduces the indirection concept on variables . The vat . . .}
notation introduces the index concept on variables .

When you specify a variable with indirection, 4th Dimension calculates the
alphanumeric expression you typed in parentheses to create the name of the
variable. The example assigns the four variables to zero .

Example

type:="AA.BB.BA.CC"
i :=1
While(i<Length(type))

§("Part"+Substring(type ;i ;2)) :=0
i :=i+3

End while

Only the § operator allows use of alphabetic operators, whereas { . . .} takes numeric
operators .

When you specify a variable with an index (the curly braces form) in a procedure, 4th
Dimension calculates the numeric expression you typed in braces, and the returned
value is concatenated with the name of the variable to create the final name .

Variable tables: indirection and index notation

	

33

Example

The instruction Month {Month of (Current date)} # 0 is valid . Current date is a
4th Dimension function returning the date shown on the Macintosh clock . Month of
is a 4th Dimension function returning the number of the month of the date passed as
parameter. Suppose the date is September 11, 1990. Current date returns
!09111190!. Month of returns 9. Thus, the instruction is equivalent to Month 9 # 0 .

The advantage of indirection or of index notation is that the content of the given
expression placed between parentheses or braces may vary .

Example

You want to process the variables v1, v2, through v100 . You write a loop :

i .=1
While (i <101)

v{i} := expr
i :=i+1

End while

34

	

Chapter 2: Programming

Chapter 3

Files

This chapter discusses files and their components, records and fields . These
essential database elements are defined as follows :
•

	

A file is a finite set of records .
•

	

A record is a finite set of fields .
•

	

A field is a category of data, in which the data has a specific type .

As an example, think of a teacher's list of students . The list is a finite set of records,
with each record containing information about one student . A student's record is, in
turn, a finite set of fields with one field each for the student's last name, first name,
date of birth, average grade, and so on. Each field contains a specific value that
reflects the field's type. For instance, a student's name consists of alphanumeric
characters, whereas the average grade field contains numeric values .

Creating a file
In 4th Dimension, you create a new file in the Design environment . Choose the New
File command from the Structure menu . The file box represents the file you are
creating. You can change the name of a file . Select it by clicking anywhere within the
file box; then choose the Rename File command from the Structure menu . To add a
field to the file, double-click within the file box or choose the New Field command
from the Structure menu . You can also change the type or attributes of a field once
you've selected it. Click within a given field to select it ; then choose the Change Field
command from the Structure menu or simply double-click it. Figure 3-1 identifies the
different parts of the file box .

Filename

Field type

Field name

Figure 3-1
Parts of the file box

To delete a field, select it and choose the Delete Field command from the Structure
menu . To delete a file, select it and choose the Delete File command from the
Structure menu .

36

	

Chapter 3; Files

Warning

Deleting fields or files considerably alters the structure of your database . Should
power fail during this time-consuming operation, the entire database will be
lost. Be sure to back up your database before choosing either of these
commands .

A file can have as many as 511 fields, including subfile type fields . In turn, each
subfile field can have 511 subfields . You can nest subfile fields to a depth of five . See
the 4th Dimension User's Guide for information on nesting subfiles .

Specifying field types
A field must be one of eight types (all shown in Figure 3-2) : Alpha, Text, Real,
Integer, Long Integer, Date, Picture, and Subfile .

Rdd or Change Field in Phile

Field name :

20;i: Rlpha
Tent
Real
Integer
Long Integer
Date
Picture
Subfile

Name

I1 Mandatory
Display only

Li [ant modify
Eli Inderred
D
Q Standard Choices

OK and Nent

Cancel

OK

Figure 3-2
Add or Change Field dialog box

Alpha
The user can enter any keyboard character except for Tab, Return, Backspace, or any
control character into an Alpha . Maximum length is 80 characters . An Alpha field is
not a fixed length field and takes 1 byte per character plus 1 byte for the data length .
In the file box, the letter A to the right of a field name indicates that the field is Alpha .

Specifying field types 37

Text
The user can enter any character from a Macintosh keyboard into a Text field, except
for control characters, Tab, and Backspace . (Return characters can be entered into
Text fields, but not into Alpha fields .) A Text field has a maximum capacity of 32,767
characters. A Text field takes 2 bytes plus its length in characters for storage space . T
is the field type symbol for Text fields .

Important

Procedural calculations convert numbers to teals, regardless of type . When
calculated numbers are assigned to fields, the numbers take on the type of the
field .

Real
Enter any numeric value in this field up to 19 significant digits . The calculable range
for teals is ±1E1022. Reals follow specifications for SANE extended teals . 4th
Dimension allots 10 bytes to each Real field . R is the symbol for such fields .

Integer
Enter any numeric value in this field in the range of ± 32,767 . An Integer field takes 2
bytes. The letter I marks Integer fields .

Long Integer
A Long Integer field handles any number in the range of ± 2 billion . A Long Integer
uses 4 bytes. L is the symbol for Long Integer fields .

Date
A Date field consists of a month (1-12), a day (1-31), and a year (to 32,767) . Dates
are sorted chronologically . A Date field can manage dates exceeding the Macintosh
clock limits. A Date field requires 6 bytes and is marked by the letter D. 4th
Dimension does not take Gregorian calendar changes (circa 1600 CE) into account .

38

	

Chapter 3; Files

Picture
A Picture field handles any Macintosh picture, for example, MacPaint bit-map
images or MacDraw picture format graphics. P is the symbol for Picture fields . A
Picture field takes 8 bytes plus the size of its contents on the Clipboard .

4th Dimension retains all of a picture's information . If you copy a picture back into
its application, all the information will be there .

Subfile
A Subfile field lets you generate a substructure with subfields (see the "Subfiles"
section near the end of this chapter) and is indicated by the asterisk character. You
can calculate the storage requirements of a subfile by multiplying the bytes used by
fields times the number of subrecords .

Specifying field attributes
You can set any of the following attributes to a field : Indexed, Unique, Mandatory,
Non-enterable, Can't modify, and Standard Choices ..

Indexed
When you assign a field the Indexed attribute, 4th Dimension creates and
automatically updates an index table as records are added, modified, or deleted .
Text fields, Picture fields, and Subfile fields cannot be indexed, whereas Alpha, Real,
Integer, Long Integer, Date, and fields within subfiles can. Indexing a field creates a
4th Dimension document called database . lndexn on disk, where n is the index
number .

When calculating the size of a database, include the amount of storage space taken by
index tables . Storage space for Indexed fields is as follows:
•

	

Alpha: (Maximum length + 15 or 16)
•

	

Real: 24 (Length + 14)
a Integer : 16 (Length + 14)
•

	

Long Integer: 18 (Length + 14)
a Date: 20 (Length + 14)

Specifying field attributes

	

39

:• Alpha length: The storage space for an indexed Alpha field is Maxlength+l5,
unless the result is an odd number . In the case of an odd number, the storage
requirement is Maxle ngth+l6 . Maxle ngth is the field length specified in the
Design environment, not the number of characters typed into each field .

Indexed field names appear in bold characters in the file box . An Indexed field lets
you search for a specific record among any number of records significantly faster
than a non-indexed search would . If the search by index activates more than one
record, search speed increases logarithmically . That is, on a per-record basis, 4th
Dimension finds ten records quicker than just one . You can sort Indexed fields far
faster than non-indexed fields . Index the fields that you will frequently search or sort
to save time .

Unique
Unique fields must be indexed . Giving a field this attribute makes it impossible to
enter a duplicate value for the field within the file . 4th Dimension will alert the user if
the user tries to enter a duplicate value .

Mandatory
4th Dimension will not save a record if the user has failed to make an entry in this
field. Use the Mandatory attribute for required data. 4th Dimension considers a field
empty if it contains no character at all or if a field contains a "non-value value," as
follows :
•

	

Alpha: " (null string)
•

	

Real: 0
•

	

Integer: 0
•

	

Long Integer : 0
•

	

Date : !00/00/00!

Non -enterable
The user cannot enter values into Non-enterable fields . Only 4th Dimension
procedures can write values to such fields. Choose Non-enterable to protect fields
which will contain values resulting from calculations, like a line total in an invoice .

40

	

Chapter 3; Files

Can't modify
When a field is Can't modify, 4th Dimension accepts an initial entry into the field,
but does not allow keyboard modification of the initial entry after you save it . Only a
4th Dimension procedure can modify a Can't modify field .

Standard Choices
When working in the Design environment, you can create a list that will become
active when, during data entry, the user moves into a field bearing this attribute .
Figure 3-3 shows the Standard Choices dialog box . The user can choose only one
item from among the choices listed for that field for a given record . The user chooses
the item by clicking its name, by using the arrow keys, or by typing one of the entries
and pressing Return. This attribute does not apply to Picture and Subfile fields . You
could use this attribute
o for fields that are restricted to a small group of values, like freight carriers a

company deals with (you won't have to type the field value every time you enter the
record)

o to automatically control the spelling of complex names

Standard choices for Origin

0 [hoices can be modified

Asia

Sort

Insert

r	

Append Cancel

Delete

	

OK

Figure 3-3
Standard Choices dialog box

By selecting the Modify option in the Standard Choices box, users can modify the list
of standard choices whenever they enter values in a record .

	'• Note: Modify, in this case, is an option, not an attribute .

Specifying field attributes

	

41

AfriI ::
Antic
Asia
Au=tr .1ia
Eur 'pe
r°li'idl€ E .~ t
rJ :r -th Arni?ric.a
=i?uth Ariieric:
An . rctii ::

Keep these things in mind :
o If the list for a field contains several hundred items, or if a single item has to be

entered in different fields, use files and links to emulate the list of choices . This
procedure is explained later on in this chapter .

o No item on the list can be more than 30 characters long.

Layouts
Layouts determine the way the information contained in the records of a file will be
displayed. You can create up to 32,767 different layouts for a single file in a database .
You use layouts to enter data, to display data on the screen, to print data on paper,
and to create custom dialogs . Layouts are the interface between the user and 4th
Dimension's data structures .

In a layout you can display only some of a file's fields and use variables to display
fields belonging to another file . Giving a file several layouts enables you to display all
or part of its fields in ways that best suit your needs . Figure 3-4 shows an input layout
(single record) and an output layout (multiple records) . Figure 3-5 shows how these
layouts look when in use: an input form with data entered into it, and a printout of
three records corresponding to the input .

a

Students
U

Last Nome

First Name

Dote of Birth

OK

Last Name

(First Name

(Date of Birth

Concel

F

Figure 3-4
Input and output layouts

42

	

Chapter 3; Files

Last Name First Name Date

Last Name

	

I (First Name

	

I (Date of Birth

Students

Last Name

	

f1A RTIIJ

First Name

	

Henri1

Date of Birth I~:)5''i :? ,'6r

,
OK C:anteI

h

1°1 ART IN H'? nr'l C'S "07 "66

FR IGE 1105/66

Figure 3-5
Input template and output printout

	.• Note: Records and layouts are two different concepts . A record contains data
and a layout is the means of displaying that data . Adding, deleting, or changing
a field in the Structure window changes the file structure, whereas adding,
deleting, or changing a field in a layout only changes its appearance and does
not change the file structure or its contents .

Layouts are a powerful 4th Dimension feature . You can create extremely
sophisticated layouts and adapt them to printed forms if you wish .

Output layouts and input layouts
You can designate any layout as an input layout or an output layout . Normally, input
layouts take data entry and modifications, and output layouts display or report data .

Two rules control the use of layouts in 4th Dimension :
∎ Data output: 4th Dimension uses the current output layout of a file to display or

print its contents or to export a SYLK, DIF, or Text file . You must explicitly specify
one of the file layouts as the output layout of that file . Use OUTPUT LAYOUT in a
procedure, or choose the Choose File Layout from the File menu in the User
environment, or designate them in the Design environment Layout dialog box .

∎ Data input: 4th Dimension uses the current input layout of the file to enter records
or to import a SYLK, DIF, or Text file . You must explicitly specify one of the file
layouts as the input layout of that file . Use INPUT LAYOUT in a procedure or
choose the Choose File Layouts from the File menu in the User environment or
designate them in the Design environment Layout dialog box .
You can specify any layout as the file output layout and/or input layout at any time,
according to your specific needs . Each file has its own input and/or output layouts .

Output layouts and input layouts

	

43

Last Name First Name Date

UA'v'I :_ Jean C13/1 2 .66

layout procedures and file procedures
You can write procedures that work only when a specific layout is active (layout
procedures) or when a specific file is active (file procedures) . A layout procedure
becomes active any time the layout (whether an input, output or dialog layout) is
called. A file procedure is executed for data entry and modification . Layout
procedures are frequently used . File procedures are rarely used .

File procedures
You can have at most one file procedure per file or subfile . You create or open a file
procedure by selecting the file in the Design environment's Procedure dialog box
and clicking Open . 4th Dimension only executes file procedures for input layouts .
Data output operations and dialog layouts do not execute file layout procedures .

4th Dimension always executes a file procedure before each execution of an input
layout procedure. The order of execution is
1 . Set a particular execution cycle function (Before, During, or After) to TRUE .
2 . Execute the file procedure .
3 . Execute the input layout procedure .

When you are reading a description of an input layout procedure, you can assume
that if a file or subfile procedure exists, 4th Dimension will execute it before executing
the input layout procedure . The two reference manuals assume that you understand
the place of file procedures in the execution cycle .

Layout procedures
Write a layout procedure any time you want 4th Dimension to do some kind of
processing whenever a particular layout is used. Consider the example of a file of
students records . The teacher wants
•

	

last names to be in uppercase even when entered in lowercase
•

	

first name initials to be in uppercase and the remaining characters in lowercase
•

	

to automatically display the corresponding age whenever a date of birth is entered
in the Students file, and therefore needs to add an Age variable to the layout

44

	

Chapter 3: Files

The following layout procedure covers all three requirements . Figure 3-6 shows a
filled-in input template with the Age variable in place .

Last Name := Uppercase(Last Name)
First Name := Uppercase (Substring (First Name ;1 ;1) + Lowercase (Substring (First Name ; 2 ; Length

(First Name)-1))
Age := Int ((Current date - Date of birth) 1365.25)

Students
Last Name

	

111AFT1r: d

First Name

	

1HerIn

Date of Birth '.::'5".I766

	

Age

OK

	

C anrel

r

Figure 3-6
Student data input layout with Age variable

layout procedures and the execution cycle
The 4th Dimension execution cycle consists of phases, phases intiated both by
internal processing and user actions . A phase comes into being when 4th Dimension
sets a particular function to TRUE . Each phase executes the layout procedure . Within
the procedure, you can determine which phase is active and take appropriate
actions. There are separate execution cycles for input and for output .

The phase functions for input are
•

	

Before

•

	

During

•

	

After

The phase functions for output are
•

	

In header

•

	

Before

∎ During
•

	

In break

•

	

In footer

Layout procedures and file procedures 45

The next two sections show how the execution cycle works for records having no
subrecords. The "Subfiles" section below discusses how the execution cycle and
subfles work together .

Execution cycle for input to a record with no subfiles

The user events that can trigger a change of phase during input include
•

	

completing an entry to or a modification of a field by pressing Tab or Return or
clicking another field

•

	

clicking a button
•

	

clicking a scrollable or external area
•

	

selecting a menu
•

	

forcing a redraw action by resizing a window, scrolling, or completing a Full Page
(included subfle) layout edit

There are two input layouts that do not include subrecords : the simple input layout
with no subrecords and the input layout with an included file . The order of phase
execution for a simple input layout with no subrecords is as follows :
1 . Before phase (before 4th Dimension displays the layout)
2 . During phase (for each user event until a validation or a cancel)
3 . After phase (only when the user validates the current record)

The order of phase execution for an input layout with an included file is as follows:
1 . Before phase (before 4th Dimension displays the layout for the main file)
2 . During phase executes the included layout procedure for each included record

displayed. 4th Dimension sets During TRUE and then draws each displayed
record for the included layout procedure .

3 . During phase (for each user event)
4 . After phase (for the main file only when the user validates the current record)

46

	

Chapter 3; Files

Here is an example of a simple input layout procedure :

Case of
:(Before)

If (Entry date = !00/OO/00!) 'If date is 0 this is an ADD RECORD
Entry date := Current date

End if
:(During)

If (Mod ified(Company))
Company :=Uppercase(Company)

End if
:(After)

Month := Month of (Current date)
End case

When Before is TRUE and the date is empty, the procedure stores the current date
in the Entry date field. The user will see the date already filled in when the layout
appears on the screen. When During is TRUE, the procedure puts the company
name in uppercase. When After is TRUE, the procedure parses the month number
from the current date and stores it in the Month field (for sorting by months) . When
entering data, the user never sees the Month field .

Execution cycle for output with no subfiles

There are three basic execution cycles when dealing with output layouts having no
subrecords : screen display only, printed output lacking either sorted fields or
subtotals, and printed output with sorted fields and subtotals .

With the exception of canceling a printing report, user actions cannot change phases
in output layouts .

A display-only output layout has only one phase : 4th Dimension sets Before and
During to TRUE simultaneously for each record, before the record is displayed .

The order of phase execution for an output layout with no sorted fields, no subtotals,
and no subrecords is as follows :
1 . Header phase once for each page (Before selection returns TRUE the first time

only)
2 . Before phase for each record
3 . During phase for each record before the record is printed
4 . In Break phase once for each page (for level 0 only)
5 . Footer phase once for each page (End selection returns TRUE for the last footer

only)

Layout procedures and file procedures

	

47

The order of phase execution for an output layout with sorted fields, subtotals, and no
subrecords is as follows :
1 . Header phase once for each page (Before selection returns TRUE the first time

only)
2 . Before phase once for each record
3 . Test: If there is not enough room on the page to print the record, do both a Footer

and Header phase
4 . During phase once for each record
5 . Test: If the next record will not cause a break, return to step 2
6a . Break (least significant break level)
6b. Test: If no change in the next most significant break level, return to step 2
7a . Break (next most significant break level)

7b . Test: If not at end of selection, return to step 2
8 . Break (for level 0 only)
9 . Footer (End selection returns TRUE for the last footer only)

Here is an example of an output layout procedure with sorted fields :

If (Before)
If (Before selection)
vPage:=0

End if
gQuarter:=[Income]Quarter
vStr1 :=""
vStr2 :=""

End if
If (In break)

Case of
(Level=l)
vStr1 :="Subtotal for Quarter "+String(gQuarter)+" : $"+String(Subtotal(Sale))

(Level=0)
vStrl :="Final figures to date

	

Maximum : $"+String(Max([Income]Sale))
vStr2 :="

	

Total: $"+String(Sum(Sale))
End case

End if
If (In footer)
vPage:=vPage+1

End if

48

	

Chapter 3 : Files

Current selection and current record
The teacher in the example may want to search student records on the basis of one or
more criteria ; for instance, all students born after a given date . Such an operation
would yield a subset of all records in the file . This subset is called the current
selection . Unless the current selection is empty, it will have a current record .

Selecting a file

You may define a subset of all records in a file as a current selection. Conducting a
search results in creating a current selection for the file . Figure 3-7 illustrates the
change from all records in a file to the current selection .

When in the User environment, choose the Search, Search and Modify, and Search
by Formula commands . When writing procedures, use SEARCH, SEARCH
SELECTION, or SEARCH BY INDEX . If no matching record is found, 4th
Dimension returns an empty selection . The current selection can contain all the
records of the file . Choose Show All in the User environment or use the ALL
RECORDS command in a procedure .

Important
Making a selection destroys any sort order . If you want to see records in a
particular order, always sort after a search .

The current selection enables you to manipulate a group of records in a file, whether
to print them, modify them, perform calculations, or take other actions .

	.• Note: A current selection does not actually contain the matching file records, but
only points to them . It is, in fact, a table in memory. The number of records that
a selection can contain therefore depends on the RAM size of your Macintosh. A
current selection takes up 4 bytes for each selected record .

Current selection and current record

	

49

Last Name

Students File : 12 of 12
First Name Date Average 4

MARTIN
DAVIS
PRICE
DRUMMOND
ELLIS
SMITH
BAILEY
ANDERSON
R AND
PASCAL
AL INE
PETERS

All RECORDS ((Students File))

Students File : 8 of 12
Last Name First Name Date Average 4
MARTIN
DAVIS
PRICE
DRUMMOND
SMITH
BAILEY
ANDERSON
ALINE

ELLIS
BAILEY
ANDERSON
R AND
PASCAL

Henry
Jean
Andy
Jack
Patricia
Julia
Henry
Peter
Larry
Phillip
Toni
Jacquiline

Henry
Jean
Andy
Jack
Julia
Henry
Peter
Toni

SEARCH ((Students File) ;(Students File)Date>=!1/1/64!)

Students File : 5 of 12
Last Name First Name Date Average

Patricia
Henry
Peter
Larry
Phillip

05/07/66
03/12/66
11/05/66
02/11/65
09/07/63
09/08/64
09/05/65
03/09/64
06/09/63
07/14/63
07/16/64
03/19/63

05/07/66
03/12/66
11 /05/66
02/11/65
09/08/64
09/05/65
03/09/64
07/16/64

09/07/63
09/05/65
03/09/64
06/09/63
07/14/63

SEARCH ((Students File) ;(Students File) Average <14)

Figure 3-7
Two search criteria applied to the same file

50

	

Chapter 3 : Files

14
16
17
16
15
13
11
14

12
13
11
10
13

Current record
When you perform an action on a current selection, 4th Dimension by default starts
with the first record in the current selection, which becomes the current record, then
goes on to the next, which in turn becomes the current record, and so on to the last
record in the selection .

When the search operation results in a current selection containing at least one
record, the first record becomes the current record in the file . When the selection is
empty, there is no current record . When you add a record to a file, the new record
becomes the current record when the user validates it .

The 4th Dimension programming language provides you with commands such as
PREVIOUS RECORD and NEXT RECORD to move the record pointer through a
current selection, so that you can select records one by one as the current record .

Selecting a record as the current record automatically loads it into memory . Running
a procedure to modify a field amounts to changing the value contained in the current
record. To save the modification, you must tell 4th Dimension to save the record,
with SAVE RECORD . When values are modified during data entry, these
modifications cannot be saved unless the user validates the entry .

Sorting
Once you have searched a current selection, you may want to change the order in
which records are displayed or printed . This means sorting the current selection .
Sorting a selection does not modify its contents . It only changes the way records are
arranged within the selection . Once the selection is sorted, the first record becomes
the current record.

4th Dimension lets you sort all the records in a current selection using any field type,
except Picture and Subfile type fields . You can sort to a maximum depth of 30 fields .
You can sort fields in ascending or descending order . When sorting a selection on
multiple fields, you may choose either sort order on each field .

Any non-indexed sort operates on the current selection table, ignoring any previous
sort order. Within a given sort instruction, 4th Dimension gives priority to the first
field to be sorted, then to the second, and so on . The first field sorted is considered a
level 1 sort, the second field sorted a level 2 sort, and so on .

Figure 3-8 shows student records in the order entered by a teacher .

Figure 3-8
Records in the order entered

Figure 3-9 shows the User environment Sort dialog box set to sort the Last Name field
in descending order .

Sort Students File . . .
Li t r'a •a riie
Fir_t N .3riie
[:.ite of Birth
As~er'age

Cannel

	

Sort

Figure 3-9
Sort dialog box; Sort descending on Last Name field

52

	

Chapter 3; Files

Students File ; 12 of 12
Last Name First Name Date Average

r1AFTTIN Henr'a 05111

	

_ 14

DA''1 := lean i i3/i 255 16

F'PICE And~a 11 •''iis .''66 1?

CipI_Iri liar[.' I .,cl:: 0211 .'65 16
ELL N P . trici .y 9 ii ,. 63 1 i
:=r1ITH Jul1 ., cI :E x''64 15
BAILS Henna ii9ii5' 5 13

Ar~C:EF°3i ihl F'eter i3/09 ;'64 11
F. AN[L~rru 1:160963'' ;'1i i

PASCAL F'hillip 07/i 4''63 13
ALIKE T ni ii; ;'1654 14

F'ETEF"=. ,I ;cquiline 1:13 196363 1?

Figure 3-10 shows a Sort dialog set to sort the Average field in descending order, the
Last Name field in ascending order, and the records that appear as a result .

Sort Students File . . .
Last Narrie
First raarne
Gate r.f Birth

List Ja rne

4

t

Figure 3-10
Students sorted with average in descending order and last name in ascending order

Sorting is a dynamic operation. It acts on the current selection . This is the reason any
of the following actions may result in a loss of the current sort order :
•

	

changing the current selection
•

	

performing a search
•

	

sorting again
•

	

using a set
•

	

quitting the application

Students File : 12 of 12

	

y
Last Name First Name Date Average

PETERS Jacquiline 03 ? 19/63 1
PRICE Arnju 11 ?05x''66 1?
DAVIS Jean 03/12/66 16

DRLIMMOND Jack ':2/11

	

ri65 16
SMITH Julia 09/ :E:/64 1

AL INE Tun1 0 ?16/64 14
MARTIN Herir'a 05/07/66 14

BAILEY Herir'a 09/1:565 1
PASCAL Phillip 07/14/63 1
ELLIS Patruaa 09/07/63 1'2
ANDERSON Peter 03/0964 11
BAND Larva 06/0 9/53 10

<I

Subfiles
This section describes subfiles, how and where to place them, and how the execution
cycle affects them .

Subfiles defined

A subfile is, in reality, a field containing a varying number of records . These
records are referred to as subrecords . Each subrecord contains one or more
subfields . The maximum number of subfile records per parent record is 32,767
(limited by RAM). This book refers to subfiles as substructures when referring to
the structure of subfiles and subfields as seen in the Structure window .

The maximum number of subfile levels is five . Whether referring to one field and its
subfile or a subfile field containing a second subfile, the book uses the terms parent
and offspring. The parent is the data structure containing the offspring structure . To
see how subfiles work, study the following examples .

Subfile example 1

Figure 3-11 shows a file named Items. This file contains the elements (items) of an
invoice detail .

It~rci
Stock: h~urr er A
[:'e c::ripticur~ A
FricF R
T.x Rate

	

R

Figure 3-11
Detail file for an invoice

Suppose you wanted to store data for a sales report containing detailed information
about each item sold : date of sale, quantity sold, and invoice number. You also want
to know the total sales per item . Here are the three alternatives for accomplishing
this goal :

1 . In the first alternative, you could add three fields named [Items]Date,
[Items]Quantity, and [Items]Invoice Number to the file . (See Figure 3-12 .) In this
case, you would have to add a new record to the Items file every time an item is
sold and repeat the stock number, description, price, and tax . This solution would
be time-consuming and wasteful of storage space, because you would have to enter
the same four values every time a particular item is sold . An additional
disadvantage is that you would only get the total amount of sales per item by going
through every record and adding the sales values.

54

	

Chapter 3 ; Files

2 . As an alternative, you could create a new file named Sales containing three fields :
[Sales]Date, [Sales]Quantity, and [Sales]Invoice Number . (See Figure 3-12.) You
would still have to enter the item reference number for each item sold and go
through all the records referring to the same item to calculate the total quantity
sold .

It'? rii :
:3tor:k Nuriiber A
[.'e :c:riptictn A
F'ric:e R
T .a ::< Ft'? R
Date D
I,li~ .aritlt~a R
Iri OU:e r'JUriiber

	

I

Alternative 1

Figure 3-12
Alternatives 1 and 2

3 . The third alternative is to insert the list of sales per item within each Part record .
The list would have the capacity to insert a number for quantities sold . In other
words, this would amount to adding a smaller file within each item record-a
subfile .
To solve the invoice problem, add a field of type Subfile named [Items]Sales . You
create the actual subfile by adding subfields to [Items]Sales .
These subrecords belong to a given record and will be loaded into memory at the
same time as the record to which they belong . A subrecord pointer points to the
first subrecord, defining it as the current subrecord .
This makes it possible to view the quantity sold per item . 4th Dimension has a
number of routines to manipulate subrecords . Thus, you can search, sort, create,
modify, delete, graph, and perform statistical and arithmetical calculations on
subrecords. For example, you can find the quantity sold per item by using the Sum
function. Figure 3-13 shows the subrecord solution .

Item :

C'e c:riptiori A
F'ric :e R
T .~ ;:: Rate

	

R

Figure 3-13
Subfile alternative

Sale:
[:'ate
hlu .aritlt~~
IniI:lce Number

Item :
t .i ;Ir Number A

[:'e:c:rlptlan A
Fiji:e R
T . : :.:: Fate

	

R

Alternative 2

_ .ale :
Date D
Quarihtia R
Irircnce Number

	

L

,

Subfiles

	

55

Subfile example 2

Suppose you want to create a specific file to invoice the above-mentioned items .

This file would handle all necessary information such as the invoice number, date,
customer's address, price (tax included, tax not included), and the tax total . You will
have to create at least six fields. The next step would be to list all invoiced items,
specifying the stock number, description, quantity sold, price, tax, total tax not
included, total tax included, and the total tax for each item . You will need to create at
least seven fields per item .

Assuming that 20 items are listed on one invoice, you would need to create 166 fields
(6 + 8 * 20) to specify the invoice accurately. Whether your invoice contains 2 items
(with more than 100 fields the majority of which won't be used) or 21 (you would need
another record to add 8 fields and so on), invoicing is quite a chore .

This file structure does not allow easy data management . A solution would be to
create two files: one, named Invoices, contains invoicing information . Another,
named Items, containing details of every invoice plus a field in which the number
referring to the appropriate invoice is stored . This brings you back to the problem
encountered in Example 1 . You would also have to go through every detail item in
the second file to display or print an invoice .

Typically, a group of items detailed in one invoice should function as a smaller file
within an invoice record . Therefore, it's best to create a subfile field named
[Invoices]Items, which generates a subfile composed of subfields that detail every item
on the invoice. The group of items on an invoice is similar to a subfile . Thus, you can
create a number of detail items and calculate prices with and without including taxes .
See Figure 3-14.

ri

	

oil: :

Irrvciic :e rJur iter L

Irrvoice f'~te D
Gu is rrer T
T't .;l TNI R
T';t .;l TI R
Item=

56

Figure 3-14
Invoice file with its detail subfile

Chapter 3 ; Files

Itefll_

_t uC~: : I'~Urlll'er
e_i:r1ptian
Init F'ri e

Q'j . ;ntit'a
T . ; : :;: F: .;te
Total TNI
T'tal TI
T':'t .;l T .; :>:

Once you have specified a file and its subfile, you can add a varying number of
subrecords within any record of the file . Figure 3-15 shows the structural relationship
between records and their subfiles . A given group of subrecords that belong to one
file record constitute a subfile .

Record

Subrecords

Figure 3-15
Structure of records and their subfiles

Only the subrecords belonging to the current record are in memory at a given
moment, rather than all the subrecords of all records in the file or selection . Thus,
when you add, delete, modify, search, sort, or print subrecords, you are acting only
on a selection of subrecords belonging to the current record . To work on more than
one record's subrecords, you would have to work within a loop that would move
through a selection of records.

You can search both in the User environment and through a procedure called from a
custom menu . In either case, you can search subrecords in two ways : you perform a
search within the file with

[filename]subfile'subfield = Value .

A statement following this template could look like this :

SEARCH([Invoice]Item'Part No = "A5430B")

In this case, 4th Dimension selects the records in the file containing at least one
matching subrecord . This returns a record selection and not a set of subrecords .
Figure 3-16 illustrates a search that returns a selection (the current selection) of
records based on values in a subfile .

Current selection returned by a search

Record 3

58

	

Chapter 3 : Files

Subrecords satisfying the test

Figure 3-16
Subrecord search returning current selection of records

You can also perform a search only on the subrecords that belong to the current file
record. A procedural version of this might look like the following :

SEARCH SUBSELECTION([Invoice]Item'Part No = "A5430B")

4th Dimension selects matching subrecords, creating a subselection within the
subfile. When this subselection is not an empty one, the first subrecord becomes the
current subfile subrecord. 4th Dimension provides you with commands like
PREVIOUS SUBRECORD and NEXT SUBRECORD to move through a
subselection . Figure 3-17 illustrates a search within a subfile .

Important

Unlike a record selection, a subselection does not automatically have a current
subrecord . Always select the current subrecord with ALL SUBRECORDS or
FIRST SUBRECORD .

Record 1 Record 2

I I

	

I
I

	

I
I

	

I I
I

	

I
I

	

I
I I

II
I
I I

	

I

Current record

Current subrecord

Figure 3-17
Search within a subfile

Subrecords
returned by search

Subfile example 3
Suppose you want to create a documentation database . You'll have a file named
Documents, where each record will contain a particular text stored in a Text field . You
then want to search for texts containing one or more specific words . When records
contain long texts and the file contains many records, a sequential search such as

SEARCH([Documents]Text = "@Vaiue@")

would take too long. Therefore, a solution would be to work with a subfile . You create
a field of type Subfield, named [Documents]Keywords .

In the subfile, you create a subfield named [Documents]Keywords'Word . Several words
can be saved as keywords for a single text . Knowing that a subfield can be indexed,
index the Word field of the [Documents]Keywords subfile. You then can perform an
indexed search with

SEARCH BY INDEX ([Documents]Keywords'Word = "Value")

This returns a current selection representing all the records containing at least one
matching subrecord . Thus, you have a set of text records containing the specified
keyword. Don't forget that you must be able to specify keywords related to the text
while entering a record .

If you want, you could write a procedure that would do the time-consuming search
just once, adding a subrecord to each record where the value is found .

SEARCH([Documents]Text="@Value@")

Subfiles

	

59

A subfile can contain one or more fields of type Subfile . A field of type Subfile will
generate a lower-level subfile . Hence the concept of subfile levels .

Working on a level deeper than two can be quite a complex matter . In other words, to
access a given subrecord within an n level subfile, you must first access the parent
record and through it the first-level subfile and the desired first-level subrecord, and
through it the second-level subfile and the desired second-level subrecord, and so
on. See Figure 3-18 .

Current record

Current subrecord
for level 1

Level 1 subfile

Figure 3-18
Multiple-level subfile access

60

	

Chapter 3; Files

c

Level 2 subfile

Current
subrecord
for level 2

Subfiles and layouts

To enter data into subrecords, or to display or print subrecord data, you need to
create subfile layouts in the same way as you create layouts for a file . Once you have
created your subfile layout(s), you create an included layout area to include these
layouts in an appropriate file or parent subfile layouts . The output layout and input
layout concepts (as defined earlier) also apply to subfile layouts . Figure 3-19 shows a
layout dialog box for a subfile .

Format for an included layout . . .

® Full Page
0 Multi-line

Cancel

OK

fides

I+J

Print using . . .
C Variable frame
® Fixed frame (truncation)
0 Fired frame (multiple records)

Figure 3-19
Layout dialog box for a subfile

To enter, display, and report data in subfiles, you can follow five steps when creating
layouts :
1 . Create a Multi-line layout for each subfile for subrecord display (output) .
2 . Create a Full Page layout for each subfile for subrecord entry (input) .
3 . Create an input layout for the parent file .
4 . Within the parent-file input layout, create an included layout area .
5 . Indicate that the subfile layout for the area is the Multi-line layout created in

step 1 .

You can also enter directly into subrecords with ADD SUBRECORD and MODIFY
SUBRECORD . These take a subfile layout name as an argument .

See 4th Dimension User's Guide for details on how to create layouts and include
subfile layouts in file layouts . Figure 3-20 shows a file structure with its related record
and subfile layouts .

4• Note. When you create subfile layouts, you can select the subfile default Multi-
line and Full Page layouts . When you create a subfile area in a file layout, you can
select the subfile and layouts you want . These layouts can be identical to or
different from the subfile default layouts . Default layouts are activated if you do
not specify any other layouts for the subfile .

Subfiles

	

61

Items
Sales

Sales Re'ort

Q

G' .ailI4 :_;ale_

	

F
Sales Output

	Items
Stock Number A
Description

	

A
Price

	

R
Tax Rate
Sales

Layout: SALES

bales

Date Sold D
Quantitla R
IrivU1C::e rlurii ber-

	

L

Figure 3-20
A file with its related record, subrecord layouts, and record/subfile output

Printing options in the subfile area

When creating a subfile area within a given layout, you may choose one of three
framing options : Variable Frame, Fixed Frame (truncation), and Fixed Frame
(multiple record) . These options only apply to printing . They let you decide the way
subrecords will be printed .

If you choose Variable Frame, 4th Dimension prints as many subrecords as are
present, expanding the frame as necessary .

The Fixed Frame (truncation) choice always prints the same number of lines, whether
you have enough subrecords to fill the space or not . If there is not enough space to
accommodate all the subrecords, 4th Dimension does not print the extra records .

Fixed Frame (multiple record) will print as many records as necessary to print the
subrecords for the current record . If the number of subrecords is less than the
number of allotted lines, 4th Dimension still prints a whole page, but with the last
line(s) blank . Figure 3-21 illustrates these three printing options .

62

	

Chapter 3: Files

L_J

I.

	

.1

	

I

ao ~
0

I~I~II~I

dllild

Layout : ITEMS

Items

Stock Number

Description

Price

Tax Rate

Stock: rlurnber-

IGescriptiori I

(Price I

~Ta:Rate I

F

11111111

250

- 15i_,

00 __

Items
U

Stock Number IBR006

Description

	

(BRICK-RED HAVERTON

Price

Tax Rate

54 .6

0 .065

Date Sold Quantity Invoice Q

07/12/86 3500 1548

08/10/86 3800 1602

09/05/86 4500 1741 {'

Date Sold Quantity Invoice

r-~ Date Sold uantitu I Invoice Numb'
L-J

a a

Items

,

Stock Number IE:F:Iiii6

Description

	

IEF:ICF::-RED HA"ERTiIN	

Price

Tax Rate

54 .6
II ,II 65

F

Variable Frame

Items

Stock Number (EF:I1 i6

Description

	

(ER ICE :-FE[:' HA'v'ERTON	

Price

Tax Rate iI .1i6

F

Fixed Frame (truncation)

Figure 3-21
Three options for printing subrecords

Items

Stock Number (E:R Ii li 6

Description

	

IEF:ICF ::-F:ED HA\'EF'TC'N

Price

	

I	54 .6

Tax Rate Ii,iii. `

F

Items

,

Stock Number E:F'I1 i6

Description

	

(EF:ICF::-F'E[: HA','ERTi_IN

Price

	

(54 .6

Tax Rate

Fixed Frame (multiple record)

Subfiles 63

Date Sold Quantity Invoice

':7/12/86 :so' :' 1548
0 :3/10/SE, 381:10 iE.i:12'
1J9/05/:3E, 451C' 1741

Date Sold Quantity Invoice

111,''16/'36 3600 134`
11/21/86 40011 1874
11 4100 1u

Date Sold Quantity Invoice

07/12/SE 50C' 1548
':8/1 USE _1111 16112
C,9/i5/:36 45111 i 1741
111/'16/'86 361ii1 1845
11/21/86 4000 1 :374
12/'12/86 41110 1'9211
01 /05/57 3 :300 19:35

Date Sold Quantity Invoice

07/12/86 351_'O 1543
0:3/1 Cl/SE 3 :300 1602
09/05 /86 4500 1741

Date Sold Quantity Invoice
i_I1 ./IiSfc7 33U0 1935

Items

Stock Number IERIii 16

Description IE:F:IOK-RED HA';"ERTON

Price 54 .6

Tax Rate ii ,i_165

Subfile layout procedures and the execution cycle
The 4th Dimension execution cycle also applies to the execution of subfile layout
procedures. This section discusses the input and output execution cycles for subfile
layouts . Because you can nest subfiles to a depth of five, the terms parent and
offspring refer not only to a file-level record and its subfile, but also to a higher-level
(closer to the main record) subfile and the lower-level subfile connected to it .

:• Reminder. The Multi-line layout lets you display subrecords within the record
layout, and the Full Page layout lets you display a given subrecord when you
double-click in the subfile area.

Execution cycle for input to a record with a subfile

A rule of thumb for input to a parent record having a subfile is that 4th Dimension
executes each phase for the offspring before it executes the same phase for the
parent. As with record-level input, user events can trigger a change of phase during
input. These events include
•

	

completing an entry to or a modification of a field by pressing Tab or Return or
clicking another field

•

	

clicking a button
•

	

clicking an area
a selecting a menu
•

	

forcing a redraw action by resizing a window, scrolling, or editing a Full Page
(included subfile) layout

There are two input layouts that do not include subrecords : the simple input layout
with no subrecords and the input layout with an included file . The order of phase
execution for an input layout procedure with at least one subfile is as follows :
1 . Before phase of the included subfile layout once for each subrecord
2 . Before phase once for the parent layout
3 . Display the parent record
4 . During phase for each displayed subrecord
5 . During phase for each user event, parent record, or subrecord

5a . If the user acts on the subfile, a During phase occurs for the subfile layout
procedure and then for the parent

5b . If the user acts on the parent record, a During phase occurs for the parent
layout procedure

6 . After phase (only when the user validates the current record)
6a . After phase for the subfile layout procedure once per subrecord
6b . During phase for the parent layout procedure once

64

	

Chapter 3 ; Files

Execution cycle for output with subfiles

This section covers two output layouts with subfiles : those in which the Multi-line
layout is designated as Fixed Frame (truncation) and those designated as Fixed Frame
(multiple records) .

The order of phase execution for an output layout in which the Multi-line layout is
designated as Fixed Frame (truncation) is as follows :
1 . Header phase for the parent (Before selection returns TRUE the first time only)
2 . Before phase for each parent record before it prints
3 . During phase for each parent record before it prints
4 . Before phase for each displayed subrecord before it prints
5 . During phase for each displayed subrecord before it prints
6 . Break phase for level 0 only
7 . Footer phase for the parent (End selection returns TRUE for the last footer only)
8 . Return to step 1 if more records remain to be printed

A Fixed Frame (multiple records) subfile layout has a more complex cycle, because it
must test to see if the fixed frame has room for another subrecord . If it does not have
enough room, it should generate another page . The order of phase execution for an
output layout in which the Multi-line layout is designated as Fixed Frame (multiple
records) is as follows :
1 . Header phase for the parent (Before selection returns TRUE the first time only)
2 . Before phase for each parent record before it prints

2a . Test: If room remains for the next subrecord, go to step 3
2b . Break phase for level 0 only
2c . Footer phase (End selection returns TRUE for the last footer only)
2d . Header phase
2e . Before phase

3 . During phase for each parent record before it prints
4 . Before phase returns TRUE for each displayed subrecord before it prints
5 . During phase for each displayed subrecord before it prints
6 . If subrecords remain to be printed :

6a . If another subrecord will fit, do step 4
6b . If another subrecord won't fit, do step 2a

7 . If no subrecords remain, do step 2
8 . Break phase for level 0 only
9 . Footer phase for the parent (End selection returns TRUE for the last footer

only)

Subfiles

	

65

Output from a record having at least one subfile

This section looks at the execution cycle for outputting a record having at least one
subfile. This includes printing and screen display .

Printing a record having at least one subfile area

The order of execution when printing a record with at least one subfile is as follows :
1 . Before file statements and Before file output layout statements execute once .
2 . Before subfile statements and Before output layout statements used in the file

output layout execute once for every subrecord contained in the record .
3 . During file statements and During file output layout statements execute once .
4 . During subfile statements and During output layout statements used in the file

output layout execute once for every subrecord contained in the record .

Viewing a record selection having at least one subfile area

4th Dimension does not execute subfile procedures, but rather the file procedure (if
any) for the parent file and the output layout procedure for the parent file . Only the
subfile layout appears on the screen .

When to use a subfile
Subfiles and subfile levels are part of the concept of data hierarchy, because a subfile
can generate a subfile for each record in a file . This subfile in its turn generates a
subfile, and so on . As an example, assume that you need to manage a file of
customers spread out over the country, which is divided into states, broken up into
regions, and further subdivided into counties .

Given the concept of hierarchy, you would create a file named Customers with a
State subfile, containing a Region subfile, entailing a subfile of lower level named
Counties, in which you would enter the customers' addresses and phone numbers .
The structure of your database would thus reflect that of the country. Layouts in your
database would also reflect that hierarchy, because you'd have to work down the
different levels to access a given record .

Nevertheless, several operations would become difficult to perform, especially a
search by name or postal code . Sorting your customers by name will not be easy
either, because subfiles are not related to one another . In this particular case, a
hierarchical file structure is not an appropriate approach . Instead of using a
hierarchy, create fields for customer last names, first names, addresses, etc ., and
three fields named State, Region, and County . This structure allows for easy search
operations .

66

	

Chapter 3: Files

RAM costs of subfiles

Because subrecords are components of a record, and subrecords are loaded into
memory whenever the parent record is, the number of subrecords you can relate to a
given record depends on the size of each subrecord and how much RAM you have .

Creating an invoice system

Suppose you create a structure to deal with invoices and customers . The first analysis
leads to the design shown in Figure 3-22 .

Customers
Name
Address
City
State
Postal Code
Invoices
Outstanding
Sales

A
A
A
A
A

R Invoices
Invoice Number
Entry Date

	

D
Total TNI

	

R
Total TI

	

R
Total Tax
Items

:	

Figure 3-22
Invoice design with two levels of subfiles

	Items
Description A
Unit Price

	

R
Quantity

	

I
Tax Rate

	

R
Total TNI

	

R
Total TI

	

R

This design lets you
•

	

search customer records, sort the file selection by name, ZIP code, sales, and so
on

•

	

access all a customer invoices, because such information is stored in the
customer's record

•

	

calculate the total amount for every invoice using routines that 4th Dimension
provides to add the items in all invoices (you will also use routines to calculate a
customer's sales and outstanding amounts due)

•

	

calculate annual sales by adding up all customers' sales (you will also be able to
evaluate global outstanding by adding up all customers' outstanding)

Subfiles

	

67

On the other hand, the structure has several drawbacks :

•

	

Whenever you wish to change a particular invoice, you have to select as the current
record the corresponding customer record and then the specific invoice record as
the current subrecord . In other words, you cannot search for a particular invoice
without searching for the customer to whom it is related .

a Printing invoices related to different customers is not an easy operation, because a
customer invoice consists of a customer subfile .

•

	

Sorting all invoices by number or date is impossible .

•

	

You may not have enough RAM space to load a customer's record if the customer
has a lot of invoices with each having numerous items .

You soon realize that entering invoices into a Customers subfile is not appropriate
for "file-type" operations, such as sorting, searching, or printing invoices . Creating
two separate files in a relational database is a better solution . This structure is shown
in Figure 3-23 .

Customers
Name A
Address A
City A
State A
Postal Code A
Outstanding R
Sales

	

R

In

	

111 ::e raun iber

	

I
Entr'a [ate

	

D
Tc't .;i T~fl

	

R
T :i+1 T I

	

R
Total T . :

	

R
Item
Cu toriier- ra .3riie

	

A

68

	

Chapter 3 ; Files

Iterii=
['

	

I: : rip tr: ri
Init Price

	

R
Ilij .jntltLJ

	

I
T.~ ;:. Fate

	

R
Total TI'll

	

R
Total T I

Figure 3-23
Invoice system with two files and one subfile

Such a structure provides for easy searching, sorting, and printing of the Customers
file. It is designed for easy invoice management, because all information is now
stored in a different file named Invoices . Add the [Invoices]Customer Name field to
know the invoices belonging to a customer . A 4th Dimension relational database will
automatically carry over invoice totals into customer Sales and Outstanding fields
every time you add a new invoice . Refer to Chapter 5, "File Links," in this manual .

Chapter 4

Layouts

This chapter covers areas that relate to the programming of layouts . For details on
how to work with layouts, layout tools, and various icons, see Chapter 2 of
4th Dimension User's Guide, "Layout Design Basics ." This chapter discusses the
following topics :
El report layouts
•

	

field formatting
•

	

picture fields
•

	

layout variables
•

	

external areas

Report layouts
Look at the layout and the paper it will print on, shown in Figure 4-1 . It raises the
question of how 4th Dimension distributes printing areas given different printing
scenarios. This section looks at three basic scenarios :
•

	

Print a selection of unsorted records .
•

	

Print a selection of sorted records
•

	

Print a selection of sorted records with subtotals and one break level .

Figure 4-1
Output layout and a piece of paper

70

	

Chapter 4 ; Layouts

B

B

Header

l Det .a>>
!

Break

Printing a simple list
Printing a list of records can be a simple activity : header contents print at the
beginning of every new page, detail prints as long as there are records to be printed,
break contents print once under the last record of every page, and footer contents
print at the end of every new page (see Figure 4-2) .

	:• Note: The layout break prints once under the last record on a page, because it
helps you frame a given group of records .

Page 1

Header

	

Break

Detail

	

Footer

Figure 4-2
Printout of a simple list

Page 2 Page 3

Printing sorted records
When you print sorted records, the header prints at the beginning of every new page,
detail prints as long as there are records to be printed, and the footer prints at the
end of every new page, just as when you print a simple list . But when working with
sorted records, a break prints when a value in a break field changes.

To print subtotals, statistics, or other information between records, you must create
a break area and insert the appropriate variables within it . To create a break area,
separate the D and B markers, and insert any areas you wanted printed in the
resulting break area . (See the section "Layout Variables" later in this chapter .)

Report layouts

	

71

The 4th Dimension Subtotal function determines whether or not break processing
will be active . The 4th Dimension interpreter scans the output layout procedure for
the word Subtotal . If it finds Subtotal, it processes breaks . See Figure 4-3 .

:• By the way. 4th Dimension does not interpret or execute output layout
procedures when looking for Subtotal . It simply searches for the word, written
as an instruction .

Page 1

Figure 4-3
Breaks on sorted records with subtotals

72

	

Chapter 4 ; Layouts

Page 2

Subtotals

Grand total

Sort fields are fields that you have explicitly sorted . For example, if you included
the statement

SORT SELECTION ([SALES] ; SalesRegion ; SalesPerson ; Custom erNumber)

in a procedure, SalesRegion, SalesPerson, and CustomerNumber become the sort
fields . Break fields, on the other hand, include all the sort fields less the last sort
field . Thus, the break fields for this statement are SalesRegion and SalesPerson,
but not CustomerNumber .

Each break field has a different level. You can test this level with the Level
function. The first sorted field, SalesRegion, generates a level 1 break when the value
of SalesRegion changes . Likewise, the second sorted field, SalesPerson, generates
a level 2 break when the value of SalesPerson changes .

Thus, if you have three records in which Sales Region has the value of "North"
followed by two records with the value "South," 4th Dimension generates a level 1
break and prints the break area after printing the three "North" records . It then prints
the two "South" records, generates a level 2 break, and prints the appropriate break
area .

4th Dimension also has a level 0 break . If the selection is unsorted, 4th Dimension
generates a level 0 break after printing the last record of each page . If the selection is
sorted, 4th Dimension generates a level 0 break after printing the last record in the
selection. The following is an example of how an output procedure processes breaks .
Figure 4-4 shows the form a printout would take under this procedure .

If (In break)
Case of

:(Level = 0)
bEnd :_ "Total for the file :"
bLine :_" "* 12 'Print 12 underscores
bTotal := Subtotal(SalesAmount) 'Subtotal activates break processing

(Level =1)
bEnd :_ "Total for region : "+vRegion
bLine :_ "#" * 12

:(Level = 2)
bEnd :_ "Total for person : "+vPerson
bLine :_ "_" * 12

End case
End if

Header

Records with
Salesperson = Jim

Records with
Salesregion = North

Records with
Salesregion = South

1

Footer

Figure 4-4
Report form with breaks for region and sales person

Break (level = 2)

Break (level = 2)
Break (level = 1)

Break (level = 2)
Break (level = 1)
Break (level = 0)

Report layouts 73

Printing sorted records with subtotals and a page break

The header prints at the beginning of every new page, detail prints as long as there
are records to be printed, and footer prints at the end of every new page. The break
prints when the break field changes . That is, when the value in a given field changes,
4th Dimension does a page break on each break . Figure 4-5 shows the result of such a
scenario .

Break contents will print if you've assigned a subtotal variable to the values of a sorted
selection. When you view records, this area appears once in the bottom part of a
layout window, above the footer .

Page 1

74

	

Chapter 4; Layouts

Page 2

Figure 4-5
Report with page breaks for each break

Page 3

:• Note. The break also prints once under the last record of the file selection to
display the grand total .

Formatting fields within a layout
Data and data display are two different concepts . Take a Real field in a given record
as an example . A numeric value stored in that field can have as many as 19 significant
digits . This value can be displayed as two decimal, three decimal, and so forth .
Whatever the format, the field contents remain unchanged .

Alphanumeric and Text fields

Displayed values stored in these fields can be left aligned, right aligned, or centered .
Choose the appropriate alignment using the Style menu when designing a layout .

	:• Note: Alphanumeric and Text fields display faster when you insert an
exclamation point (!) in format specifications. This usage only displays one line .
Inserting an exclamation point in a numeric field left justifies the display .

Real, Integer, and Long Integer fields
Displayed values stored in these fields can be left aligned, right aligned, or centered .
Choose the appropriate alignment using the Style menu . To format a numeric field,
double-click the field or choose Format from the Layout menu . The Format of field
dialog box, shown in Figure 4-6, will appear on the screen .

Format of field . . . Format :

tttttttttttt
tttttt tttttt
tttttt~ttttil
tttt** li ttttttttii_
** tttttt , .tttt U*tt_
tttttt tttttt illi
tttt tttttt 01:1 .tttt tttttt iui-
tttt ttttttliii is * ttttttliill
tt* tttttt

	

xtt tttttt l F
xtt tttttt[;g ttx ttttttCp
= * * * * *

	

* * tt tt tt I_I I_I~
;tttt tttttt iio 5***** 5**

ttttttiiii :5** ttttttoiii:F'

Cancel

Figure 4-b
Format of field dialog box

You can format a numeric field using alphanumeric expressions . You can specify
three formats, each separated by a semicolon . The first format applies when the field
value is positive, the second when the field value is negative, and the third when the
value is null (zero) .

Separate the expression into three parts, separating each part with a semicolon .
For example :

Positive ;Negative ;Zero

4th Dimension prints the first string (Positive) when you enter a positive value, the
second (Negative) is enabled when the field value is negative, and the third format
(Zero) when the value is null (zero) .

Formatting fields within a layout 75

In'v ic:€. l•J urr~b~r-
EritrIa [:'ate [:
Total TN I R
T it .~1 T I F
Tr.ta1 T .a :> :: F
Cu_t irrier Narii ~ A

You may specify any formatting character except Tab, Return, or control characters .
Four specific symbols determine the maximum number of digits you wish to display
on the screen. These are
•

	

number sign (#)
•

	

asterisk (*)
•

	

caret (A)

•

	

zero (0)

If you have no zero format, zero uses the positive format . If you have no negative
format, negative uses the positive format .

Number sign (#)

This symbol is replaced by a digit when the field value is displayed . When there are
fewer digits than number signs, leading number signs are disabled as well as any
other character surrounded by number signs .

Asterisk (*)

This symbol is replaced by a digit when the field value is displayed . When there are
fewer digits than asterisks, leading asterisks are forced and displayed ; any other
character surrounded by asterisks also appears as an asterisk .

Caret (^)

This symbol is replaced by a digit when the field value is displayed . When there are
fewer digits than carets, leading spaces are forced . They appear as non-breaking
spaces, and any other character surrounded by carets also appears as a non-breaking
space .

:• Note: The caret character does not generate a space character, but a non-breaking
space (ASCII code 202) . This non-breaking space is not a word separator, and has the
same character width as a digit .

Zero (0)

This symbol is replaced by a digit when the field value is displayed . When there are
fewer digits than zeros, leading zeros are forced and displayed . Any other character
surrounded by zeros also appears as a zero .

76

	

Chapter 4 ; Layouts

What happens at display time

Whatever option you choose, the following rules remain in effect :
a Characters placed to the left or to the right of the last symbol are displayed .
•

	

Characters inserted between two symbols that are replaced by digits will be
displayed .

•

	

Whenever a formatting error prevents the entire value from being displayed, less-
than characters (<) appear instead .

•

	

When a field value is negative, the sign is accounted for as a digit and is displayed
on your screen. It does not show if you've set a specific format for negative
numbers .

The Format of field dialog box lets you choose among default settings for numeric
values . Should these settings be inappriopriate, enter a format in the text area .

Numeric formatting examples

Table 4-1
How 4th Dimension displays numeric fields for various formats (for display purposes only) and in its
three different configurations (positive, negative, and zero)

Formatting fields within a layout 77

Format 1234 -1234 0

«< «<
1234 ««
1234 -1234
#####,## 1234 -1234
####0 .00 ;-####0.00 1234.00 -1234 .00 0 .00
####0 1234 -1234 0
###Q+;###0-; 0- 1234+ 1234- 0-
###Q-;###Q- 1234 1234- 0-
###Q;###Q- 1234 1234- 0
+###Q ;-###0 ;0 +1234 -1234 0
####OCR 1234CR -1234CR OCR
###Q--;###OCR 1234-- 1234CR Q--
###QDB;###OCR; 0-- 1234DB 1234CR 0----
###OCR;###QDB ; 0-- 1234CR 1234DB Q--
###Q- ;(###Q) 1234- (1234) 0-
##, ##0 1,234 -1,234 0
##,##0 .00 1,234 .00 -1,234 .00 0 .00

Table 4-I (continued)
How 4th Dimension displays numeric fields for various formats (for display purposes only) and in its
three different configurations (positive, negative, and zero)

Note: When you use the A character in your format, it generates the non-breaking space character (ASCII 202)
rather than the true space character (ASCII 20) . Reals are accurate to 19 places total, on either side of the
decimal point. The - character represents a non-breaking space (used here only to show that 4th Dimension
shows a space). The «< characters represent numbers too large for a given format to display .

Formatting a Date field
You can specify alignment and appropriate display format for dates, as shown in
Table 4-2. You cannot generate additional date formats .

Table 4-2
Date formats

Format

	

Display

Short

	

1/1/90
Abbreviated

	

Mon, Jan 1, 1990
Long

	

Monday, January 1, 1990

Working with Picture fields
You may display Picture fields in three different ways :
•

	

Truncated
•

	

Scaled to fit
•

	

On background

78

	

Chapter 4 : Layouts

Format 1234 -1234 0

AAAAA (see Note) 1234 -1234
AAAAO 1234 -1234
AA,AAO -1,234 -1,234
AA, AAO .00 1,234.00 -1,234 .00

1234 -1234
	 * ~* O 1234 -1234 ~'*#O
** .~ O 	 1 ,234 -1 ,234
",~'0 00 *1,234 .00 -1,234 .00 *"*0 .00
$ • ; ,#'0 .00 ;-$*#,'*0 .00 $'1,234 .00 -$1,234 .00 $ ~## 0 .00

$AAAAO $1234 $-1234
.$AAAO;_$AAAO $1234 -$1234
~$AAAO~ ;($AAAO) -$1234- ($1234)
. .$A,AAO .00~ ;($A,AAO .00) -$1,234.00 ($1,234 .00)

Truncated pictures

4th Dimension centers a Truncated picture in the Picture field and trims the picture if
it's bigger than the Picture field. Figure 4-7 shows Truncated pictures .

Figure 4-7
Truncated pictures

Scaled to fit pictures

4th Dimension automatically enlarges or reduces a Scaled to fit picture to fit in the
Picture field. Figure 4-8 shows Scaled to fit pictures .

Figure 4-8
Scaled to fit pictures

Working with Picture fields

	

79

On background pictures
A picture stored in an area designated as On background can be moved by the user by
dragging the picture . You first need to design the background in the layout. The user
can control the display of the picture on the background for each record . Figure 4-9
shows an example of an On background picture .

Figure 4-9
On background picture

Double-clicking anywhere in the Picture field brings up the Choice of mode dialog
box, shown in Figure 4-10 . The user can select the display of the picture on the
background desired by clicking one of the eight mode choices .

Choice of mode

J
Figure 4-10
Choice of mode dialog box

80

	

Chapter 4 ; Layouts

Choosing any of these options determines the contrast between the picture and the

background. Pixels can be black or white . The combination of two pixels determines

the shade of the resulting point according to the background and picture patterns .

4th Dimension offers four basic operations-Copy, Or, Xor, and Bic (Bit Copy)

and a Not operation for each operator for a total of eight modes . Table 4-3

summarizes the eight modes, showing the action taken on the destination pixel,

based on whether the source pixel is black or white .

+ Note: Picture fields functions may be combined with arithmetic operations on

pictures (see Chapter 8, "Operations on Pictures") .

Table 4-3

Pixel transfer modes

Source transfer mode

srcCopy

srcOr

srcXor

srcBic

notSrcCopy

notSrcOr

notSrcXor

notSrcBic

Figure 4-11

srcCopy example

If black pixel

Force black

Force black

Invert

Force white

Force white

Leave alone

Leave alone

Leave alone

If white pixel

Force white

Leave alone

Leave alone

Leave alone

Force black

Force black

Invert

Force white

Figure reference

Figure 4-11

Figure 4-12

Figure 4-13

Figure 4-14

Figure 4-15

Figure 4-16

Figure 4-17

Figure 4-18

Working with Picture fields 81

Figure 4-12
srcOr example

Figure 4-13
srcXor example

82

	

Chapter 4: Layouts

I hp {

Figure 4-14
srcBic example

Figure 4-15
notSrcCopy example

Working with Picture fields

	

83

Figure 4-16
notSrcOr example

Figure 4-17
notSrcXor example

84

	

Chapter 4 ; Layouts

Figure 4-18
notSrcBic example

	 • Note. The combination of pixels is calculated only for the picture area ; the
remaining background is unchanged .

Layout variables
In addition to fields, text, and graphic objects . 4th Dimension layouts can contain
variables . You can set up layouts for data entry using variables . You can also design
dialog boxes to suit Macintosh user interface standards . You can also create complex
page setups, which include data extracted from other files and substructures .
Figure 4-19 shows a layout containing text, fields, and all of the types of layout
variables .

Layout variables

	

85

I

	

Ii

	

i
L• . J

Ill~il~i

dlldd

	

I l l '''''

0

Layout : VARIABLE EHAMPL.

Items

Stock Number

Description

Unit Price

LI Imported Item

Enter

(;̂tcc :E:: Nuri~ber-

De cr1ptic r~

rf ittf't~f_

Duty Free?
C Yes

N o

[:an(:eI

r rii l l

Help

101 U 1C)10 1 1 10

001 1

	

1 1 1 01 1

1 0 1

	

1 IJIJLJ 0 1 1 1

Figure 4-19
Standard layout variables

When you create a variable within a layout, the Format of variable dialog box
appears (see Figure 4-20) . Use the dialog box to specify the type, name, and format
for a variable and for labeling button variables .

Format of variable . . .

Variable name :

() Enterable Variable
Non-enterable Variable
A

"Don't accept" Button
i Button
[:her:k Borr
Radio Button
Graph Area
Scrollable Area

C:: [Hternal Area

crept" Button

Format :

Numeric Formats
tttttttttttt
tttttt tttttt
tttttt ttttl;
tttttt#il .tttttttt l;-
** tttttt •tttt tttttt-
tttt# tttttt ' ;I ;, '
tttt #tttt illj .tttt tttttt ilil-
tttt tttttt ill; . ; tttt tttttt ili l
tttt tttttt
tttt tttttt[;g tttt~tttttt l_~,,

[:angel

Collapse

t.	0 K	j)

Figure 4-20
Format of variable dialog box

The dialog box shown in Figure 4-20 lets you specify the format for Numeric, Date,
and Picture type variables . You format variables in the same way, with the same
symbols, that you format a field . See the earlier section, "Formatting Fields Within a
Layout ."

86 Chapter 4 : Layouts

Enterable and Non-enterable variables
Enterable and Non-enterable variables enable you to view, in a given layout, data
stored in a file other than the current file . 4th Dimension supports five types of
variables :
•

	

Alphanumeric
•

	

Numeric
•

	

Date
•

	

Boolean
•

	

Picture

Variable typing takes place when a statement assigns a value to a variable . The
variable takes on the type of the value assigned . You can use variables in layouts for a
number of purposes :
•

	

By placing variables in a layout, you can view data contained in a linked record
you loaded during data entry .

•

	

You can create a mailing label, in which the entire layout consists of a single
variable, by concatenating all necessary values into one extended string
(including carriage returns) .

•

	

You can concatenate data from a customer file and display it in a layout . For
example :
Title+" "+Last Name +" "+ First Name+" "+Age

•

	

You can assign the total of numeric values stored in a substructure and display the
result .

4th Dimension ignores the Enterable or Non-enterable attributes in an input layout,
because you can't enter data into variables in an input layout . You can only enter
data into variables in a dialog layout . When you use a layout as a dialog, you may
enter data into Enterable variables, and use Non-enterable variables to display data .
This becomes particularly handy for displaying instructions and values. You can
reuse the same dialogs and change text on the fly through procedures . Just change the
Non-enterable variable contents .

+ Note. When you use a layout as a dialog, the layout displays current field values .
These fields are not enterable .

Enterable and Non-enterable variables

	

87

Accept, Don't Accept, and Button buttons
A button variable generates a Macintosh-type button within a layout . A Macintosh
button is an area you click to validate a choice or confirm an action . The button
appears as a rounded-corner box containing a label . You choose the name of the
button variable and its label in the 4th Dimension Format of variable dialog box .

:• Button: This book uses the term "button" to indicate any of the layout variables
the user can click to choose a state or action . Thus, "button" includes not only
Accept, Don't Accept, and Button buttons, but radio buttons and check boxes .

Accept and Don't Accept buttons

An Accept button validates a data entry . Thus, it is equivalent to the action of the
Enter button in a 4th Dimension record input layout and to pressing the Enter key . A
Don't Accept button cancels data entry . Its action is similar to Cancel in a 4th
Dimension record input layout and to pressing the Command- . (period) key
combination .

Important

Including any kind of button in an input layout automatically cancels 4th
Dimension's default button panel . Failing to supply both an Accept button and
a Don't Accept button in a layout will leave you in an undesirable state . For
example, if you include only an Accept button or a Don't Accept button, you
can only Accept by pressing the Enter key or Cancel by pressing Command- .
(period) .

Understanding how to test to see if a user has validated an entry is important . How
your tests work depends on what kind of buttons and how many of each kind you've
installed in your layout. Unless you've made assignment statements to the contrary,
all buttons are set to 0 when you summon a layout. Therefore, you can use a sequence
of If. . .End if statements or a Case of. . . End case construction to test button
values and take appropriate action . You can write tests either in a global procedure or
within a layout procedure .

For example, if you create a layout with one Accept button and one Don't Accept
button, you can find out which button was clicked by testing the OK system variable
or the Accept button variable . Both will equal 1 if the user clicked the Accept button
and 0 if the user clicked the Don't Accept button .

On the other hand, if your layout includes more than one Accept button or more
than one Don't Accept button, you need to test each button variable, rather than the
OK system variable .

88

	

Chapter 4 ; Layouts

Example

You create a procedure that lets the user choose options in a dialog box, like search,
print, view, change, or delete the current selection . The variables in this dialog box
include one Don't Accept button whose variable is bCancel and whose label is
Cancel and five Accept buttons :
•

	

bSrch labeled Search

•

	

bList labeled List Selection

•

	

bPrnt labeled Print Selection

•

	

bMdfy labeled Modify Selection

•

	

bDel labeled Delete Selection

Here is the procedure :

DEFAULT FILE ([filename])
bCancel := 0
While (bCancel = 0)

While the user does not cancel, display the dialog box layout named
strexpr belonging to the [filename] file .

DIALOG (strexpr)
If (bCancel = 0)
Case of 'User has not cancelled

(bSrch =1)
DoSearch

(bList =1)
DoDisplay

(bPrnt =1)
'DoPrint
(bMdfy =1)
'Do Modify

(bDel =1)
'DoDelete

End case
End if

End while

Accept, Don't Accept, and Button buttons

	

89

Button buttons
Button buttons react to clicks just like other buttons, except that they don't complete
data entry when clicked. Thus, the user can perform actions without having to quit the
current entry (whether in a record or a dialog box) . Examples of Button buttons
include summoning a help screen, advancing to the next page of a long input layout,
and performing calculations .

Unless you make an assignment to the contrary, 4th Dimension sets Button variables
to 0 before displaying the layout . When clicked, a Button variable returns 1 . Always
test a Button button within its layout procedures and not from a global procedure .

To test a button, test the value of the Button variable . It contains 1 if the button was
clicked and 0 if not .

Check boxes
Use check boxes when you want the user to be able to make one or more choices from
among related alternatives . A check box is a rectangular area in which you can place
a mark (actually an X, not a check) . The box's label sits to the right of the check box .
When such a box is checked, its value is 1 ; if not, its value is 0 . You set a check box by
assigning it a 1 . To clear a check box, assign it a 0. Specify the variable name and
check-box title within the Format of variable dialog box . Assign and test check-box
values only in a layout procedure .

Radio buttons
Use radio buttons when you want to limit the user to one choice from among several
related alternatives . For example, choose one communications protocol . When the
user clicks a radio button, 4th Dimension sets its value to 1 and the values of all other
radio buttons in the group to 0. You should initialize a default radio button by
assigning it a 1 . Assign and test radio buttons only in a layout procedure .

To create a set of radio buttons, begin the variable name of each button with the same
letter, for example, B1, B2, 63, and so on . When testing radio buttons, remember
that only one radio button within the group can be set to 1 . The best testing strategy is
to test the value of each radio-button variable in the group inside a Case of. . . End
case structure . Only one button can be 1 at a given time .

4th Dimension automatically sets all radio buttons to 0 before the layout is displayed .
Initialize a default radio button for the layout by assigning it a 1 during the Before
phase. Specify variable names and labels in the Format a variable dialog box .

90

	

Chapter 4 ; Layouts

Graph areas
You draw a graph in a Graph area by executing a GRAPH command in a layout
procedure . You can choose among eight different graph types :
•

	

column
•

	

proportional column
•

	

stacked column
•

	

line
•

	

area
Li scatter
•

	

pie
•

	

picture

The GRAPH command requires an Alpha value to label the X-axis and one or
more Numeric values to graph on the Y-axis . You can have stored the numeric values
in a subfile, an array, or a variable table . Further, data in both subfiles and arrays
may be displayed on the same graph . Specify the name of the Graph area in the
Format of variable dialog box .

Scrollable areas
4th Dimension provides a Scrollable area to display any array of values .

Specify the name of the Scrollable area in the Format of variable dialog box . This
name is the same as the name of the array containing the data . As an example, give
the area and the array the name List . Values that will appear in this area when the
layout is displayed will belong to that variable table and will be named List1, List2,

through Listn. (The maximum value of n is 32,767.) Specify the number of items to
be contained in the table in the ListO variable. You can tell which value was selected
by testing the List variable. This variable contains the number of the item selected .

Different elements of the same array can contain different types of data .

	:• The 0 variable: The XO variable contains the number of items shown in the
Scrollable area X . If you have 28 items to display, set XO to 28 . Additional
variables-X29, X30, etc.-may exist in memory . If XO is greater than the
number of items in the list, 4th Dimension provides selectable blank lines .

Scrollable areas

	

91

If you change the value contained in an element of the array, you must explicitly
update the screen with the REDRAW command, which takes the Scrollable area
name as argument .

Example

Figure 4-21 shows a layout named "Generator ." The List variable at the top left of
the layout is the Scrollable area .

_L1	 Layout : Generator

r - ~C [LA_J
Ca

'''''III

50

	

1~0

	

150

List

liv
Phrase

Artist Name :

[OK

va	

Add

Modify

Delete J

v entence

Cancel

RT
200

	

250

	

300 350

	

40(

In

-50

. 100

150

200

'250

4
Q

Figure 4-21
Generator layout with Scrollable area List

List is a Scrollable area . Add (bAdd), Modify (bMod), and Delete (bDel) are Button
buttons. vName and vPhrase are Enterable variables, while vSentence is a Non-
enterable variable . OK is an Accept button. Cancel is a Don't Accept button .

Create a menu bar with the menu item Writer to invoke the global procedure
WriteSentence

'Procedure : WriteSentence
'Calls the dialog "Generator" which generates a sentence given a variable vName
entered by the user and a choice from the list List in the scrollable area .

DIALOG([Writings] ;"Generator")
While(bOK=1) 'User clicked the Accept button bOK

CREATE RECORD([Writings])
[Writings]Phrase :=vSentence 'Assign sentence into field in record
SAVE RECORD([Writings])
DIALOG([Writings] ;"Generator")

End while

92

	

Chapter 4 : Layouts

The WriteSentence procedure activates a dialog box using the Generator layout . Here
is the layout procedure for Generator :

'Layout procedure : "Generator"
'Manages the dialog that creates a descriptive sentence about an artist .

If (Before)
'Before the layout appears on the screen .

If (Undefined (ListO)) 'initialize array containing descriptive attributes for artists
'Undefined is a 4th Dimension standard function that returns TRUE when the variable
passed to the procedure is of type undefined .
'Here, check whether ListO is undefined to create the array . If it is
'defined,you won't go any further .

List1 :_ "Impressionism"
List2 :_ "painting cityscapes"
List3 :_ "fine sculptures"
List4 :_ "studying in Paris"
Lists :_ "many reasons"

'Assign the number of List items to ListO .
ListO := 5

End if
'Disable the Delete and Modify buttons, before the layout is displayed .

DISABLE BUTTON (bDel)
DISABLE BUTTON (bMod)

'Initialize the dialog Enterable variables .
vName := "Picasso"
vSentence :="
vPhrase:="
List :=0

End if' End the Before phase
If (During)

'Here, the layout statements are invoked when you modify a variable or when you click a
'Button button or any value in the scrollable area .

Case of
(bAdd =1)

'The user clicked the Add button . Add new phrase to the end of the list .
If (vPhrase # ")

ListO := ListO + 1
List{ListO} :=vPhrase
List :=ListO

End if

Scrollable areas

	

93

(bMod =1)
'The user clicked the Modify button .

If (vPhrase # "")
'If the vPhrase Enterable variable is not empty, copy it to the selected item .

List{List} :=vPhrase
REDRAW (List)

Else 'user has selected an item to modify .
vPhrase :=List{List}

End if
(bDeI =1)

'The user clicked the Delete button .
If (ListO # 0)

'Copy the selected item number to i .
i := List

'While i is less than the number of items in the table .
While (i < ListO)

'Copy the value of the i + 1 item to preceding item .
List {i} := List{i+1 }

i :=i+1
End while

'Specify in ListO that the table contains one item less .
ListO := ListO -1

'Specify in List that there is no is selected item .
List .= 0

End If
End case
If ((List # 0)&(vName#""))

'If an item is selected in the scrollable area, calculate the following sentence :
Sentence :_ "The artist " + vName + "is known for" + List{List} + "."

'Enable the Delete and Modify buttons .
ENABLE BUTTON (bDel)
ENABLE BUTTON (bMod)

Else
'Else place the empty string in the sentence :

Sentence :=""
DISABLE BUTTON (bDel)
DISABLE BUTTON (bMod)

End if 'Test choice from List and name entered
End if 'End During phase .

94

	

Chapter 4 : Layouts

The dialog box will look like the one shown in Figure 4-22 .

Dialog

Impressionism
painting cityscapes
fine sculptures
tUi1i~lnq ltl FBri
man reasons

Artist Name :

OK

I Pi casso

Add

Modify

Delete

The artist Picasso is known for studying in Paris .

Cancel

Figure 4-22
Working Generator dialog box displaying values

External areas
External areas call external routines written to augment 4th Dimension's built-in
routines. See Appendix D in 4th Dimension Command Reference for a complete
discussion of external areas .

External areas

	

95

Chapter 5

File Links

Multiple-file databases have a number of advantages over single-file databases .
These advantages include
•

	

more efficient use of development time
•

	

more efficient use of disk space
•

	

more efficient data entry
•

	

fewer errors during data entry

This chapter demonstrates these advantages through an example that begins with a
single-file database and develops it into a multiple-file database . Most particularly,
the chapter shows you how to use indexed searches and file links to work with multiple
files and follows this order :
•

	

a single-file database
•

	

the SEARCH BY INDEX instruction
•

	

various link instructions, beginning with LOAD LINKED RECORD

•

	

mandatory links
a handling duplicate linked records
•

	

using the at sign (®) with links

Single-file approach
The example deals with a typical business database situation : managing data about
professional associates. It begins with a single-file example, named Contacts .
Figure 5-1 shows its structure .

Contacts
Last Name A
First Name A
Title A
Position A
Company Name A
Addr 1 A
Addr 2 A
City A
State A
Postal Code L
Telephone

	

A

Figure 5-1
Single-file database structure : Contacts file

98

	

Chapter 5: File Links

In the [Contacts]Last Name, [Contacts]First Name, [Contacts]Title fields, you store the
last name, first name, and title of a business associate . In the [Contacts]Position
field, you store the position of the person in the company . In the remaining fields,
you store the address and phone number of the company . Strictly speaking, this
structure looks correct. However, it's quite inadequate in practice, because
a every time the user enters a new name, the user must enter the address of the

company, even if the file already contains names of others belonging to the same
company

This is a waste of time and creates a strong potential for error when retyping data .
o the redundant company information takes up unnecessary space on the disk

Suppose the file contains 5000 names, that there are approximately 10 persons for
every company, and that the alphanumeric fields are 75% entered . Table 5-1
shows the size of a record on disk .

The table shows that an average Contacts record takes up 158 bytes on the disk .

Single-file approach 99

Table 5-1
Record size for Contacts file

Field

	

Type Size in bytes

Last Name

	

Alpha 25 75% entered, 20
19 bytes + 1 for length

First Name

	

Alpha 20 75% entered, 16
15 bytes + 1 for length

Title

	

Alphal2 75% entered, 10
9 bytes + 1 for length

Position

	

Alpha 20 16

Company Name

	

Alpha 25 20

Company Adr1

	

Alpha 25 20

Company Adr2

	

Alpha 25 20

City

	

Alpha 25 20

State

	

Alpha 2 2

Postal Code

	

Long Integer 4

Telephone

	

Alpha 12 10

If there are approximately 10 persons for every company and 500 different

companies in the file, the file will contain 5000 records for a disk storage total of

about 790,000 bytes. 4500 records contain redundant information . From the table,

you can see that company information takes up 96 bytes . The 4500 redundant records

contain approximately 432,000 bytes of redundant data . Thus, more than half of the

file contains duplicated information. Anyone with a hard disk might not have space

problems, but it still takes time to type and access 432,000 bytes of redundant

information .

Two-file solution

Because 4th Dimension can work with more than one file in a database, you can

create dramatic economies in entry time and disk storage by removing the redundant

information from the Contacts file and putting it in a second file, Companies .

Figure 5-2 shows the new database structure . Notice that the two files have one field of

information in common; [Contacts]Company Name and [Companies]Name. Having a

duplicate item of information is crucial when building relationships between files .

I_ i ;nt . ;i;t=
L . t r'lari e A
Fir_t r.-iris A
Title A
F'ciiticiri A
~:i: riipiriia r • ., Iii?

	

A

Companies
Name A
Addr 1 A
Addr 2 A
City A
State A
Postal Code L
Telephone

	

A

Figure 5-2

Two-file database structure : Contacts and Companies files

Here's how the new database works. The user stores the 500 companies in a file

named Companies and the 5000 persons in the Contacts file . You must, however,

keep the [Contacts]Company Name field in the Contacts file to know which company

the person belongs to . The Contacts file will take up approximately 410,000 bytes,

and the Companies file will take up approximately 48,000 bytes . Thus, the database

will take up about 458,000 bytes . This structure frees 332,000 bytes on disk . Further,

the user won't have to type redundant information . The two-file database saves disk

space and time by placing data in more than one file .

However, the structure needs some improvement. When the user enters a record in

the Contacts file, he needs to know right away whether the company specified

already exists in the Companies file . This means the user must make a quick search of

the [Companies]Name field. To do so, you must index the search field. For 500

records, the index file for the [Companies]Name field will take up about 33,000 bytes .

Even so, this database takes far less space than the first one .

100

	

Chapter 5: File Links

Once you have created the new structure, you build layouts and procedures to
manipulate the two files . You first create a layout for the Contacts file, which you
name Entry . Then you use it to enter business associates . You also create a layout
named List for listing data about associates . Figure 5-3 shows the Entry layout of
the Contacts file .

Contacts

Figure 5-3
Entry layout for Contacts file

Last Name

First Name

Title

Company Name

IL3=t rriie

IFir t N. r-i ?

(Title

I i _briip .3ri~ N . rile

Figure 5-4
List layout for Contacts file

Enter

[:dnreI

The vComp variable will display the address and phone number of the company
where the person works. The address and phone number will be taken from the
Companies file and placed in the variable by the layout procedures in the Entry
layout. Figure 5-4 shows the List layout of the Contacts file .

File Edit Environment Design Font Style Layout Colors

. .. .

To concatenate and show the title, last name, and first name of the person, you
assign the three corresponding fields to the xTitle Name variable using the layout
procedure for the List layout :

xTitle Name := Tfle + " "+LastName + " " + First Name

You also create a layout for the Companies file, which will be used for entries and
another layout for listing companies . Figure 5-5 shows the Entry layout for the
Companies file .

Two-file solution

	

101

K
~

	

'
~.o~~pinD es

^

`

N a me

Addr 1

Addr 2

City

State

Telephone

Ir
~~rri

! /

Postal Code IFc'sL1f :

IT lep hi: l]

^
Enter

~~fl C: e U

^

,

Figure ~~"~~~~"~

Entry layout ~"~V ~~ .~ ~~^~~~~~~~~~~~,~u~ file»~~ ~~ " . . ~~ =° " " U ~~~,

^
re 56 shows the List layout f

.~~ the Companies file .

~~ FU .~~'U

	

~x0'~ ~~

	

'K~KVUroK~00eK~~ Design~

	

Font Style ~

	

~ n~

	

~~°U~

	

U~a~~n~~~ Colors

Name

U

	

~ U' ~~a~~KDK~"~ ~U~~

City

34 J

Telephone

r

-

_

	'	''	''-'	'	 '

------------------------- -----------------------

Figure ~~~n~^~"~
U ;m .~ layout for ~ Companies ~~V~~~~~ .~~~~~~~,

	

""" .~

1 ~~~~

	

»~~~~~~~~~^~~ ~~ . K~^k~~ Links~~~.

	

Chapter ~~. File

The layout procedure for the Contacts file Entry layout will manage the Companies
file when entering records into the Contacts file ;

'Entry layout procedure for the Contacts file
If (During)

'During data entry .
Last Name := Uppercase (Name) 'Automatically convert last name into uppercase letters .

'Automatically convert the first letter of the first name to uppercase and the
remaining letters to lowercase .

First Name := Uppercase (Substring (First Name ;1 ;1)) + Lowercase (Substring (First
Name ; 2 ; Length (First Name)))

If (Modified (Company Name))
'Modify is a 4th Dimension standard function . Modified returns TRUE if the user modifies
'the fieldname during data entry .
'If the user modified the Company Name field, proceed to a search by index in the
'[Companies] file to find the company whose name is equal to the value the user typed .

SEARCH BY INDEX ([Companies]Name = Company Name)
If (Records in selection ([Companies]) # 0)

'Records in selection is a standard procedure returning the number of records belonging
'to the file selection given as parameter.
•

	

If at least one record exists in the Companies file, assign 1 to Comp Exists variable .
Comp Exists :=1

Else
•

	

If no record is found in the [Companies] file, assign 0 in the Comp Exists variable .
Comp Exists := 0

'Specify if you want to create the company record. CONFIRM is a built in
'4th Dimension command : it creates a dialog box displaying the strexpr as a
p• rompt message. A CONFIRM box has two buttons : OK and Cancel . If you click
'OK, the OK variable takes on the value 1, else it takes on the value 0 .

CONFIRM ("The record "+ Company name + "doesn't exist, do you want to create it?")
If (OK =1)

'The user is given the opportunity to add a record in the Companies file in the
'[Contacts] field entry . Considering the user interface, take an additional
precaution . If the Entry layout of the Companies file is used to add the
'company record, you might change the CompaniesName field by mistake . To
'prevent this, create another layout, named Entry2 in which a variable will
'be placed to display the company name instead of the Name field and name that
variable vName .

vName := Company name
'Select the Entry2 layout as the input layout of the Companies file .

INPUT LAYOUT ([Companies] ; "Entry2")
'Add the Companies record entry by using the ADD RECORD standard procedure .

ADD RECORD ([Companies])

Two-file solution

	

103

End if
End if

If (OK =1)
If you validate the Companies record entry, assign 1 to the Comp Exists

'variable .
Comp Exists :=1

End if
End if

End if
If (Comp Exists =1)

'If the Comp Exists variable contains 1, it either means that the company exists
'or that it didn't exist but that the user added it during data entry : in that case,
'display the address and the phone number of the company in the relations layout
'with the help of the vComp variable .

CR := Char (13)
vComp :_ [Companies]Adr1 + CR + [Companies]Adr2 + CR + String ([Companies]Postal
Code ; "00000") + ""

vComp := vComp + [Companies]City + CR + [Companies]Phone Number
Else

vComp :_ ""

Figure 5-7 shows the Companies file layout named Entry2 .

Y

Componies

Name

Addr 1

Addr 2

City

State

Telephone

I A'Jdr
Lit~

Postal Code

Tel?phnri e

Fc'-t .,l C

r

	

5

Enter

ConceI

Figure 5-7
Entry2 file layout

To make sure the Companies record will be saved with the name, include the
following statement in the layout procedure :

Name := vName

Thus programmed, the application lets the user
o search records in a file, while entering data into another file
a add records to a file, while entering data into another file

In the above example, you've seen that you can copy some Companies record values
to variables and display them in the Contacts file layout . With the help of
procedures, you can copy the company name entered in the Contacts file to the
[Companies]Name field.

104

	

Chapter 5 : File Links

The database lets you
•

	

display file data in another file layout
•

	

exchange data between files

Suppose that the user has already entered quite a number of records and then realizes
he entered the wrong phone number for company X . With the first structure
mentioned above, the user had to search all the business contacts belonging to that
company and change the phone number in all the records found in the Contacts
file . With the second structure, the user has to change the value only in one record of
the Companies file . Thus, the database saves time when processing data .

Suppose you're dealing with the three-file database structure shown in Figure 5-8 .

File A

Figure 5-8
Three-file database structure

This database consists of three files : [A], [B], and [C] . If you search one of the
files-for example, file [C]-4th Dimension changes the file selection and the
current record. It's important to note that the [A] and [B] files are not modified
nor are their current selections, if any . This means that
•

	

a table representing the current selection is kept in memory for every file of the
database

•

	

there is one current record, at the most, loaded in memory for every file of the
database

See Figure 5-9 .

File B

File C

Two-file solution

	

105

Current
record

File A

Figure 5-9
Current record and current selection for three files

106

	

Chapter 5; File Links

File B

File C
I

I
I

Current
record

Empty
selection

Linking files
The above example shows that every time you work on a Contacts record (whether
you're entering or modifying data) you have to do a search by index in the
Companies file to find the company record of a business contact . What happens
when 4th Dimension searches by index?

Figure 5-10 illustrates the use of the index table in the search process . This process
takes four steps :
1 . 4th Dimension goes through the index table until it encounters the searched

value .

I I
I I

I
l I
I I
l I
l
l
l 1

2 . When 4th Dimension finds the value, it also finds the pointer to the record in the
data file .

3 . Using the record pointer, 4th Dimension reads the record directly .
4 . 4th Dimension loads the record into memory .

Contacts

Search

Find value and
record pointer

Last Name

	

A
First Name
Title

	

A
Position

	

A
Company Name

Index table

Figure 5-10
Searching and the index table

If you could store the pointer from step 2, subsequent searches would not be
required. This is exactly what links do .

To create a link, make sure you're in the Structure window and drag the pointer from
one field in the linking file to the appropriate field in the linked file. See Figure 5-11 .
(Refer to Chapter 1, "Database Structures," in 4th Dimension User's Guide for
details .)

Companies
N"me A
Ad 1 A
Addr 2 A
City A
State A
Postal Code L
Telephone

	

A

Figure 5-11
Drawing a link in Structure window

Always drag the pointer from the field in which you will enter an identifier, like a stock
number (the linking field), to the field containing similar information (the linked
field) . These fields are the basis of the link . Through them, the linking record can
draw data from the linked file and save data to the linked file .

4th Dimension automatically indexes linked fields .

Linking file

I_ iintact!
Last Name A
First Name A
Title A
Position

	

A
I_Grii'ariia r'1ariie

	

A

LII

Linked file

Companies
Name
Addr 1
Addr 2
City
State
Postal Code
Telephone

Linking files

	

107

How links work

When 4th Dimension establishes a link for the first time, it does an indexed search

through the linked file to find the matching record . That record is loaded into

memory and its pointer saved with the linking record .

Loading a linked record for the first time

Loading a linked record for the first time takes 4th Dimension five steps (shown in

Figure 5-12) :

1 . 4th Dimension goes over the index table until it encounters the searched value .

2 . When 4th Dimension finds the value, it also finds the pointer to the record in the

data file .

3 . Using the record pointer, 4th Dimension reads the record directly from the file .

4 . 4th Dimension loads the record into memory .

5 . 4th Dimension copies the pointer of the linked record into a special area of the

linking record .

Search

Find value and

record pointer

Index table

Record

Value pointer

Go to pointer

in data file

Figure 5-12

Loading a linked record for the first time

108

	

Chapter 5: File Links

Copy pointer

into linking record

I

I 1

Data file

Record

pointer record

Load linked record

into memory

The next time you load a linked record

Once 4th Dimension has established a link for a record, getting the linked record
takes only two steps (shown in Figure 5-13) :

1 . Because the pointer of the linked record is saved in the linking record, 4th
Dimension can read it directly from the data file .

2 . 4th Dimension loads the record into memory .

Data File

Record
pointer Record

Read record

	

Load record
directly from

	

into memory
data file
based on pointer

Figure 5-13
Loading subsequent linked records

Important considerations

Keep three things in mind when dealing with links :
1 . When working with links, 4th Dimension takes care of record modification and

deletion. All the records of all the files of a database are saved one after the other
in a single file : the data file. If, when you modify a linked record, you change its
size, the record might not necessarily be saved in the same place as before .
Moreover, you can delete a linked record . Thus, the pointer to a linked record
saved in a linking record can become incorrect while you're operating the
database .
4th Dimension automatically detects the problem and finds the new pointer to the
linked record which changed after you modified the record . If the record has been
deleted, 4th Dimension places a special value in the linking record to indicate that
it no longer links to the record which has been deleted .

Linking files

	

109

2 . Using a link changes the current selection and the current record of the linked file .
Upon loading a linked record for the first time, 4th Dimension does a search by
index to find the record. Consequently, the file selection is changed and the
linked record becomes the current record . The subsequent loading of that linked
record will change the current selection of the linked file, and the linked record
will become the current record .

3 . A link handles records differently than a search by index when the linked file has
two or more equal field values . In a file, you may have more than one record with
the same value in a single field . Doing a search by index on that field will return a
selection containing all those records and the first record of the selection . That is,
the first record 4th Dimension encounters becomes the current record .
If there are duplicate values in a particular field of a linked file, the LOAD
LINKED RECORD command returns the first record of the selection . Unlike a
search by index, which returns the selection of records containing the value and
the first record of the selection as the current record, loading on link returns as a
selection only the first record encountered with the correct value . The linked
record becomes the current record. See "Dealing With Duplicate Values in Linked
Fields" later in this chapter .

LOAD LINKED RECORD command
You establish a link between two fields with the LOAD LINKED RECORD
command .

Let's go back to the example above and see what happens to the layout procedure for
the Contacts file Entry layout when using a link :

'Layout procedure for the Contacts file "Entry" layout :
If (During)

Last Name := Uppercase (Last Name)
First Name := Uppercase (Substring (First Name ; 1 ;1)) + Lowercase (Substring (First
Name; 2; Length (First Name)))

If (Modified (Company Name))
LOAD LINKED RECORD (Company Name) '<--- the link is activated
If (Records in selection ([Companies]) =1)

CR := Char (13)
vComp :_ [Companies]Adr1 + CR + [Companies]Adr2 + CR + String ([Companies]Postal

Code ; "00000") +""
vComp := vComp + [Companies]City + CR + [Companies]telephone

Else
vComp :_ ""

End if
End if

End If

110

	

Chapter 5: File Links

Notes
1 . This procedure has the same effect as a search by index and the procedures as they

were originally written . There are, however, two differences . The next time the
user accesses the record, 4th Dimension won't have to do a search by index . The
linked record will automatically be loaded into memory . However, if the
Companies record doesn't exist, the procedures won't allow the user to create a
record during data entry . Later on, you'll see how to deal with this problem .

2 . Every record of the Contacts file points, at the most, to one record of the
Companies file . This means that a Contacts record points either to a single
record in the Companies file or to no record at all .

3 . Many business colleagues can belong to a single company . This means that a
record in the Companies file can be linked to more than one Contacts file
record .

What this means is that numerous records in the linking field can point to one record
in the linked field. Thus, a link always proceeds from the many to the one . See
Figure 5-14 .

nking
a cords

File 1

Linking file

File 2

Linked file

Figure 5-14
Linking from the many to the one

Several records can point to
the same record in a linked file

Linked
record

LOAD LINKED RECORD command

	

111

Mandatory attribute
The question may arise, how do you create a linked record when the record doesn't
exist? This section provides two solutions . If a person belongs to a company,
Solution 1 does the job, using the Mandatory attribute . Solution 2 works if the person
doesn't belong to a company .

Solution 1

In the Contacts and Companies files example, you establish that an entry for an
associate cannot be validated, if the company for which the contact works hasn't
been specified . You give the [Contacts]Company name field the Mandatory attribute .
This means that a Contacts record can be validated only if a Companies record is
linked to it. 4th Dimension will automatically manage the creation of a new
Companies record if the record doesn't exist . When you have given the linking field
the Mandatory attribute, the LOAD LINKED RECORD command automatically
displays the dialog box shown in Figure 5-15, if the Companies record doesn't exist .
4th Dimension use the current input layout to create the new record .

!fl
This record does not exist in file
"Companies" .
What do you want to do?

[reate It Try Again

Figure 5-15
Create a record dialog box

If the user clicks the Create It button, 4th Dimension will create a Companies record
linked to the Contacts . If the user clicks Try Again, the company record name can be
entered again in the Contacts record, if it was incorrectly spelled the first time . The
user can go to the next held of the Contacts record only after creating the company
record or after specifying the name of an existing company .

In summary, if the field where the link originates is mandatory, 4th Dimension will
automatically manage record creation during data entry, if the linked record doesn't
exist .

112

	

Chapter 5 ; File Links

Solution 2

A user may decide that a business colleague does not necessarily belong to a
company. In that case, the [Contacts]Company Name field won't be Mandatory .
You'll have to explicitly manage the creation of the linked record in the Companies
file, if the record doesn't exist . Use the procedure mentioned earlier that works with
the SEARCH BY INDEX command and replace it with LOAD LINKED RECORD .
In most cases, it's necessary for an entered record to have a linked record . In that
way, you take advantage of the automatic creation of the linked record if the record
doesn't exist .

Dealing with duplicate values in linked fields
Let's go back to the Contacts and Companies files example . It's possible that two
different companies bear the same name . In that case, LOAD LINKED RECORD
will return the first company encountered with the entered name . It may be that this is
not the desired record .

A second syntax for the LOAD LINKED RECORD command

There is a second syntax for LOAD LINKED RECORD :

LOAD LINKED RECORD (fieldnamel ;[filenamel fieldnamel)

fieldnamel is the linking held of the file where the link originates .
[flename]f eldname2 is a held belonging to the linked file, which is usually different
from the field to which fieldnamel points .

With this syntax, the linked record is loaded in the same way as with the regular syntax
with one exception . If more than one record is found in the linked file, 4th
Dimension displays a list of those records, so that the user can choose the desired
record . The window lists the records showing the matching values contained in the
field which fieldnamel points to and to the values contained in the
[filename] fieldnamel . In that way, the user can differentiate among records in
which duplicate values exist in linked fields .

In the Contacts and Companies example, you replace in the layout procedures :

LOAD LINKED RECORD (Company Name)

with

LOAD LINKED RECORD (Company Name ;[Companies]City)

For instance, if the user types SMITHS LTD in the Contacts record and there is
more that one SMITHS LTD record in the Companies file, 4th Dimension displays a
window similar to the one shown in Figure 5-16 .

LOAD LINKED RECORD command

	

113

Figure 5-16
Scrollable window of duplicate values

Here, the user chooses the Companies record which will be linked to the Contacts
record entered by clicking the desired name in the window .

	.• Note: If in the Companies file, there are two SMITHS L'ID's in the same city, the
case looks quite hopeless, because the user won't be able to differentiate the two
companies. However, you can use a second argument for LOAD LINKED
RECORD, different from [Companies]City for which you know no duplicate will
exist. For example : [Companies]Phone Number.

Wildcards and the LOAD LINKED RECORD command

You can gain additional benefits from the second syntax

LOAD LINKED RECORD (fieldnamel ;[filename] fieldname2)

by placing the at sign (®) wildcard character at the end of a search string .

In the User environment, you can do a search on an alphanumeric field by typing
some characters (the beginning of a name, for example) followed by an at sign . Such
a search returns all file records containing a value beginning with the letters you
typed. This possibility has been extended to LOAD LINKED RECORD using the
second syntax. In the Contacts and Companies example, if you type SMI@ in the
[Contacts]Company Name field, 4th Dimension displays the Selection window listing
all Companies records with names beginning with "SMI" (see Figure 5-17) .

114

	

Chapter 5 : File Links

Selection
3P1ITH': LT[: fork::
3r°11TH'= LT[:' Bi_+vn
3r ITH:= LTD Lo Ari 1e
3r11TH': LTD [alla=

Figure 5-17
Selection window after wildcard search

Using the at sign is convenient, because the user doesn't have to memorize all the
company names or enter an entire value .

SAVE LINKED RECORD command
This section introduces a new example database : an invoice system . The rest of the
chapter concentrates on using various link commands to implement this system and
add inventory and sales files to it. This section introduces the SAVE LINKED
RECORD command and the Old function .

SAVE LINKED RECORD command

	

115

Selection

c ; riITH'E. LT[rJ~v, i'orl

:.r1 ITH' :. LTD

	

E,:, t ,n
= ; r1 ITH3 LTD Lo_Angel'??riITH

:; LT[.' E'y11 .

3P11LE'r" CAF' F'EPAIF' Ch~a?nne
r 11T , L AF"E i iN i_ i i F'' :' rk1r

	

rid
Er11LEC AF'F'EF [:'ENT I': T Fe
:d 1ITH-HENDLE r' Lo : An' 1s

:ti ITH, Li I AN , ' :.UN :, : fl Frarn:a , o

Eli TH i'N I AN IN': T rr' .~_ hington

r 11TT r"' :• CAFE C' .~l land

The database: an analysis

Figure 5-18 shows the database's structure . Notice that it includes a subfile for invoice

detail and that it links to a customer address file .

Iteri
C e :cr1pticur~
Unit Frl' :'?
QiJantitia
T . . : Fate
Total TN1
Total T1

R

R
R

Figure 5-19

Structure for Customers file

116

	

Chapter 5 ; File Links

Figure 5-18

Structure window view of Invoices database

Figure 5-19 shows a printout of the structure for the linked Customers file . In the

Customers file, the Customer Code field has Unique and Indexed attributes, because

you'll search that field to find a customer when issuing an invoice . This field cannot

be modified. The outstanding Total TI and Total TNI fields cannot be entered .

These fields will be updated automatically every time an invoice is issued .

	:• Field-name abbreviations: The field name Total TI stands for Total tax

included and Total TNI stands for Total tax not included .

Structure : Customers

Name Alpha 20 Indexed; Enterabie; Modifiable

Adrl Alpha 25 Enterable; Modifiable

Adr2 Alpha 25 Enterable; Modifiable

City Alpha 20 Enterable; Modifiable

State Alpha 20 Enterable; Modifiable

Postal Code Long Integer Enterable; Modifiable

Telephone Alpha 20 Enterable; Modifiable

Customer Code Alpha 8 Indexed; Unique; Enterable

Outstanding Real Enterable; Modifiable

Sales TNI Real Modifiable

Sales TI Real Modifiable

In

	

:in::e : U: or er_

Number
Er,tr-,a [i,te
Gu? [' fe
Cu :t ri

	

nde
Ti'tal Tel
T'+ .1 TI
it~ri

D
D
A
R
R

}

Name
Adr-1

	

A
Hdr :

	

A

=tyte

	

A
F'.'; t .~l i : d~

	

L
T~l~phcin~

	

A
Customer Code A
i iut :tandinq

	

R
_ale : TNI

	

R
_ale : TI

	

R

Figure 5-20 shows the structure for the linking Invoices file. In the Invoices file, the
Total TI and Total TN I fields have the Non-enterable attribute, because the input
layout Invoices file layout procedure will assign them the sum of the values
contained in the Total TI and Total TNI fields of the subfile [Invoices]Items
subrecords. The [Invoices]Due Date field is Non-enterable, because it will be
calculated from the [Invoices]Entry Date field .

Figure 5-20
Structure for Invoices file

Figure 5-21 shows the structure for the [Invoices]Items subfile . In the [Invoices]Items
subfile, the Total TI and Total TNI fields have the Non-enterable attribute, because
they'll be calculated by subfile procedures from the Unit Price, Quantity, and Tax
Rate fields . In the [Invoices]Items subfile procedures or in the layout procedures of
the input layout Invoices file, you write the following statements to calculate the
Total TNI and the Total TI for the line:

Total TNI := Quantity * Unit price

Total TI := Total TNI + ((Total TNI * Tax Rate) 1100)

Figure 5-21
Structure for [Invoices]Items subfile

SAVE LINKED RECORD command

	

117

Structure : Items
Description Alpha 20 Enterable; Modifiable
Unit Price Real Enterable; Modifiable
Quantity Integer Enterable; Modifiable
Tax Rate Real Enterable; Modifiable
Total TNI Real Modifiable
Total TI Real Modifiable

Structure: Invoices

Number Integer Indexed ; Enterable; Modifiable
Entry Date Date Enterable; Modifiable
Due Date Date Enterable; Modifiable
Customer Code Alpha 8 Enterable; Modifiable
Total TNI Real Modifiable
Total TI
Items

Real
Subfle

Modifiable

Managing the link between Invoices and Customers files
You want to update the outstanding balance, the total sales tax not included (TNT),
and the total sales tax included (TI) of a customer automatically every time the user
makes out a bill in the customer's name . The LOAD LINKED RECORD routine lets
you link the searched customer to an invoice . Once the customer record is modified,
the SAVE LINKED RECORD routine saves the linked customer record you've
loaded .

SAVE LINKED RECORD saves a loaded linked record . You always give the field in
which the link originates (the linking field) to the SAVE LINKED RECORD
command. With links, you can load a record linked to another record and change a
record, by calculating the values contained in the record it is linked to .

The input layout procedure for the Invoices file is as follows :

LOAD LINKED RECORD (Customer Code)
'When applied to a subfield, the SUM function returns
'the sum of the values contained in the subrecords of the current record only .

Total TNI := Sum (Items'Total TNI)
Total TI := Sum (Items'Total TI)
If (After)

'The user validates the bill entry :
'The customer accounts will be incremented by the bill amount :

[Customers]Outstanding :_ [Customers]Outstanding + Total TI
[Customers]Sales TNI :_ [Customers]Sales TNI + Total TNI
[Customers]Sales TI :_ [Customers]Sales TI + Total TI

'SAVE LINKED RECORD updates the customer record on the disk .
SAVE LINKED RECORD (Customer code)

End If

+ Note. The Invoices file Customer Code field has the Mandatory attribute . 4th
Dimension will manage the creation of the Customers record during an invoice
entry if the record doesn't exist .

Improving procedures
The above procedure only manages the addition of items in an invoice ; it does not
handle invoice modifications . This can create problems. As an example, let's say
SMITHS LTD phones in an order . The user makes out an invoice for $15,000 .00 TNT
($17,790.00 TI). When the user validates the record, SAVE LINKED RECORD
adds these numbers to the SMITHS LTD account balance . Then, a few minutes later,
SMITHS LTD phones back with additional purchases on the same invoice worth
$18,000.00 TNT ($21,348 .00 TI) . When the user validates the modified invoice,
SMITHS LTD's balance shows a balance of $33,000 .00 TNT and $39,138.00 TI . This
substantial over-ring happens because the current procedure doesn't subtract old
invoice totals before adding modified totals .

118

	

Chapter 5: File Links

To solve this problem, you can use the 4th Dimension Old function . When the user
modifies a record, Old returns the value the record contained before the change .
Thus, you can use it maintain correct amounts for things like account balances . In
essence, Old has no effect when a new record is added, because it returns a null
string, a zero, or the null date depending on field type. Rewrite the procedure as
follows :

If (After)
[Customers]Outstanding :_ [Customers]Outstanding - Old (Total TI) + Total TI
[Customers]Sales TNI :_ [Customers]Sales TNI - Old (Total TNI) + Total TNI
[Customers]Sales TI :_ [Customers]Sales TI - Old (Total TI) + Total TI
SAVE LINKED RECORD (Customer code)

End if

Here are the numbers calculated by the revised procedure . The invoice shows

[Invoices]Total TNI equals $15,000 .00

[Invoices]Total TI equals $17,790 .00

After the new invoice is entered, the SMITHS LTD customer accounts shows

[Customer]Outstanding equals $0 .00 - $0.00 + $17,790 .00

[Customers]Sales TNI equals $0.00 - $0.00 + $15,000 .00

[Customers]Sales TI equals $0 .00 - $0.00 + $17,790 .00

After modifying the invoice,

[Invoices]Total TNI equals $18,000 .00

[Invoices]Total TI equals $21,348 .00

and in the SMITHS LTD customer accounts

[Customer]Outstanding equals $17,790 .00 - $17,790.00 + $21,348.00, which is
$21,348.00

[Customers]Sales TNI equals $15,000 .00 - $15,000.00 + $18,000 .00, which is
$18,000 .00

[Customers]Sales TI equals $17,790 .00 - $17,790.00 + $ 21,348 .00, which is
$21,348.00

With the Old function, the database remains accurate . Whether adding or
modifying an invoice, the carried-over amounts are always correct in the customer
accounts .

SAVE LINKED RECORD command

	

119

Working with old links
This section introduces two link commands that work on old links : LOAD OLD
LINKED RECORD and SAVE OLD LINKED RECORD. LOAD OLD LINKED
RECORD loads the previously linked record . SAVE OLD LINKED RECORD
saves the previously linked record. You always pass these two instructions to the
record where the link originates . They become important for maintaining records so
that no discrepancy appears between the sum of all customer balances and the sum of
all the invoices made out to these customers .

Let's look at another problem, by modifying the previous scenario . A data entry user
makes out the earlier invoice using the SMITHS Cl) customer code ; then, as
previously described, modifies the record from $15,000 to $18,000 (TNT) . The user
realizes that the invoice was meant for BROWN LTD instead of SMITHS LTD . The
user's solution is to change the customer number to that of BROWN LTD . Under the
revised procedure, here's what happens with this series of actions .

After adding the invoice, the SMITHS LTD account will be incremented :

[Customer]Outstanding equals $0 .00 - $0.00 + $17,790 .00

[Customers]Sales TNI equals $0 .00 - $0.00 + $15,000 .00

Customers]Sales TI equals $0 .00 - $0.00 + $17,790 .00

After modifying the invoice, BROWN LID accounts will first be decremented before
being incremented :

[Customer]Outstanding equals $0.00 - $17,790 .00 + $21,348.00, which is $3,558 .00

[Customers]Sales TNI equals $0 .00 - $15,000.00 + $18,000 .00, which is $3,000 .00

Customers]Sales TI equals $0 .00 - $17,790.00 + $21,348.00, which is $3,558 .00

As you can see, the results are incorrect and the procedures are inadequate . You
have to decrement the old customer's accounts and increment the new customer's
accounts . To do this, you will use two 4th Dimension commands : LOAD OLD
LINKED RECORD and SAVE OLD LINKED RECORD. LOAD OLD LINKED
RECORD loads the record previously linked to another record . SAVE OLD
LINKED RECORD saves a linked record previously loaded in memory by LOAD
OLD LINKED RECORD .

120

	

Chapter 5: File Links

Here is the final version of the procedure :

If (After)
[Customers]Outstanding :_ [Customers]Outstanding + Total TI
[Customers]Sales TNI :_ [Customers]Sales TNI + Total TNI
[Customers]Sales TI :_ [Customers]Sales TI + Total TI
SAVE LINKED RECORD (Customer Code
LOAD OLD LINKED RECORD (Customer Code)
[Customers]Outstanding :_ [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI :_ [Customers]Sales TNI - Old (Total TNI)
[Customers]Sales TI :_ [Customers]Sales TI - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)

End if

Considering the SMITHS LTD and BROWN L 1'D example, after adding the invoice,
the SMITHS LTD accounts will be incremented :

[Customers]Outstanding equals $0 .00 + $17,790 .00

[Customers]Sales TNI equals $0 .00 + $15,000 .00

[Customers]Sales TI equals $0 .00 + $ 17,790 .00

The added invoice doesn't yet have a loaded linked customer record . Here LOAD
OLD LINKED RECORD and SAVE OLD LINKED RECORD have no effect .

After modifying the invoice, the BROWN LTD accounts will be incremented :

[Customers]Outstanding equals $0.00 + $21,348 .00

[Customers]Sales TNI equals $0 .00 + $18,000 .00

[Customers]Sales TI equals $0 .00 + $21,348 .00

This is carried out by SAVE LINKED RECORD . The SMITHS LTD accounts will
then be decremented:

[Customers]Outstanding equals $17,790 .00 - $17,790.00, which is $0 .00

[Customers]Sales TNI equals $15,000 .00 - $15,000.00, which is $0 .00

[Customers]Sales TI equals $17,790 .00 - $17,790 .00, which is $0 .00

Working with old links

	

1 21

CREATE LINKED RECORD command
The CREATE LINKED RECORD routine is more sophisticated than the LOAD
LINKED RECORD routine . If the file contains a record corresponding to the search
requirements, the record is selected and loaded into memory just as with LOAD
LINKED RECORD. If that record doesn't exist, 4th Dimension creates it. You must
then assign values to the record's fields through calculations, and save the record
with SAVE LINKED RECORD.

To demonstrate CREATE LINKED RECORD, we'll add a linked Products file to
improve the efficiency of the invoice system . Such a file can supply the invoice with a
product's unit cost and tax rate, while maintaining figures on the quantity of the item
sold. Figure 5-22 shows the database with the linked Products file .

Invoices
Number I
Entry Date D
Due Date D
Customer Code A
Total TNI R
Total TI R
Items

Items
Description A
Unit Price R
Quantity I
Tax Rate R
Total TNI R
Total TI

Name

	

A
Mr 1

Customers

A
Adr2 A
City A
State A
Postal Code L
Telephone A
Customer Code A
Outstanding R
Sales TNI R
Sales T I

Products
Description
Unit Price
Tax Rate
Quantity Sold

A
R
R
L

Figure 5-22
Structure showing addition of linked Products file

Figure 5-23 shows the field structure of the Products file .

Figure 5-23
Field structure of Products file

122

	

Chapter 5 ; File Links

Structure: Products

Description Alpha20 Indexed; Modifiable
Unit Price Real Modifiable
Tax Rate Real Modifiable
Quantity Sold Long Integer Modifiable

All fields of the Products file are Non-enterable. Every time the user makes out an
invoice, you want to create the Products record automatically if the record doesn't
exist. You also want to increment the [Products]Quantity Sold field . To do this, you'll
use the CREATE LINKED RECORD command. In the above example, you create
the input layout of the Invoices file, shown in Figure 5-24 .

I .

	

.1

	

I

	

I

L_J

=_R

'E
D

I~I~II'I

I ' l l''''

Layout : INPUT

Iterr

Outstanding

Sales TNI

Sales TI

Figure 5-24
Input layout for Invoices file

In the subfile area, you specify the [Invoices]Items subfile with the layout shown in
Figure 5-25 .

i File Edit Environment Design Font Style Layout Colors

E	 Layout : INUOIC:E LINES

Description

f: ._ i :: r1 pt 1 ('Ii

Unit

ll_Ir~it F'ri'€	

Quant

IQu.ritit 1

Tax

~T .~ : :< Fate I

Figure 5-25
Subfile layout for (Invoices)Items subfile

Total TNI

(Total TP~I

Total T I

(Total TI 1 4

Working with CREATE LINKED RECORD

	

123

iNumber

	

NurrbEri

	

Customer Code ~_U t :riier' ~_J
Enter

Entry

	

Eritr [>at~

	

Total TNI T' :'t .~l Teal

Due Date

	

Dug f:at?

	

Total TI Tivital TI
Cancel

You're going to modify the invoice input layout procedures, so that the Products
file will be changed automatically every time an invoice is created or modified . The
subfile layout procedures remain unchanged :

'Input layout procedure (final version) of the Invoices file .
If (Before)

If (Entry Date = !0010010000!)
'If entry date equals null date, you're dealing with a created invoice .
'Enter the current date in the field by using the Current date standard routine .

Entry Date := Current date
End if

End if
'Load the linked customer record

LOAD LINKED RECORD (Customer Code)
'Display the customer accounts by using the vOutstand, vSalesTNl and vSalesTl variables
specified in the invoice layout .

vOutstand :_ [Customers]Outstanding
vSalesTNl :_ [Customers]Sales TNI
vSalesTl :_ [Customers]Sales TI

'Calculate vComp to display the customer's address and phone number in the invoice layout .
vCR := Char (13)
vComp :_ [Customers]Name + vCR + [Customers]Adr1 + vCR + [Customers]Adr2 + vCR
vComp := vComp + String ([Customers]Postal Code) + " " + [Customers]City

'Calculate the total amount, tax not included, and the total amount, tax included, of the invoice .
Total TNI := Sum (Items'Total TN!)
Total TI := Sum (Items'Total TI)

'Calculate the due date at 30 days following the invoice creation date .
Due date := Entry date + 30
If (After)

If you validate the invoice entry, increment the customer accounts .
[Customers]Outstanding :_ [Customers]Outstanding + Total TI
[Customers]Sales TN! :_ [Customers]Sales TNI + Total TNI
[Customers]Sales TI :_ [Customers] Sales + Total TI
SAVE LINKED RECORD (Customer Code)

If the invoice is modified, decrement the old customer accounts .
LOAD LINKED RECORD (Customer Code)
[Customers]Outstanding :_ [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI :_ [Customers]Sales TN! - Old (Total TNI)
[Customers]Sales TI :_ [Customers] Sales - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)

124

	

Chapter 5 : File Links

'You must now carry over the sales in the Products file .
'To do this, select all items in the invoice with ALL SUBRECORDS .

ALL SUBRECORDS (Items)
While (Not (Last subrecord (Items)))

'While you don't try to go below the last item of the invoice . Assign the
•

	

Items'Designation field to itself to force the link to the Products file . This is
•

	

necessary because you're in the after step of the record, and that at that point,
'4th Dimension, no longer considers the entry fields as modified . The link is not
'activated by calling LOAD LINKED RECORD or CREATE LINKED RECORD because
'these routines are optimized : they only activate the link on the first call, if the field
'has been modified . Assigning the field to itself forces the field to be modified . This
method is necessary only if you call a link activation routine in an after step .

Items'Description := Items'Description
'Call CREATE LINKED RECORD :
'if the Products record exists, 4th Dimension loads that linked record .
•

	

If it doesn't, 4th Dimension creates the linked record .
CREATE LINKED RECORD (Items'Description)

'Assign to the Products record fields, the values contained in the invoice item :
[Products]Description := Items'Description
[Products]Unit Price := Items'Unit Price
[Products]Tax Rate := Items'Tax Rate

•

	

Increment the sales with the invoiced quantity .
[Products]Quantity Sold :_ [Products]Quantity Sold + Items'Quantity

'Save the Products record
SAVE LINKED RECORD (ltems'Description)

'As for the customer accounts, if you modified the invoice, look for the old product
'record linked to the item :

LOAD OLD LINKED RECORD (Items'Description)
•

	

Decrement these sales from the previously invoiced quantity .
[Products]Quantity sold :_ [Products]Quantity Sold - Old (Items'Quantity)

'Update the record on the disk .
SAVE OLD LINKED RECORD (Items'Description)

'The carry over of the items being made, go to the next item :
NEXT SUBRECORD (Items)

End while
End if

CREATE LINKED RECORD command

	

1 25

In the User environment, you enter the invoice shown in Figure 5-26 .

Entry for Invoices

Number

	

1

	

Customer Code M AR001
Enter

Entry

	

10117186

	

Total TNI

	

38,400 .00

Due Date

	

11116186

	

Total TI

	

40,896 .00

	

Cancel

40,896 .00

38,400 .00
40,896 .00

MARTINSON CONSTRUCTION
350 Fifth Ave .
San Ramon, CA 99935

Outstanding

Sales TN1

Sales T I

1E'

4

Figure 5-26
Completed invoice form

You then have to select the Products file to display the result of the procedures
(shown in Figure 5-27) .

Description Unit Price

Products : 3 of 3
Tax Rate Quantity Sold

rJurtur~ Fitting r1 . : :,
Re rer=iriq is 5ket
Str.~i ht : e .gl 1 .35k:rt

15 ,00':' Oi
1 .50

61_1

ii If 5
0 .065
0 .065

Figure 5-27
Products file output displaying results

126

	

Chapter 5; File links

Description Unit Quant Tax Total TNI Total TI

Norton Fitting Mach 15,000 .00 2 0 .065 30,000 .00 31,950 .00
Reversing Gasket 1 .50 2000 0 .065 3,000 .00 3,195 .00
Straight Seal Gasket 3 .60 1500 0 .065 5,400 .00 5,751 .00

You've just seen that a link can originate in a subheld . In such a case, every subheld of
the record points to at most one record and not that one record points to many
records . See Figure 5-28.

File 1

	

I

	

File2

Current
record

Subfile
belonging to the
current record

Subfile

Figure 5-28
How a subfile links to a record in a file

To reach linked records, you must call LOAD LINKED RECORD for each
subrecord . See Figure 5-29 .

Linking File
File 1

Linked file
File 2

Record linked
to current
subrecord

Figure 5-29
Current subrecord pointing to one record in file linked to subfile

Working with CREATE LINKED RECORD

	

127

In the above example, the [Invoices]Customer Code field is Modifiable . To manage a
customer change when modifying an invoice, you must include procedures to
decrement the old customer's accounts. Here the LOAD OLD LINKED RECORD
and SAVE OLD LINKED RECORD routines were used .

If the [Invoices]Customer Code field is not modifiable, the customer won't change
when you modify the invoice, so you won't have to write statements to decrement the
old customer's accounts . However, you'll have to decrement the old totals of the
customer accounts . This case refers to the procedures written in the section above,
"Working With Old Links ."

Linking to a subfile
The database will undergo a last change : you'll add a subfile called Sales to the
Products file . Figure 5-30 shows the revised structure .

It eri1
f'e_i: : r1 pt ii :
I_Init Fr- ice

	

R
Ihl ,jar,tlti~
Ta :: : : F:ate R
Tnt .yl T~'JI R
Total TI R
Irr,c,iu: :e hJun -,ber

128

	

Chapter 5: File Links

Figure 5-30
Structure with addition of Sales subfile

Total TNI := Quantity * Unit price
Total TI := Total TNI + ((Total TNI * Tax Rate) 1100)
Invoice Number :_ [Invoices] Number

=ale=
Invoice Number I
Gate =ald

	

D
Lij.jr,titi.j

You want to save the chronology of the sales for every item in that subfile . You create
a field called Invoice Number in the [Invoices]Items subfile and link
[Invoices]Items'Invoice Number to [Products]Sales'Invoice Number . You'll use
CREATE LINKED RECORD .

In the layout procedure for the [Invoices]Items subfile, you add a procedure to carry
over the invoice number :

I.u IC'rner
Name

	

A
Adr1

	

A F'roduca_
Adr2

	

A Description
Unit F'ri,: :e

	

R
Iri, i1Ge= A

T ., :: : : Fate

	

R
Number

	

I F'c' t .y1 l=uije

	

L hluar,tit,a = ;nl'j

	

R
Er,tr' [:t o

	

D Teleph :ine

	

A :ale_
Gue [:'ate

	

D Customer Code A
I_,j_ttiri,er - I_

	

Aide I_I ,jt=.t .3r,iJir,Q

	

R
T ':'t1 TNI

	

R ale_ TNI

	

R
T':k.il TI

	

R ale: T I

	

R
Iterr,

You modify the Invoices layout procedures to create the linked Sales record in the
[Products] file :

If (Before)
If (Entry Date = !00/OO/0000!)

Entry Date := Current date
End if
vComp := 33
vOutstand := 0
vSalesTNI := 0
vSalesTl := 0

End if
LOAD LINKED RECORD (Customer Code)
vOutstand :_ [Customers]Outstanding
vSalesTNI :_ [Customers]Sales TNI
vSalesTl :_ [Customers]Sales TI
vCR := Char (13)
vComp :_ [Customers]Name + vCR + [Customers]Adr1 + vCR + [Customers]Adr2
vComp := vComp + vCR + String ([CustomersjPostal Code) + " "+ [Customers]City
Total TNI := Sum (Items'Total TNI)
Total TI := Sum (Items'Total TI)
Due Date := Entry Date + 30
If (After)

[Customers]Outstanding :_ [Customers]Outstanding + Total TI
[Customers]Sales TNI :_ [Customers]Sales tNI + Total TNI
[Customers]Sales TI :_ [Customers] Sales + Total TI
SAVE LINKED RECORD (Customer Code)
LOAD LINKED RECORD (Customer Code)
[Customers]Outstanding :_ [Customers]Outstanding - Old (Total TI)
[Customers]Sales TNI :_ [Customers]Sales TNI - Old (Total TNI)
[Customers]Sales TI :_ [Customers] Sales - Old (Total TI)
SAVE OLD LINKED RECORD (Customer Code)
ALL SUBRECORDS (Items)
While (Not (Last subrecord (Items)))

Items'Description := Items'Description
CREATE LINKED RECORD (Items'Description)
[Products]Description := Items'Description
[Products]Unit Price := Items'Unit Price
[Products]Tax Rate := Items'Tax Rate
[Products]Quantity Sold :_ [Products]Quantity Sold + Items'Quantity

'You're in the after step, so you must assign the field to itself to make it modified .
Items'Invoice Number := Items'Invoice Number

Linking to a subfile

	

129

'Create the sales linked record in the [Products]Sales subfile .
CREATE LINKED RECORD (Items'Invoice Number)

'Assign the sales fields as follows :
[Products]Sales'Invoice Number := Items'Invoice Number
[Products]Sales'Date Sold := Entry Date

'Increment the quantity sold :
[Prod ucts]Sales'Quantity :_ [Products]Sales'Quantity + Items'Quantity
'IMPORTANT:
'CREATE LINKED RECORD creates or loads a Sales subfile subrecord . This operation
'takes place in memory . You must then save the changes made to the subrecord .
'The subrecord will be saved when you'll save the record containing it . SAVE
'LINKED RECORD of the products record will save the record along with its
'subrecords . Therefore, you don't have to call SAVE LINKED RECORD for the subrecord .

SAVE LINKED RECORD (Items'Description)
LOAD OLD LINKED RECORD (Items'Description)
[Products]Quantity Sold :_ [Products]Quantity Sold - Old (Items'Quantity)
SAVE OLD LINKED RECORD (Items'Description)
NEXT SUBRECORD (Items)

End while
End if

A link can point to a subfield . When a linked subrecord is created or loaded, the
record containing that subrecord must be saved to save the subrecord . Similarly, to
create or load a linked subrecord, you must select the record which contains the
subfile and load it as the current record .

After entering two invoices, you obtain the list of items shown in Figure 5-31 .

Products : 5 of 5

Figure 5-31
Five new records in Products file

130

	

Chapter 5: File Links

Description Unit Price Tax Rate Quantity Sold

r1 :r'tiir~ Flttrriq r •t~ch 1 5 ,1 :1111_1,1_11_1 II IIr, 5

F:e rer. iriq I

.;4:;.t

1 .5' :' II ,i_Ir,S ~IIIII_I

. r~la Ii IIh5 1 51_11 I

Nar - t r, 5i_Ii_u i Ft-1 Ii11I .II Ii

	

II 1

N rti,r, 1 i_Ii_I,it, Fr'1 ?5,i1i1i1 .1ii_1 Ii

	

II 1

Figure 5-32 displays a particular product so the user can see its sales history .

Figure 5-32
Displaying a product's sales history

+ Note: The example studied here for creating linked subrecords doesn't manage
bill modifications or deletions .

Linking to a subfile

	

131

£

	

Edlt

	

: 11 ; (1 1 111E3

	

Ez1

	

f £x

	

x I 1

	

£~ €€
J=Entry tar Products

Enter
f Products

'

Description (Norton 10000 FM

Unit Price I 35,000 .00

Tax Rate I

	

0 .065

Delete) Quantity Sold I

	

1

Cancel r

/

Invoice Date Sold Quantity

2 01117186 1

Chapter 6

Sets

4th Dimension sets offer the developer a powerful, swift means for manipulating file
selections. Besides the ability to create sets, relate them to the curent selection, and
store, load, and clear sets, 4th Dimension offers three standard set operators :
•

	

Intersection
•

	

Union
•

	

Difference

Sets defined
The idea of sets is closely bound to the idea of the current selection . The current
selection is a list or table in memory that can point to all records in the file or any
subset of them (including a null selection) . Whatever the case, the list exists in
memory. A selection doesn't actually contain the records, but only a list of the
records. Only the current record of the file is in memory . When you work on a file,
you always work with the records in the current selection .

A selection and a set are two different kinds of objects . A selection is the list of the file
records you're working on . A set is an object you create in memory, consisting of one
bit for every record in the file to which it belongs . Set .operations are, in effect,
binary operations on the bit array portion of the set and are thus very fast . For
example, the UNION command performs an OR operation on the bit arrays of
the two specified sets. Table 6-1 compares the current selection with sets .

Table 6-1
Current selection and sets concepts compared

Comparison

	

Current selection

	

Sets

Number per file

	

1

	

0 to many
Sortable

	

Yes

	

No
RAM per record

	

4 bytes

	

1 bit (1/8 of a byte)
Combinable

	

No

	

Yes
Contains current record

	

Yes

	

Yes, as of the last time the set was
used

4th Dimension has commands with which you can create a set from a file selection or
create a new file selection from a set belonging to that file . Set operations make it easy
to store and combine results from several searches . You can either create an empty
set or create a set from a selection or from existing sets . As a result, a given set may
contain more, fewer, or the same number of records as the current selection . The
two are not necessarily related. You always name the sets you create . For example :
Mail Dupes .

134

	

Chapter 6; Sets

•3 Note: The size of a set, in bytes, is always equal to the total number of records
contained in the file to which it belongs divided by 8 . If you create a set
belonging to file containing 10,000 records, the set will take up 1250 bytes, which
is about 1 .2K in RAM . Sets are very economical in terms of RAM and disk space .

Important
When you create a set, it belongs to the file under which you created it . The
operations you perform on sets can only be performed on sets belonging to the
same file .

Operations on sets
The seven primary set commands in 4th Dimension are (in alphabetical order)
•

	

ADD TO SET : Put a record in the set .
•

	

CREATE EMPTY SET : Create an empty set .
•

	

CREATE SET: Put all records in the current selection into a new set .
•

	

DIFFERENCE : Put unique records from two sets into a third set .
•

	

INTERSECTION : Put common records of two sets into a third set .
•

	

UNION : Put elements belonging to set 1, set 2, or both into a third set .
•

	

USE SET: Make the current selection reflect the contents of a set .

This section describes each of these seven commands with graphic depictions of
their workings .

4th Dimension also has set commands that return the number of records in a set
(Records in set), clear a set from memory (CLEAR SET), save a set to disk (SAVE
SET), and load a set into memory that you previously saved to disk (LOAD SET) .

Operations on sets

	

135

CREATE EMPTY SET command

CREATE EMPTY SET («filename;»strexpr)

Figure 6-1 illustrates the CREATE EMPTY SET command. This command creates
an empty set belonging to filename and gives the empty set the name strexpr.

Current record

Current record

Figure 6-2
CREATE SET command

136

	

Chapter 6 ; Sets

Current
selection

Figure 6-1
CREATE EMPTY SET command

CREATE SET command

CREATE SET («filename;» strexpr)

Figure 6-2 illustrates the CREATE SET command. This command creates a set
named strexpr. strexpr will belong to filename. The records belonging to the set are
the ones contained in the current selection of filename. Compare CREATE SET
and USE SET.

Current
selection

	

Set

Set

USE SET command

USE SET (strexpr)

Figure 6-3 illustrates the USE SET command. This command creates a new current
selection for filename from the set named strexpr. strexpr must belong to filename.
The records of the new selection are the ones belonging to the set . Compare USE
SET and CREATE SET .

	 • The current record and sets: The first record in a set does not necessarily
become the current record under USE SET.

Current record

Current
selection Set

Operations on sets

	

137

ADD TO SET command

ADD TO SET («filename,»strexpr)

Figure 6-4 illustrates the ADD TO SET command. This command adds the current
record to a set named strexpr. strexpr must belong to filename. If the current record
doesn't exist, ADD TO SET has no effect.

ADD TO SET has two common uses . First, inside a global procedure called by the
APPLY TO SELECTION command, you can use ADD TO SET to create sets
based on complex criteria . Second, to keep track of records that have changed since
some specific event . You might want to track modified records .

Current record

Figure 6-4
ADD TO SET command

138

	

Chapter 6 ; Sets

Current
selection Set

INTERSECTION command

INTERSECTION (strexprl ;strexpr2;strexpr3)

Figure 6-5 illustrates the INTERSECTION command. This command creates a set
named strexpr3. Its records are the ones belonging to both the strexprl and strexpr2
sets . strexpr3 can be a third set name or it can be the same as strexprl or strexpr2.

Intersection
Is record in set number n?

Shaded area goes to set 3

Figure 6-5
INTERSECTION command

UNION command
UNION (strexprl ;strexpr2;strexpr3)

Figure 6-6 illustrates the UNION command . This command creates a set named
strexpr3. Its records are the ones belonging to either the strexprl or strexpr2 set or
to both sets . strexpr3 can be a third set name or it can be the same as strexprl or
strexpr2.

Union
Is record in set number n?

Shaded area goes to set 3

Figure 6-6
UNION command

Operations on sets

	

139

1

	

2

	

3

N N N

N Y Y

Y N Y

Y Y Y

1

	

2

	

3

N N N

N Y N

Y N N

Y Y Y

DIFFERENCE command
DIFFERENCE (strexprl ;strexpr2;strexpr3)

Figure 6-7 illustrates the DIFFERENCE command. This command creates a set
named strexpr3. Its records represent the difference between the strexprl and
strexpr2 sets . strexpr3 can be a third set name or it can be the same as strexprl or
strexpr2. A record will appear in the strexpr3 set if it is in the strexprl set and not in
the strexpr2 set .

Shaded area goes to set 3

Figure 6-7
DIFFERENCE command

People
L .y_t rJ .iriie A
First rJ .~r iie A
Title

	

A

Figure 6-8
File structure

140

	

Chapter 6; Sets

Difference
Is record in set number n?

Using sets: deleting duplicate records
Clearing duplicate records out of mailing lists is a perfect job for sets . In this
example, the procedure tests to see if two records have the same last name, first
name, and title . If they do, the procedure assigns one of the records to a set named
Doubles and continues the search . Once the search is over, the USE SET
command puts everything in Doubles into the current selection. The procedure
then deletes the current selection . The file structure is shown in Figure 6-8 .

1

	

2

	

3

N N N

N Y N

Y N Y

Y Y N

Here is the procedure named Destroy doubles :

'You're going to work on the [People] file . Select it as if it were the default file .
'Thus you won't have to enter the filename as parameter for routines requiring that
'parameter. This will simplify the writing of the algorithm .

DEFAULT FILE ([People])
'Select all records in the [People] file with the ALL RECORDS command .

ALL RECORDS
'Initialize the three variables, vLast Name, vFirst Name and vTitle, in which you'll
'store the name, first name and status of the record preceding the one studied in order
'to compare values .

vLast Name :_"
vFirst Name :_"
vTitle ._"

'Sort the [People] file by last name, first name and title in ascending order .
SORT ([People]Last Name ; > ; [People]First Name ; > ; [People]Title ; >)

'Assign an empty set named "Doubles" to the [People] file .
EMPTY SET ("Doubles")

'Start at the first sorted selection .
While (Not (End selection))

'While you don't try to go beyond the last record of the sorted selection .
If ([People]Last Name = vLast Name)

'Is that last name equal to the preceding last name?
'If so, check whether the first name is equal to the preceding one .
'Note: For the first selected record there obviously cannot be a preceding record .
'This is why you must initialize the variables .

If ([People]First Name = vFirst Name)
'Both names being identical, try to determine whether the first name is equal to
'the preceding first name . If so, check whether the title is equal to the preceding one .

If ([People]Title = vTitle)
'Is the title equal to the preceding one?
'If so, that record is redundant . Add the record (which is the current
record) to the"Doubles" set .

ADD TO SET ("Doubles")
Else

'The title is different . Place it in the vTitle variable .
vTitle :_ [People]Title

End if
Else

'Only the last name is different. Place the title and first name in the
corresponding variables .

vTitle :_ [People]Title
vfirst name :_ [People]First Name

End if

Using sets: deleting duplicate records

	

1 41

Else
'Everything is different .

vTitle :_ [People]Title
vFirst Name :_ [People]First Name
vLast Name :_ [People]Last Name

End if
'Move to the next record .

NEXT RECORD
End while

'When exiting the "Doubles" set loop, the set contains all double records .
'Create a new file selection from that set by calling USE SET .

USE SET ("Doubles")
'Delete the selection of records .

DELETE SELECTION
'Delete in memory the set and the unwanted variables .

CLEAR VARIABLE ("v")
CLEAR SET ("Doubles")

Figure 6-9 shows the file before the procedure was executed .

Figure 6-9
Output of file before removing duplicates

Figure 6-10 shows the file after the procedure was executed .

Figure 6-10
Output of file after removing duplicates

142

	

Chapter 6 ; Sets

People : 6 of 6
Title First Name Last Name

Hon . le.,r C: ., .•i =
r1 r . Her, r'~ E r -urrr;,nnd

The Resv w'illiarii rlack:en :ie
ri . Anne r°lartir
r1r s . Anne ri.rtir~
r 1r . Label C°larhn

People : J7 of 7
Title First Name Last Name

Hon .

Mr .

r1r .

The Rev.

rir .

Mrs .

Mrs .

le .;ri

Henry

Her, r~a

'nilliarii

Anne

Anne

Is. bel

C'ai

C:'rurrimond

C:'rurnri ord

i ::k :enzierie

rlartin

ri. rtir,

l°lartir,

UserSet system set
4th Dimension has a system set named UserSet . UserSet automatically stores the
most recent set of selections by the user . Thus, you can display a group of records,
ask the user to select from among them, and turn the results of that selection into a set
that you name or into a selection . The brief procedure below illustrates how you can
do this :

' Userpick
'Display all records and allow user to select any number of them .
'Then display this selection by using UserSet to change current selection .

DEFAULT FILE([Models])
OUTPUT LAYOUT("Display")
ALL RECORDS
ALERT("Press Command and Click to select a document required")
DISPLAY SELECTION
USE SET("UserSet")
ALERT("You chose the following documents")
DISPLAY SELECTION
OUTPUT LAYOUT("Screen 1 ")

UserSet system set

	

1 43

Chapter 7

Menus

Pull-down menus have become one of the hallmarks of the Macintosh user interface .

Thanks to menus, users can choose activities by name, rather than relying on often-

cryptic typed command codes . Through custom menus, you can create applications

that look to the user as if you built them "from scratch." 4th Dimension contains a

complete menu construction kit with which you can create menus and Command key

combinations to select items without resorting to a menu, you can password-protect

menu items, and you can enable and disable items . See Chapter 6 of 4th Dimension

User's Guide for details on implementing these features . This chapter concentrates

on issues involving programming and menus .

Menu components

The bar at the top of the screen is called the menu bar. Each name on the bar

represents a menu. When you pull down the menu, you see the menu's items .

Figure 7-1 shows these components .

It File Ed t Customers Invoices

Add Record

Modify Record

Delete Record

List

Print

#; L

=f? .3 piu;fur€. ti :

	

,•, ith this rri raj . Click .ari' „ih'?re iii th€ ',iiriuol,i fii e>:.i

Figure 7-1

Menu components

You create menus in the Design environment's Menu window. Unlike other 4th

Dimension entities, menus are identified by number, rather than name . The first

menu is named Menubar #1 . It is also the default menu . If you wish to open an

application with a menu other than Menubar #1, you must force it with the MENU

BAR command in a startup procedure .

146

	

Chapter 7 ; Menus

Menu

Menu bar

Items

Each item can have one and only one developer-written procedure attached to it .
You associate a procedure with an item by naming the procedure in the Procedures
column of the Menu window . The user executes the procedure by selecting the item to
which the procedure belongs . If you don't assign a procedure to an item, selecting
that item causes 4th Dimension to quit the menu system . In the case of run-time
installations, this means returning to the Finder.

A menu bar comes pre-equipped with three menus-the Apple, Edit, and File
menus . The Apple menu contains "About 4th Dimension" and any desk accessories
currently installed in the System file . The Edit menu contains the editing commands .
File has only one item Quit. Notice that Quit has no procedure associated with it .
That's how it causes a quit . You can rename the File menu, add items to it, or keep it
as is . It is recommended that you always keep the File menu with Quit as the last item .
The Apple and Edit menus are permanent .

	3 Quitting time: Any time you execute a menu item that has no procedure attached
to it, you leave the Custom environment .

If 4th Dimension encounters an ABORT command in a global procedure, it stops
execution and returns to the menu bar . This is like clicking the Abort button in the
debugger.

Like menu bars, menus themselves are numbered. 'I`he Apple and Edit menu are not
counted. Instead, File is menu 1 . Thereafter (reading from left to right), menus are
numbered sequentially (2, 3, 4, and so on) . Menu numbering becomes important
when working with the Menu selected function. Similarly, items within each menu
are numbered from 1 for the topmost item down . Item numbering comes into play
when working with the CHECK ITEM command .

Menu window features
When you select a particular item within the Items column in the Menu window, you
apply any of five features to the selected item (see Figure 7-2) :
∎ Keyboard: Checking the Keyboard box and typing a character assigns the

character as a command character . The user can call an item by typing the
appropriate Command key combination .

•

	

Line: Checking the Line box draws a dividing line between two menu items . You
should disable any lines you create .

•

	

Enabled: The default state for any item is enabled . You can toggle the enabled
state off and on by clicking this box .

•

	

Font styles: Check the style(s) you want for the menu item . The default is Plain .
Use styles only in a Style menu .

•

	

Passwords : You can block unauthorized users from gaining access to particular
items by assigning a password to the item . For details on passwords, see Chapter 6
of 4th Dimension User's Guide .

Menu window features

	

1 47

Figure 7-2
Menu window

Of these five features, only Enabled is programmable . A line is normally used to
group items on a menu . In 4th Dimension, a line is an enabled item unless you
disable it . This means that if someone selects an enabled line and you have
associated a procedure with it, 4th Dimension will execute the procedure . If you have
not associated a procedure with an enabled line, selecting the line will cause the 4th
Dimension to quit the Custom environment. As a general rule, disable all lines .
When you disable an item, the selection bar skips over it as you drag down the menu .
Enabled and disabled lines look the same .

Do not use the following command keys :
•

	

Z : Undo
a X:Cut
•

	

C: Copy
•

	

V: Paste
•

	

Q: Quit (except for the Quit menu item)

148

	

Chapter 7 ; Menus

Menubar # 1
Menus Items Procedures

File Add R cord

	

AddCu_t

P1 :'dif'a F:~i_ ird

	

~FlodLu-t

p~l~te Feu_arii

	

elCu_t

lust am ers
Invoices

Li_t

	

`Li_ti_u t

•

	

Keyboard :
line

i Enabled

E U Bold
(1 Italic
U Underline

Outline
ShadowF'.~==w'rd :

Programmable menu features
4th Dimension has a number of programmable menu features :
∎ ENABLE ITEM and DISABLE ITEM programmatically toggle the Enable state

on and off.
•

	

CHECK ITEM places a check mark next to the designated item .
•

	

MENU BAR takes a menu bar number as an argument and activates the menu bar
identified by this number .

∎ Menu selected returns either the menu or the item selected, depending on how
you manipulate it .

You can enable and disable items as appropriate from, within procedures with
ENABLE ITEM and DISABLE ITEM. As a general rule, if you find yourself
disabling a particular item a lot, set it as disabled in the menu window . The same
principle works for enabling items .

CHECK ITEM comes in handy as a way of reminding the user what item is in effect .
You can either write constants into CHECK ITEM or feed CHECK ITEM the
necessary arguments with the Menu selected function . A check is generated with
an ASCII code 18. To erase a check mark, use a null string or a space .

When you are entering or modifying a record or working with a dialog, you can select
menu items, but nothing will happen unless you have written a procedure to execute a
command. To do this, you can read the menu and menu item positions with Menu
selected and evaluate the numbers returned through a case statement . Each case
should have a procedure name to execute if the number is found to be the case .

Programmable menu features

	

149

Chapter 8

Operations on Pictures

Introduction
In the preceding sections of this manual, you've seen that you can define Picture
fields and use Picture variables . These fields support Macintosh pictures .

Picture type fields and variables can be displayed and printed in three different ways :
a The picture can be truncated: 4th Dimension centers the graphic in the Picture

area and trims any part of the graphic that is bigger than the size of the Picture
area

o The picture is scaled to fit : It's automatically enlarged or reduced to fit in the
Picture area .

o The picture can be placed on background : The picture can be moved with the
pointer over the layout background . The user can control the contrast between the
picture and the layout background .

With picture arithmetic operations, you can build more complex pictures :
calculations are performed on Picture expressions and the results are placed in
Picture fields or variables . In the same way you assign Alphanumeric, Numeric, or
Date expressions, you assign a graphic to a field or variable with the assignment
operator (: =) .

Consider the two-file database structure shown in Figure 8-1 .

Customers
Last Name A
First Name A
Title A
Addr l A
Addr 2 A
City A
State A
Postal Code A
Hobby

	

A

Headers
Type

	

A
Picture P

Figure 8-1
Two-file database structure

You want to send a customized letter to every customer and place a picture in the
header reflecting the customer's hobby, which you stored in the [Customers]Hobby
field. You create the Letter 1 layout shown in Figure 8-2 .

152

	

Chapter 8 ; Operations on Pictures

vHeader variable

Text area

Figure 8-2
Overview of layout for Letter 1

vDate variable

vAddress variable

You assign the header picture to the vHeader variable, the customer's address to the
vAddress variable, and the date to the vDate variable . In the layout text, you can
insert variables enclosed between angle brackets (<>) . They'll be replaced by their
values upon printing . The layout procedure will calculate the variables :

If (Before)
If the customer doesn't have any hobby, or if his hobby is unknown in the [Headers]

'file, copy to the IDefault variable the standard picture stored in the [Headers] file
'for that purpose .

If (Undefined (IDefault))
SEARCH SELECTION ([Headers]Type= "Standard")
IDefault :_ [Headers]Picture

End if
vDate := String (Current date)
CR := Char (13)
vAddress := Title + "+ First Name +"+ Last Name + CR + Adr1 + CR +

Adr2 + CR
vAddress := vAddress + City + ""+ State + ""+ String (Postal Code ; "000000")

'Search for the header corresponding to the customer's hobby .
SEARCH SELECTION ([Headers]Type = Hobby)
If (Records in selection ([Headers]) # 0)

vHeader :_ [Headers]Picture
Else

If the header doesn't exist, use the default header .
vHeader := IDefault

End if
'And so on . . .

End if

Introduction

	

1 53

Operations on Picture expressions
4th Dimension offers nine arithmetic and one logical operation on pictures . These
are

horizontal concatenation (+)
LI vertical concatenation (n
•

	

exclusive superimposition (&)
LI inclusive superimposition (I)
•

	

horizontal move (+)
Li vertical move (/)

Li point symmetry (*)
Li horizontal scaling (*+)
•

	

vertical scaling (*/)
•

	

negation (Not)

Table 8-1 demonstrates how the concatenation and superimposition operators work .
A description of each command follows .

Table 8-1
Concatenation and superimposition operations

Operation

	

First picture

+ Horizontal concatenation

/ Vertical concatenation

& Exclusive superimposition

Inclusive superimposition

154

	

Chapter 8 ; Operations on Pictures

Second picture

-! .

Resulting picture

Horizontal concatenation (+)
NewPic := picturexprl+picturexpr2,

Horizontal concatenation places the picturexpr2 expression to the right of the
picturexprl expression . Both expressions are top aligned . picturexprl +
picturexpr2 and picturexpr2 + picturexprl are two different statements . There is no
commutation in horizontal concatenation .

Vertical concatenation (/)
NewPic : = picturexprl/picturexpr2

The picturexpr2 expression is placed under the picturexprl expression . Both
expressions are left aligned picturexprl /picturexpr2 and picturexpr2/ picturexprl
are two different statements . There is no commutation in vertical concatenation .

Exclusive superimposition (&)
NewPic : = picturexprl&picturexpr2

The picturexpr2 expression and the picturexprl expression are superimposed and
centered. One point of the resulting picture expression is black, if only one
corresponding point of the picturexprl and picturexpr2 expressions is black, and
not both .

Inclusive superimposition (I)
NewPic : = picturexprl I picturexpr2

The picturexpr2 expression and the picturexprl expression are superimposed and
centered. One point of the resulting picture expression is black, if one of the
corresponding points of picturexprl and picturexpr2 expressions is black or if both
points are black .

The following sections discuss and illustrate the rest of the operations in detail .

	:• Background: In the following discussion, picture movement is relative to the
background only if it applies to placing pictures on a background . Pictures
remain centered within individual display areas .

Operations on Picture expressions

	

155

Horizontal move (+)
NewPic : = picturexpr+numexpr

"I'he picturexpr expression is moved horizontally by a number of pixels equal to
numexpr. If numexpr expresses a positive value, the picture is moved from left to
right. If numexpr expresses a negative value, the picture is moved from right to left .
See Figure 8-3 .

Figure 8-3
Horizontal move

156

	

Chapter 8 : Operations on Pictures

Vertical move (/)

NewPic ; = picturexpr/ numexpr
The picturexpr expession is moved vertically by a number of pixels equal to
numexpr. If numexpr expresses a positive value, the picture is moved from top to
bottom. If numexpr expresses a negative value, the picture is moved from bottom to
top. See Figure 8-4 .

Figure 8-4
Vertical move

Operations on Picture expressions

	

157

Point symmetry(*)
NewPic := pictureppr*numexpr

The picturexpr expression is resized according to the numexpr coefficient. When
numexpr is positive, either of two things can happen, depending on the value of
numexpr. If numexpr is less than 1, the picture is reduced . If numexpr is greater than
1, the picture is enlarged. When numexpr is negative, either of two things can
happen, depending on the value of numexpr. If numexpr lies between 0 and -1, the
picture is reduced and flipped both horizontally and vertically . If numexpr is less
than -1, the picture is enlarged, but the picture is drawn by point symmetry through
to the upper-left corner of the picture . See Figure 8-5 .

Figure 8-5
Point symmetry

158

	

Chapter 8 : Operations on Pictures

Horizontal scaling (*+)

NewPic : = picturexpr*+numexpr

The picturexpr expression is scaled horizontally according to the numepr
coefficient . When numexpr is positive, either of two things can happen, depending
on the value of numexpr. If numexpr lies between 0 and 1, the picture is reduced . If
numexpr is greater than 1, the picture is enlarged . When numexpr is negative, either
of two things can happen, depending on the value of numexpr. If numexpr lies
between 0 and -1, the picture is reduced . If numexpr is less than -1, the picture is
enlarged. In either case, the picture is flipped horizontally . picturexpr*+-1 returns
the horizontal "flip" of picturexpr. See Figure 8-6 .

Figure 8-b
Horizontal scaling

Operations on Picture expressions

	

159

Vertical scaling (*/)

NewPic : = picturexpr* / numexpr

The picturexpr expression is resized vertically according to the numexpr coefficient .
When numexpr is positive, either of two things can happen, depending on the value
of numexpr. If numexpr lies between 0 and 1, the picture is reduced . If numexpr is
greater than 1, the picture is enlarged . When numexpr is negative, either of two
things can happen, depending on the value of numexpr. If numexpr lies between 0
and -1, the picture is reduced . If numexpr is less than -1, the picture is enlarged . In
either case, the picture is flipped vertically . picturexpr* / -1 returns the vertical
"flip" of picturexpr. See Figure 8-7 .

Figure 8-7
Vertical scaling

160

	

Chapter 8 ; Operations on Pictures

Negation (Not)
NewPic := Not (picturexpr)

Not, applied to a Picture expression, returns a Picture expression where all points
are inverted. See Figure 8-8 .

Figure 8-8
Negation

Picture operations examples
You can create interesting and useful graphics using 4th Dimension's picture
operators. The moving process flow bar shown in Figure 8-9 is created with the
procedure that follows .

F'rociEE1riq ['~f~ F'1eo'E

	

olt

Figure 8-9
Processing indicator

Picture operations examples

	

161

This routine
1 . Reads a black box and an (almost) empty box into picture variables .
2 . Scales the black and empty boxes, adds them together, and assigns them to a File

field .

3 . Copies the % done to a variable .
4 . Does a DISPLAY RECORD to cause the variables to be updated on the screen .

Global Procedure : Run Thermo
'Get the boxes for displaying

SEARCH BY INDEX([PictureFile]PictureName="Black Box")
Box:=[PictureFile]Picture 'Get a filled box
SEARCH BY INDEX([PictureFile]PictureName="Blank")
Blank:=[PictureFile]Picture 'Get a filled box
Empty :=Blank&Blank 'Create even more empty box, remove 2 pixels
ALL RECORDS([PictureFile]) 'restore selection
CREATE RECORD([PictureFile])
INPUT LAYOUT([PictureFile] ;"d.Thermometer") INPUT layout is used to DISPLAY records

'Main loop, Display progress
i :=0 '1" represents the % complete
Scale :=10
[PictureFile]Picture :=Empty 'start at 0%
While (i<=100)

VarLabel :=String(i)+"% "
[PictureFile]Picture :=(Box*+(i/Scale))+(Empty*+((100-i)IScale))
If (i>=95)

'Ok, now near 100% . If we don't do this, we get blanks for 95% and above .
[PictureFile]Picture :=Box

End if
DISPLAY RECORD([PictureFile])
i :=i+4

End while
'Don't save record!

UNLOAD RECORD([PictureFile])
INPUT LAYOUT([PictureFile] ;"Picturelnput") 'Restore old input layout as the default .
CLEAR VARIABLE("Box")
CLEAR VARIABLE("Blank")
CLEAR VARIABLE("Empty")
CLEAR VARIABLE("VarLabel")
CLEAR VARIABLE("Scale")

162

	

Chapter 8 : Operations on Pictures

Figure 8-10 shows a bar chart drawn with the procedure that follows .

. , . .Annuul S81 es figures

Jars

	

Fete

i

I

	

I

	

I

I I :: ::) II<iIi Il l

r

	

I

	

I

	

I

	

.i i

	

I'

rlar .

	

Hpr

	

r1'-'j

	

_iurl

	

Jl.r I .

	

H'.jq .

	

ec' .

	

is t .

	

t

	

De _ .

r1ultipli~r

	

iff_et

compute

Illl
III I

i

Figure 8-10
Bar graph

This routine :
1 . Demonstrates the power of 4th Dimension picture arithmetic by creating a graph

from a series of existing pictures .
2 . Creates random sales figures for each month (from 0 to MaxSales) .
3 . Plots a scaled box and either a happy or a sad face for each month-happy if sales

are up, sad if sales are down .
4 . Sums plots into a single picture variable for display .
5 . Supports the user by allowing changes to the scaling factors and recomputing the

graph based on these factors .
•

	

Layout procedure : d .graph
'File : [PictureFile]

	

Even though this dialog box is within the [PictureFile]
'file, there is no requirement that it be

'You will likely have to adjust the size of the picture variable in the dialog
•

	

layout if you want your patterned areas to come out consistent .
'Remember that the entire variable is scaled to fit in the variable
'layout region at the time it is displayed .

If (Before)
•

	

Define constants .
ScaleMul :=3.6
ScaleOff :=0 .55
MaxSales :=120 Just pick a figure for the maximum sales value . Normally, you'd have to compute

'this figure from the file data .
•

	

Note : The pictures read are all the same size, 38 pixels wide .

Picture operations examples

	

163

SEARCH BY INDEX([PictureFile]PictureName="Box") 'Box with vertical stripes
pBox :=[PictureFile]Picture
pBlank:=[PictureFile]Picture 'Assign blank to the same size/shape box
pBlank:=pBlank&pBlank 'XOR to remove all black lines, leaving white that is just the right size .
SEARCH BY INDEX([PictureFile]PictureName="Happy") 'Happy face
pHappy:=[PictureFile]Picture
SEARCH BY INDEX([PictureFile]PictureName="Sad") 'Sad face
pSad :=[PictureFile]Picture
ALL RECORDS([PictureFile])

'Create sales figures (Mostly random)
Sales0 :=0 'Just to have something to compare against .
Salesl :=0 'Start with a very small sales month . Done for range checking of the result .
month :=2 'First month assigned, now do months 2-11 .

While (month<=11)
Sales{month} :=lnt((Random/32676)*MaxSales) 'range from 10 to 120
month :=month+l

End while
Salesl2 :=MaxSales 'End on a high note .

End if '(Before)
If ((During)&(bCompute=l)l(Before)) 'The before is here just to save the user

'from having to press the [Compute] button .
'Compute Vertical Bar and picture for each month .
'Valid values for "SolidScale" seem to be limited to : 0 .0666 to 1 .333
month :=1
While (month<=12)

Solid Scale :=(ScaleMul*(Sales{month}/MaxSales))
pBarSolid :=pBox*/(SolidScale+ScaleOff)
pBarEmpty :=pBlank*/((ScaleMul-SolidScale)+ScaleOff)

'Put it all together with the appropriate face .
If (Sales{month}>=Sales{month-1 })

pMonth{month} :=pBarEmpty/pHappy/pBarSolid
Else

pMonth{month} :=pBarEmpty/pSad/pBarSolid
End if
month :=month+l

End while
'String them all together for a complete graph for 1 month

month :=1
CLEAR VARIABLE("var")
While (month<=12)

var:=var+pMonth{month}
month :=month+l

End while
End if

164

	

Chapter 8 : Operations on Pictures

Chapter 9

ASCII Maps

This chapter looks at ASCII maps-what they are and how to use them-in the context
of file import and export. (ASCII stands for American Standard Code for
Information Interchange.)

File import and export
In the User or Custom environment, you may exchange, import, or export data
between your 4th Dimension database and other documents stored on disk or in
another computer. A 4th Dimension ASCII map is a table that translates from one
character representation code to another . The table can be active during an
application's storage operation or while exchanging data through the serial port, a
network, or a direct connection between computers .

Several 4th Dimension commands that take advantage of the ASCII map facility work
in the User and Custom environments . They can read from or write documents to
disk and communicate with a Macintosh or other computer through the serial port .
To work with documents on disk, choose EXPORT DIF, EXPORT SYLK, and
EXPORT TEXT, to export data and IMPORT DIF, IMPORT SYLK, and
IMPORT TEXT to import data .

When in the User environment, choose the Export Data command from the File
menu to export data stored in records belonging to the current file selection . Choose
the Import Data command from the File menu to add records to the current file . You
can export or import data in the SYLK, DIF, or TEXT formats .

Using 4th Dimension's communications commands-SET CHANNEL, RECEIVE
PACKET, SEND PACKET, and RECEIVE BUFFER-you can read from and
write to documents stored on disk and communicate with another computer through
the serial port.

Uses for an ASCII map
There are any number of reasons for exchanging data . Here are a few of the things
you may want to do :
•

	

Import text documents stored on another computer .
•

	

Replace carriage return characters (ASCII decimal code 13) with line feed
characters (ASCII decimal code 30) .

•

	

Do rudimentary substitution encryption for file security .
•

	

Send 8-bit ASCII codes directly to an ImageWriter printer (7 bit) which only uses
ASCII characters 1 through 127 .

166

	

Chapter 9: ASCII Maps

Exchanging data between several 4th Dimension databases, or between one 4th
Dimension database and a document created with another Macintosh application, is
a simple procedure . Conversely, if you want to exchange data between a 4th
Dimension database and a document created with an application program designed
for another type of computer, you may have to use the ASCII map .

In a computer, each character is assigned a unique ASCII code number from 0 to 255 .
When two computers communicate, they exchange codes corresponding to
characters. There is, however, a problem: while all computers use the same code for
the first 128 characters, they use different codes for all the remaining characters . For
example, a Macintosh computer assigns the 131 code to an accented capital E (E),
whereas another type of computer may assign the 144 code to that character. The
host computer sends ASCII code 144 standing for E, and your Macintosh looks it up
in its code table and "translates" the 144 code as an e .

Working with ASCII maps
An ASCII map can solve this communication problem. . When creating an ASCII
map, you create a correspondence between the ASCII table of your Macintosh and
that of the host computer . For instance, you will specify that ASCII code number 131
on your Macintosh is equivalent to number 144 on the host computer . Then you
select the appropriate map as the current ASCII map; that is, the default map that 4th
Dimension will use during a communication session .

Important

Once invoked, an ASCII map remains in effect until you leave the database in
which you created it . Therefore, If you choose to use an ASCII map, be sure to
reset the map with the command USE ASCII MAP (*) . This way, after you have
finished an ASCII map setup, you can return to your Macintosh's standard ASCII
interpretation .

The way maps work is rather simple . When 4th Dimension sends a given character to
a disk or to a serial port, it actually sends the corresponding map character . When
4th Dimension receives a given character from a disk or serial port, it displays the
corresponding map character on screen .

You may create any number of maps . You will thus have the ability to communicate
with many types of computers . You won't need to exchange SYLK, DIF, or ASCII
documents through character-converting utilities, but rather you can work with
documents directly in the 4th Dimension environment. This means you don't have
to modify your application ; you just create a new map where necessary .

Working with ASCII maps

	

1 67

You create maps in the User environment ; choose the Edit Map command from the
Special menu . (For details on creating and using ASCII maps, see Chapter 3 of
4th Dimension User's Guide.) You can also use maps from within the User
Environment. When in the Custom environment, select any map as the current map
with the USE ASCII MAP command . Figure 9-1 shows the Edit map dialog box .

Figure 9-1
Edit map dialog box

168

	

Chapter 9; ASCII Maps

ADD TO SET command 135, 138
ALL RECORDS command 49
ALL SUBRECORDS command 58
alphanumeric constants 9, 13
Alphanumeric field type 3, 31, 37

formatting 75
alphanumeric variables 87
And operator 5
angle brackets (<>) 153
Apple menu 147
applications, writing 31-32
APPLY TO SELECTION command

138

Index

90
Change Field command 36
check boxes 90
CHECK ITEM command 147, 149
Choose File Layout command 43
CLEAR SET command 135
CLEAR VARIABLE command 28
command(s) 4, 8
ABORT 147
ADD TO SET 135, 138
ADD SUBRECORD 61
ALL RECORDS 49
ALL SUBRECORDS 58

LOAD LINKED RECORD 98,
110-115, 118, 122, 127

LOAD OLD LINKED RECORD
120-121, 128

LOAD SET 135
MENU BAR 146, 149
MODIFY SUBRECORD 61
New Field 36
New File 36
NEXT RECORD 51
NEXT SUBRECORD 58
PREVIOUS RECORD 51
PREVIOUS SUBRECORD 58

1 69

Cast of Characters

(accent mark) 32
< > (angle brackets) 153

array
ASCII
assignment

table 33-34
map 166-168

operator (:_)
152

17-18,

APPLY TO SELECTION 138
Case of 19, 21-22, 88, 90
Change Field 36
Choose File Layout 43_ (assignment operator) 17-18,

152 asterisk (*) 76 CHECK ITEM 147, 149
* (asterisk) 76

(at sign) 32, 114

at sign (©), as wildcard character
32, 114

CLEAR SET 135
CLEAR VARIABLE 28
communications 166A (caret) 76 attributes . See field attributes

$ (dollar sign) 9, 28 CREATE EMPTY SET 135, 136
CREATE LINKED RECORD_ (equal sign) 17

& (exclusive superimposition) 155
B 122-128

+ (horizontal concatenation) 155
+ (horizontal move) 156
*+ (horizontal scaling) 159
(inclusive superimposition) 155

bar
Boolean
branching
break
button(s)

graph 163
variables 32, 87
structure 19-20

field 72

CREATE SET 135, 136
Delete Field 36
Delete File 36
DIFFERENCE 135, 140
DISABLE ITEM 149# (number sign) 76

* Accept 88-89 ENABLE ITEM 149(point symmetry) 158
Button 90 EXECUTE 13_ (relational operator) 17-18

/ (vertical concatenation) 155 Don't Accept 88-89
radio 90

EXPORT DIF 166
EXPORT SYLK 166/ (vertical move) 157

Button buttons 90 EXPORT TEXT 166*/ (vertical scaling) 160

A C

FIRST SUBRECORD 58
GRAPH 91
If 21, 22, 88

ABORT command 147
accent mark (') 32

Cancel
Can't

88
modify field attribute 3, 41

IMPORT DIF 166
IMPORT SYLK 166

Accept buttons 88-89
ADD SUBRECORD command 61

caret
Case

(A) 76
of command 19, 21-22, 88,

IMPORT TEXT 166
INTERSECTION 135, 139

RECEIVE BUFFER 166
RECEIVE PACKET 166
REDRAW 92
Rename File 36
SAVE LINKED RECORD

115-119, 121
SAVE OLD LINKED RECORD

120-121, 128
SAVE RECORD 51
SAVE SET 135
SEARCH 49
Search and Modify 49
Search by Formula 49
SEARCH BY INDEX 49, 98,

113
SEARCH SELECTION 49
SEND PACKET 166
SET CHANNEL 166
UNION 134, 135, 139
USE ASCII MAP 167, 168
USE SET 135, 137, 140

Command-. (period) 88
communications commands 166
comparison operators 15-16
concatenation operations 154, 155
constants 9, 13
CREATE EMPTY SET command

135, 136
CREATE LINKED RECORD

command 122-128, 128
CREATE SET command 135, 136
Current date function 34
current record 49-51
current selection 49, 134

sorting 51
Custom environment 5, 166

D
database(s)

file structures 3
modularizing 25-26
multiple-file 98
passed arguments in 27
passwords 4
single-file 98-100
structure of 116
three-file 105-106
two-file 100-105, 152

1 70

	

Index

data types . See field types
date constants 9, 13
date expression operators 15
Date field type 3, 38

formatting 78
date variables 32, 87
Delete Field command 36
Delete File command 36
Design environment 5, 23, 30, 36,

41, 146
Design menu 23, 30
dialog boxes)

field 75
Layout 43, 44, 60-61
mode 80
record 112
Sort 52
Standard Choices 41-42
variable 86, 91

DIFFERENCE command 135, 140
DISABLE ITEM command 149
dollar sign ($) 9, 28
Don't Accept buttons 88-89

E
Edit menu 147
Else . See If command
Enabled box 147
ENABLE ITEM command 149
End case . See Case of command
End if. See If command
Enterable field attribute 3, 87
Enterable variables 87
Enter key 88
entry layouts 101, 102
Enumerated field attribute 3
environments 5 . See also specific

environment
equal sign (_) 17
Except operator 5
exclusive superimposition (&) 155
EXECUTE command 13
execution cycle

for input to a record with a subfile
64

layout procedures and 45-48
for output with subfiles 65

EXPORT DIF command 166
EXPORT SYLK command 166
EXPORT TEXT command 166
expressions 8
External areas 95

F
False function 17
field attributes 3 . See also specific

field attribute
specifying 39-42

field dialog box 75
field names 11
fields

break 72
formatting within a layout 74-78
linked 113-115
sort 72

field types 8-9 . See also specific
field type

specifying 37-39
file box 36, 40
File menu 147

Choose File Layout command
43

filenames 10
file procedures 3, 44
files

creating 36-37
fields of 37
importing and exporting 166
linking 106-110
selecting 49

FIRST SUBRECORD command 58
Fixed Frame (Multi-line) 62, 65
Fixed Frame (truncation) 62, 65
Flowchart editor 4, 5, 23, 31, 32
font styles 147
functions 4, 8, 13, 19, 30-31 . See

also specific function

G
global variables 28-30
Graph area 91
GRAPH command 91

H
horizontal concatenation (+) 155
horizontal move (+) 156
horizontal scaling ('+) 159

K
Keyboard box 147
keywords 8, 19, 21, 59

formatting fields within 74-78
input 42-43, 60-61, 123
list 101, 102

layout variables 85-86
Level function 72
Line box 147
linked fields, duplicate values in

list layouts 101, 102
LOAD LINKED RECORD command

Mandatory field attribute 3, 40,
112-113

menu bar 146-147
MENU BAR command 146, 149
Menu editor 23
menus 4

N
Negation (Not) 17, 161
New Field command 36
New File command 36

87, 123
Non-enterable variable 87
Not (Negation) 17, 161
number sign (#) 76
numeric constants 9, 13
numeric expression operators 14
numeric field types 75-78
numeric variables 32, 87

0
offspring data structure 54, 64
Old function 115, 119
On background pictures 80-85,

152
operands 8
operators 8, 14-17 . See also

specific operator
OR operation 134
Or operator 5
output

execution cycle for 47-48
phase functions for 45

output layouts 42-43, 70
default 61
with subfiles 65

p, Q
page breaks 74
parent data structure 54, 64
passwords 4, 147
Picture field type 3, 39

displaying 78-85, 152
operations on 154-164

picture operators 16-17
pictures
On background 80-85, 152
Scaled to fit 79, 152
Truncated 79, 152

picture variables 32, 87
displaying and printing 152

pixels 81
pixel transfer modes 81
point symmetry (0 158
PREVIOUS RECORD command 51

components of 146-147
L programmable features of 149

Menu selected function 147, 149
Menu window 146, 147-148
metasymbols, syntactic 6

Layout dialog box
layout names 10
layout procedures

43, 44, 60-61

3, 44-48, 153
mode dialog box 80entry 103-104

execution cycle and 45-48 Modifiable field attribute 3
Modify option 41input 64, 124-125

subfile MODIFY SUBRECORD command64-65, 124-125
layouts 3, 42-43 61

entry 101, 102

inclusive superimposition (I) 155
Indexed field

	

3, 39-40attribute
98, 110-115, 118, 122, 127

LOAD OLD LINKED RECORD
command 120-121, 128indexing linked files 107

index table 107 LOAD SET command 135
local variables 28-30
logical functions 17
logical operators 5, 16
Long Integer field type 3, 38

formatting 75-78
loop structure 19-20

M
Make A List procedure, flowchart

procedure for 26

indirection 33
input

execution cycle for
phase functions for

input layouts 42-43,
default 61

46-47
45
123

procedures 64, 124-125
Integer field type 3, 38

formatting 75-78
INTERSECTION command 135,

139

42-43, 60-61, 70 NEXT RECORD

	

51commandoutput
report 70-74 NEXT SUBRECORD command 58
subfile 60-61, 123 Non-enterable field attribute 3, 40,

I, J
identifiers 10
If command 21, 22, 88
IMPORT DIF command 166
IMPORT SYLK command 166
IMPORT TEXT command 166

113-115
linked records 108-110
Listing editor 32

PREVIOUS SUBRECORD command
58

printing
flowchart procedure for 25
lists of records 71
options 62-63
records 66, 71-74

Procedure editor 4
procedures 4, 8, 13, 19, 23

calling 24
file 3, 44
layout 3, 44-48
modular approach to 23-24

processing indicator 161
programming language 4
programming structures 19-20

R
radio buttons 90
RAM, variable table in 9
Real field type 3, 38

formatting 75-78
RECEIVE BUFFER command 166
RECEIVE PACKET command 166
record(s)

linked 108-110
printing 66, 71-74
structure 57

record dialog box 112
REDRAW command 92
relational operator (_) 17-18
Rename File command 36
report layouts 70-74
routines 19

Search and Modify command 49
Search by Formula command 49

172

	

Index

SEARCH BY INDEX command 49,
98, 113

SEARCH command 49
search criteria 50
SEARCH SELECTION command

49
Selection window 115
SEND PACKET command 166
sequence structure 19
SET CHANNEL command 166
sets 12

defined 134-135
operations on 135-140
using 140-142

Sort dialog box 52
sort field 72
sorting 51-53

flowchart procedure for 25
Standard Choices dialog box 41-42
statements 8
string expression operators 15
Structure menu 36
Structure window, drawing a link in

107
Style menu 75, 147
subfields 3, 11-12, 54
subfile(s) 3, 11-12, 54-68

Layout dialog box 60-61
layout procedures 64-65,

124-125
layouts 60-61, 123
levels 60
linking to 128-131
multiple-level access 60

syntactic metasymbols 6
syntactic symbols 6

T
Text field type 3, 38

formatting 75
True function 17
Truncated pictures 79, 152

U
UNION command 134, 135, 139
Unique field attribute 3, 40
USE ASCII MAP command 167,

168
User environment 5, 57, 126, 166
UserSet system set 143
USE SET command 135, 137, 140

V
variable(s) 4, 8, 9-10, 12

button 88
Enterable 87
global 28-30
layout 85-86
local 28-30
Non-enterable 87

variable dialog box 86, 91
Variable Frame 62
variable table 33-34
variable type 32
vertical concatenation (/) 155
vertical move (/) 157
vertical scaling ('/) 160

W,X,Y,Z

wildcard character 32, 114

S when to use 66-68
SAVE LINKED RECORD command Subfile field type 3, 39

subrecord(s) 54, 57115-119, 121
SAVE OLD LINKED RECORD

command 120-121, 128
data entry 60-61
searching 58

SAVE RECORD command 51 substructures 54
Subtotal function 72
Sum function 55
superimposition operations 154,

SAVE SET command 135
Scaled to fit pictures 79, 152
Scrollable area 91-95
Scrollable window 114 155

searching 59
structure 57
subf field 37

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190

