

Acius pith DimensionTM
Command
Reference

4th Dimension by Laurent Ribardiere

Copyright © 1987 Acius, Inc .
All rights reserved .

This manual was written by
Dominique Hermsdorff, Will
Mayall, Bruce Barrett, Bill
Kling, and Samir Arora .

Cover design by Patrick Chedal
C&C.

This manual and the software
described in it may not be
copied, in whole or in part,
without written consent of
Acius, Inc ., except in the
normal use of the software or to
make a backup copy. It is against
the law to copy 4th Dimension
on magnetic tape, disk, or any
other medium for any purpose
other than the purchaser's
personal use .

Even though Acius has tested
and reviewed the software and
documentation, ACIDS
MAKES NO WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED,
WITH RESPECT TO SOFT-
WARE, ITS QUALITY,
PERFORMANCE, MERCHANT-
ABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE IS
SOLD "AS IS," AND YOU
THE PURCHASER ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND PERFORMANCE. IN NO
EVENT WILL ACIDS BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT IN THE SOFTWARE
OR ITS DOCUMENTATION,

even if advised of the possibility
of such damages. In particular,
Acius shall have no liability for
any applications developed
with, or data stored in or used
with, 4th Dimension, including
the costs of recovering such
programs or data .

Apple, AppleShare, AppleTalk,
ImageWriter, LaserWriter,
MacDraw, Macintosh, and
MacPaint are trademarks of
Apple Computer, Inc .

Conten $

Figures and tables xi

Preface About This Book xiii

Overview of the command reference xiii

Aids to understanding xiv

Vocabulary xiv

Syntactic definitions xv

Part I Introduction to the Command Reference 1

Selection commands 1

Selecting a file 2

Manipulating a selection 2

Working with records 3

Selecting records 3

Manipulating records 4

Working with subrecords 4

Manipulating a subselection 4

Selecting subrecords 5

Manipulating subrecords 5

Working with links 6

Working with sets 6

Data entry 7

Data output 8

User interface 9

Menus 9

Layouts and layout variables 9

Dialogs 10

Windows 10

Miscellaneous 10

Communications with the outside world 11

Importing and exporting a selection 11

Communicating with documents and ports 11

Multi-user commands 12
Standard functions 12

Arithmetic and statistical functions 13
Numeric functions 13
Transcendental functions 13
String functions 14
Date functions 14
Time functions 14

Programming 15
Execution flow 15
Managing variables 15
System variables 15
Boolean functions 16
Managing the interpreter 16
Reading interrupts 16

Part II The Commands in Alphabetical Order 17

ABORT 17
Abs 18
ACTIVATE LINK 18
ADD RECORD 19
ADD SUBRECORD 20
ADD TO SET 21
After 22
ALERT 23
ALL RECORDS 23
ALL SUBRECORDS 24
APPLY TO SELECTION 25
APPLY TO SUBSELECTION 26
Arctan 26
Ascii 27
Average 28
BEEP 29
Before 30
Before selection 31
Before subselection 32
BUTTON TEXT 33
Case of. . .Else . . .End case 34
Char 35
CHECK ITEM 36
CLEAR SEMAPHORE 36
CLEAR SET 37
CLEAR VARIABLE 38
CLOSE WINDOW 39

CONFIRM 40
Cos 40
CREATE EMPTY SET 41
CREATE LINKED RECORD 42
CREATE RECORD 43
CREATE SET 44
CREATE SUBRECORD 45
Current date 46
Current password 46
Current time 47
Date 48
Day number 49
Day of 49
Dec 50
DEFAULT FILE 51
DELETE DOCUMENT 52
DELETE RECORD 53
DELETE SELECTION 54
DELE'T'E SUBRECORD 55
DIALOG 56
DIFFERENCE 57
DISABLE BUTTON 58
DISABLE ITEM 59
DISPLAY RECORD 60
DISPLAY SELECTION 61
During 63
ENABLE BUTTON 64
ENABLE ITEM 65
End selection 66
End subselection 67
ERASE WINDOW 68
EXECUTE 69
Exp 69
EXPORT DIF 70
EXPORT SYLK 71
EXPORT TEXT 72
False 73
FIRST RECORD 74
FIRST SUBRECORD 75
FONT 76
FONT SIZE 77
FONT STYLE 77
FORM FEED 78
GET HIGHLIGHTED TEXT 78
GO TO FIELD 79

GO TO XY 79
GRAPH 80
GRAPH FILE 82
HIGHLIGHT TEXT 83
If. . .Else . . .End if 84
IMPORT DIF 85
IMPORT SYLK 86
IMPORT TEXT 87
In break 88
In footer 89
In header 90
INPUT LAYOUT 91
Int 92
INTERSECTION 92
INVERT BACKGROUND 93
LAST RECORD 93
LAST SUBRECORD 94
Length 94
Level 95
LOAD LINKED RECORD 96
LOAD OLD LINKED RECORD 98
LOAD RECORD 99
LOAD SET 99
LOAD VARIABLE 100
Locked 100
Log 101
Lowercase 101
Max 102
MENU BAR 103
Menu selected 103
MESSAGE 104
MESSAGES OFF 105
MESSAGES ON 105
Min 106
Modified 107
MODIFY RECORD 108
MODIFY SELECTION 109
MODIFY SUBRECORD 110
Month of 110
NEXT RECORD 111
NEXT SUBRECORD 112
Not 113
NO TRACE 113
Num 114
Old 115

ONE RECORD SELECT 115
ON ERR CALL 116
ON EVENT CALL 117
ON SERIAL PORT CALL 119
OPEN WINDOW 120
OUTPUT LAYOUT 122
POP RECORD 123
Position 123
PREVIOUS RECORD 124
PREVIOUS SUBRECORD 125
PRINT LABEL 126
PRINT LAYOUT 128
PRINT SELECTION 129
PRINT SE'1`1'1NGS 130
PUSH RECORD 131
Random 131
READ ONLY 132
READ WRfl4E 132
RECEIVE BUFFER 132
RECEIVE PACKET 133
RECEIVE RECORD 135
RECEIVE VARIABLE 136
Records in file 136
Records in selection 137
Records in set 137
Records in subselection 138
REDRAW 139
REJECT 140
REPORT 141
Request 142
Round 143
SAVE LINKED RECORD 144
SAVE OLD LINKED RECORD 145
SAVE RECORD 146
SAVE SET 147
SAVE VARIABLE 148
Screen height 149
Screen width 150
SEARCH 151
SEARCH BY INDEX 153
SEARCH SELECTION 155
SEARCH SUBRECORDS 156
Semaphore 156
SEND PACKET 157
SEND RECORD 158
SEND VARIABLE 159
SET CHANNEL 160

viii

	

Contents

SET WINDOW TITLE 163
Sin 163
SORT BY INDEX 164
SORT SELECTION 165
SORT SUBSELECTION 166
Squares sum 167
Std deviation 168
String 169
Substring 170
Subtotal 171
Sum 172
Tan 173
Time 173
Time string 174
TRACE 175
True 175
Trunc 176
Undefined 177
UNION 178
UNLOAD RECORD 178
Uppercase 179
USE ASCII MAP 179
USE SET 180
Variance 181
While . . .End while 182
Year of 183

Appendix A Example Programs 185
Searching, sorting, and printing 185
Sets and the current selection 187
Printing 188
Printing labels from subfiles 191
Printing with PRINT LAYOUT 194
Using the FONT STYLE command 201
Subfiles 202
Graphs 205
Links 209
User interfacing 210
Sending and receiving records and variables 211
Importing and exporting with subfiles 215
Using the EXECUTE command 217

Appendix B Using Trace 221
The 4th Dimension interpreter 221
Working with Trace 222

Appendix C Miscellaneous 226

Applying formulas and APPLY TO SELECTION 226
Moving data or its presentation 226
Creating and assigning data 227
Scanning string lengths 227
Performing calculations 228

Correcting a database design error 229
Working with a scrollable area 232
Updating copies of a database 236

Appendix D 237

Parameters 237
Creating an external procedure 238
Important details 240
External areas 241
A graphic example 242

FlipPic 244
SetFlipPic 246
FlipPicNum 247

External areas and the execution cycle 248

Appendix E System Variables and the System Set 249

The OK variable 249
The Document variable 251
The F1dDelimit variable 251
The RcdDelimit variable 251
The Error variable 251
The Flush variable 251
Event variables 252
The system set: UserSet 253

Appendix F 4th Dimension and Macintosh Codes 254

Serial port codes 254
Desktop document codes 255
Macintosh font codes 256
Macintosh style codes 256
Macintosh pathnames 257

Contents

	

ix

Appendix G ASCII Codes 258

Appendix H Error Messages 260

4th Dimension error messages 260
NaN messages 262

Index 263

Figures and tables

Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figure A-19
Figure A-20

Figure A-21
Figure A-22
Figure A-23

Figure A-24
Figure A-25
Figure A-26
Figure A-27
Figure A-28
Figure A-29
Figure A-30
Figure A-31
Figure A-32
Figure A-33
Figure A-34
Figure A-35
Figure B-1
Figure B-2
Figure B-3

Output layout 185
List displayed on the screen 187
File for Printing example 188
Output layout named Printing 188
Printed output from Printing layout 190
File with address data in a subfile 191
Multi-line layout for printing address data 191
Mailing label layout with included subfile area 192
Format for an included layout dialog box 193
Products file with Sales subfile 194
Products file record 194
Output showing quarterly and annual sales 195
Record detail layout 196
Subrecord detail layout 196
Subtotal layout 197
End record layout 197
Screen view of report progress 200
Items file 201
Items file output layout 201
Selection displayed with FONT STYLE
command 201
Factories database structure 202
Current Factories record 202
Records displayed with and without
a layout procedure 203
Output layout for Products file 204
Record printout 205
Departments file 206
Balance sheet graph layout 206
Graph of fields in Departments file 208
Invoices database 209
Search dialog layout 211
Products file with Sales subfile 215
Export layout 215
Import layout 216
Personnel file 218
Custom Sort dialog box 219
Error dialog 222
Debug window 223
Debug window with values displayed 224

xi

Figures and tables

Figure B-4
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure D-1
Figure D-2
Figure D-3

Table P-1
Table P-2
Table II-1
Table 11-2
Table II-3
Table II-4
Table E-1
Table F-1
Table F-2
Table F-3
Table F-4
Table F-5
Table F-6
Table G-1
Table G-2
Table H-1
Table H-2

Debug window with breakpoint set 225
Original database design 229
Improved database design 229
Database with Invoices file added 230
Documents database 232
Documents input layout 233
Listing showing external procedures 239
Layout for external procedure 243
A result of the external procedure 243

Syntactic symbols xv
Syntactic metasymbols xv
Font numbers 76
Font styles 77
Graph types 80
Six standard Macintosh windows 120
OK variable values 249
Serial port first argument settings 254
Serial port second argument settings 255
SET CHANNEL document arguments 255
FONT arguments 256
FONT STYLE arguments 256
Macintosh pathnames 257
Standard ASCII codes 258
Extended Macintosh character set (Helvetica) 259
4th Dimension error messages 260
SANE NaN messages 262

Preface

About This Book

This section gives an overview of this reference, presents typographical conventions,
and lists all syntactic metasymbols used in this volume .

Overview of the command reference
This book includes
•

	

Part I, "Introduction to the Command Reference ." The 4th Dimension command
set is presented by category with a brief description of each command .

•

	

Part II, "The Commands in Alphabetical Order ." Each command appears with a
syntax statement, a description, one or more examples, and references to other
commands .

•

	

Appendixes .

Aids to understanding
Look for these visual cues throughout this book :

:• Notes: Text set off in this manner presents sidelights or interesting pieces of
information .

Important
Text set off in this manner presents important information that you should keep
in mind .

Warning
Warnings like this indicate potential problems or situations where you could lose
data .

The command reference uses a special typeface for procedure listings, command
names, filenames, and variable names. For example :

In this case, SAVE VARIABLE wrote MyVar to a document on disk named MemVar .

In syntax statements, italic is used for metasymbols . For example :

GO TO FIELD (fieldname)

Vocabulary
A built-in 4th Dimension command simply does a task, like sorting . Commands
always appear in all capital letters . For example, SORT SELECTION . A built-in 4th
Dimension function, on the other hand, does a task and returns a value . Functions
always appear with an initial capital letter . For example, Records in file . The
procedure editor groups 4th Dimension commands and functions together in a
window under the term Routines. It groups control of now and assignment operators
as Keywords in another window .

When referring to user-written code, routine means any programming entity you
might create. (Developer-created routines appear in italic type at the end of the list
of 4th Dimension Routines in the procedure editor . Externally written and
compiled routines appear in bold italic .) When referring specifically to a developer-
created procedure or function, the book uses the term procedure or function,
accordingly .

The term numeric refers to any data object on which you can perform arithmetic .
Thus, numeric comprises the data types Real, Integer, and Long Integer .

xiv

	

Preface ; About This Book

Syntactic definitions
This manual uses a consistent set of metasymbols to express command arguments .
This section gives you the symbols and syntactical expressions used throughout this
guide. Metasymbols appear in italic throughout this book . See Tables P-1 and P-2 .

Table P- i
Syntactic symbols

Symbol

	

Description

	

Example

*

Note. Both the asterisk (*) and the vertical bar (I) also appear as arguments and operators .

Table P-2
Syntactic metasymbols

Repeat preceding statement up to last

	

{statement}<<{ ;*}>>
required statement .
Repeatable any number of times

	

{statement}
Optional argument

	

BEEP<<(posintexpr)>>
One (and only one) of two options

	

vanl subfieldname
Intervening code

	

While . . .End while

Syntactic definitions

	

xv

Metasymbol Description Example

boolexpr Boolean expression If (boolexpr) . . . End if
buttonvar Button variable BUTTON TEXT (buttonvar,strexpn)
date 4th Dimension date Day of (date)
docname Desktop document name DELETE DOCUMENT (docname)
expr An expression of any type SEARCH BY INDEX << (fieldname{= I ±}expr<<{ ;*}>>) >>
fieldname Name for field CREATE LINKED RECORD (fieldname)
filename Name for file ADD RECORD<< (filename) >>
intexpr Integer expression TRUNC (numexpr,intexpn)
numexpr Numeric expression Arctan (numexpr)
numvar Numeric variable GET HIGHLIGHTED TEXT (van I fieldname;numvarl ;

numvarl)
picturexpr Picture expression picturexpn + numexpr
posintexpr Positive integer BEEP<< (posintexpr) >>
strexpr String expression Ascii (strexpr)
strva r

	

String variable GRAPH (var,posintexpr,strvarX;numvarl
statement Logical line of code APPLY TO SELECTION (<<filename;> statement)
subfieldname Name for field in a subfile Squares sum (subfieldname)
subfilename Name for a subfile End subselection (subfilename)
var Any variable Undefined (van)

Part I

Introduction to the
Command Reference

This part breaks down 4th Dimension commands by category. Some commands
appear in multiple categories .

The command categories are
•

	

selection commands
•

	

working with records
•

	

working with subrecords
a working with links
•

	

working with sets

•

	

data entry
•

	

data output
•

	

user interface
• communicating with the outside world
•

	

multi-user commands
•

	

standard functions
•

	

programming

1

Selection commands
These commands work on a selection of records .

Selecting a file

In a multiple-file database, you can specify which file's records you want to work with
and determine the number of records in the file .
•

	

DEFAULT FILE declares a file as the default file .
•

	

Records in file returns the number of records in a file .

Manipulating a selection

These commands modify the data in a selection, the number of records in the
selection, or the order in which the records appear .
•

	

APPLY TO SELECTION applies a statement to each record in the current selection .
a DELETE SELECTION deletes all records in the current selection .
•

	

MODIFY SELECTION displays the current selection, using the default output layout .
Users can select one or more records for modification .

•

	

Records in selection returns the number of records in the current selection of a file .
•

	

SEARCH searches through all records in the file for records matching selection
criteria .

•

	

SEARCH BY INDEX searches through all records in the file for records matching
selection criteria for an indexed field(s) .

a SEARCH SELECTION searches through the current selection for records matching
selection criteria .

•

	

SORT SELECTION sorts the current selection of the file into ascending or
descending order. You can sort on multiple fields with one SORT command .

•

	

SORT BY INDEX sorts all records in the file into ascending or descending order .
Only one sort field is permitted, and it must be indexed .

2

	

Part I : Introduction to the Command Reference

Working with records
The commands and functions in this section deal directly with records ; how to select
and manipulate them.

Selecting records
To create a selection, you must select records from all records in the file or from
a subset of them . ALL RECORDS, ONE RECORD SELECT, and all three search
commands automatically load the first record and make it the current record of the
current selection .
•

	

ALL RECORDS makes the current selection all records in the file .
•

	

Before selection returns TRUE when you try to move the record pointer before the
first record of the current selection .

•

	

End selection returns TRUE when you try to move the record pointer after the last
record of the current selection .

•

	

FIRST RECORD moves the record pointer to the first record in the current
selection, loads the record, and makes it the current record .

a LAST RECORD moves the record pointer to the last record in the current selection,
loads the record, and makes it the current record .

a NEXT RECORD moves the record pointer to the next record in the current file,
loads the record, and makes it the current record .

a ONE RECORD SELECT makes the current record (usually a record popped from the
stack with POP RECORD) the current selection .

•

	

POP RECORD takes the top record off the file's record stack and makes it the current
record, although not necessarily of the current selection . ONE RECORD SELECT
makes this record the current selection .

•

	

PUSH RECORD pushes the current record onto the file's record stack .
•

	

PREVIOUS RECORD moves the record pointer to the previous record in the current
selection, loads the record, and makes it the current record .

•

	

SEARCH searches through all records in the file for records matching selection
criteria .

a SEARCH BY INDEX searches through all records in the file for records matching
selection criteria for an indexed field(s) .

•

	

SEARCH SELECTION searches through the current selection for records matching
selection criteria .

Working with records

	

3

Manipulating records

These commands deal with adding, modifying, and deleting an individual record.
•

	

ADD RECORD adds a blank record to the current file, presents the default input
layout to the user, and saves the record to the current selection as the current record
when the user validates the record .

•

	

CREATE RECORD adds a blank record to the file, loads it into memory and makes it
the current record of the current selection . You must issue a SAVE RECORD
command to save the record.

•

	

DELETE RECORD deletes the current record from its file .
•

	

MODIFY RECORD presents the default input layout and displays the values in the
current record. The user can modify these values and save the record to the current
selection as the current record by clicking an Accept button .

a SAVE RECORD saves a record usually created with CREATE RECORD .

Working with subrecords
The commands and functions in this section deal directly with subrecords : how to
select and manipulate them .

Manipulating a subselection

These commands modify the data in a subselection, the number of subrecords in the
subselection, or the order in which the subrecords appear .
•

	

APPLY TO SUBSELECTION applies a statement to each subrecord in the current
subselection .

•

	

Records in subselection returns the number of subrecords in the current
subselection of the current parent record .

•

	

SEARCH SUBRECORDS searches only through the current subselection of the
current record for subrecords matching search criteria .

•

	

SORT SUBSELECTION sorts all subrecords in the current subselection of the current
record into ascending or descending order . You can sort on multiple fields with
one SORT SUBSELECTION command.

4

	

Part I ; Introduction to the Command Reference

Selecting subrecords

To create a subselection, you must select subrecords from all subrecords belonging to
the current record of the the file or from a subset of them . A subrecord selection
cannot include records from more than one parent record .
•

	

ALL SUBRECORDS puts all subrecords belonging to the current record into the
current subselection. It automatically loads the first subrecord and makes it the
current subrecord of the current subselection .

•

	

Before subselection returns TRUE when you try to move the subrecord pointer
before the first subrecord of the current subselection of the current parent record .

•

	

End subselection returns TRUE when you try to move the subrecord pointer after
the last subrecord of the current subselection of the current parent record .

•

	

FIRST SUBRECORD moves the subrecord pointer to the first subrecord in the
current subselection and makes it the current subrecord .

•

	

LAST SUBRECORD moves the subrecord pointer to the last subrecord in the current
subselection and makes it the current subrecord .

•

	

NEXT SUBRECORD moves the subrecord pointer to the next subrecord in the
current subselection and makes it the current subrecord .

•

	

PREVIOUS SUBRECORD moves the subrecord pointer to the previous subrecord in
the current subselection and makes it the current subrecord .

Manipulating subrecords
These commands deal with adding, modifying, and deleting an individual subrecord .
Changes to the file or subfile are only recorded if you save the parent record .
•

	

ADD SUBRECORD creates a blank subrecord in memory and makes this subrecord
the current subrecord . It then presents the specified input layout .

•

	

CREATE SUBRECORD creates a blank subrecord for the current subfile and makes it
the current subrecord of the current subselection .

•

	

DELETE SUBRECORD deletes the current subrecord from its subfile, leaving the
current subselection empty .

•

	

MODIFY SUBRECORD presents a specified input layout and displays the values in the
current subrecord, so the user can modify these values .

Working with subrecords 5

Working with links

The commands and functions in this section work with links created between fields .

When using a link, you can read data from a linked field and write data to it .

•

	

ACTIVATE LINK searches a linked file for a value matching its field argument and

creates a link to the linked file . It does this without affecting the current selection or

current record of the linked file . It does not load a record.

•

	

CREATE LINKED RECORD creates a new linked record in the linked file .

a LOAD LINKED RECORD finds the specified linked record, loads it into memory, and

makes it the current record for the linked file .

•

	

LOAD OLD LINKED RECORD finds the specified record based on the old link, loads it

into memory, and makes it the current record for the linked file .

•

	

Old returns the value of a field before it was modified .

•

	

SAVE LINKED RECORD saves the linked record pointed to by its field name

argument .

•

	

SAVE OLD LINKED RECORD saves the record pointed to by its field name argument,

using the old link .

Working with sets

A set is an object in memory containing one bit for each record in the file the set

belongs to. 4th Dimension has a set named UserSet that contains the most recent

user selections made by clicking on records displayed by DISPLAY SELECTION or

MODIFY SELECTION .

•

	

ADD TO SET puts the current record in the set .

a CLEAR SET deletes a set from RAM, freeing the memory it used .

a CREATE SET creates a set comprising all records in the current selection .

a CREATE EMPTY SET creates an empty set .

•

	

DIFFERENCE compares setl and set2 and places the unique elements in setl in

seta, which it creates .

•

	

INTERSECTION compares setl and set2 and places only their common elements in

seta, which it creates .

•

	

LOAD SET reads a set from disk .

a Records in set returns the number of records in a specified set .

•

	

SAVE SET saves a set to disk .

•

	

UNION creates seta, containing any element in setl or in set2 or in both .

•

	

USE SET creates a current selection containing all records in the set .

6

	

Part I ; Introduction to the Command Reference

Data entry

The commands in this section refer to handling data entry from the keyboard to an

input layout or a dialog layout and not through telecommunications .

+ Input layouts and dialog layouts. Input layouts take input through fields only, but

can display variables . Dialog layouts take input through variables only, but can

display fields. Thus, commands referring to fields only can only be applied to input

layouts, not to dialogs .

•

	

After returns TRUE when the user clicks an Accept button or presses the Enter key

in an input layout .

•

	

Before returns TRUE before a layout is displayed .

El DIALOG displays the specified layout for taking data through variables .

•

	

During returns TRUE when the user does an activity such as modify a field and

move to another field .

•

	

GET HIGHLIGHTED TEXT gets the positions of the first and last character of the user

selected text.

•

	

GO TO FIELD places the insertion point in a specified field .

•

	

HIGHLIGHT TEXT either places the insertion point or highlights text .

•

	

INPUT LAYOUT sets the default input layout for a file .

•

	

Modified returns TRUE when a user modifies the specified field .

•

	

Old returns the value a field held before it was modified .

•

	

REDRAW forces a screen update during input .

•

	

REJECT on a field prevents the user from leaving the field or, in a second syntax,

rejects the entire record .

Data entry 7

Data output
The commands in this section refer to outputting data to the screen or to a printer and
not through telecommunications .
a Before returns TRUE for each record, before printing the current record .
•

	

DISPLAY RECORD displays the current record in the current input layout only as
long as another event does not repaint the screen .

•

	

DISPLAY SELECTION displays all records in the current selection, using the default
output layout.

•

	

During returns TRUE for each record, before printing the current record.
a FONT specifies a font for displaying a variable in a layout .
a FONT SIZE specifies a font size for a variable in a layout .
•

	

FONT STYLE specifies a font style for a variable in a layout .
•

	

FORM FEED issues a form feed character, pushing the paper to the next top of form
p osition .

a GRAPH graphs data from subfiles and/or variables to a graph area in a layout .
•

	

GRAPH FILE graphs data from selected fields to the graph window .
•

	

In break returns TRUE when a sort level changes .
a In footer returns TRUE at the end of each page .
•

	

In header returns TRUE at the beginning of each page .
•

	

Level returns the current break level .
•

	

MODIFY SELECTION displays the current selection, using the default output layout .
Users can select one or more records for modification .

•

	

OUTPUT LAYOUT specifies the default output layout .
•

	

PRINT LABEL prints the current selection as labels, using the default output layout
and issues a form feed after printing the last record .

•

	

PRINT LAYOUT prints a specified layout, including the values of its fields and/or
variables . Used for printing one document composed of multiple layouts . It issues
no form feed .

•

	

PRINT SELECTION prints all records in the current selection ; using the default
output layout and issues a form feed after printing the last record on each page .

•

	

PRINT SETTINGS displays the two standard print dialog boxes on the screen .
•

	

REPORT prints a specified report or brings up the Quick report dialog for the user
to specify the elements of the report .

a Subtotal returns the sum of items in a field for the current break level only .

8

	

Part I ; Introduction to the Command Reference

User interface
The section presents commands for managing the user interface . Its categories
•

	

menus
•

	

layouts and layout variables
•

	

dialogs and messages
•

	

windows
•

	

miscellaneous

Menus
These commands manipulate menu bars, menus, and menu items .
•

	

CHECK ITEM checks or unchecks a specific menu item .
•

	

DISABLE ITEM disables a specific menu item .
•

	

ENABLE ITEM enables a disabled menu item .
•

	

MENU BAR puts up the specified menu bar .
•

	

Menu selected returns the menu and menu item that a user selected.

include

layouts and layout variables
These commands are important for managing layouts and layout variables .
•

	

BUTTON TEXT specifies text for a layout button or check box variable .
•

	

DIALOG displays a layout for data entry through variables .
•

	

DISABLE BUTTON disables a layout button or check box variable .
•

	

ENABLE BUTTON enables a disabled layout button or check box variable .
•

	

FONT specifies a font for displaying a variable either in a layout or a report .
•

	

FONT SIZE specifies a font size for a variable in a layout .
a FONT STYLE specifies a font style for a variable in a layout .
•

	

GRAPH draws a graph in a graph layout variable .
•

	

INPUT LAYOUT specifies which layout to present for adding or modifying records or
importing files .

•

	

INVERT BACKGROUND inverts the background for a displayed variable .
•

	

OUTPUT LAYOUT specifies the default output layout .
•

	

REDRAW updates the display after changes to a variable, a scrollable array, or an
included layout.

User interface 9

Dialogs

Use these commands to communicate with the user .

a ALERT presents a simple dialog box with just one button : OK .

•

	

CONFIRM presents a dialog box asking the user to accept or cancel a course of

action by clicking OK or Cancel .

•

	

DIALOG displays a layout for data entry through variables .

•

	

MESSAGE presents a message box with no buttons .

•

	

REQUEST presents a dialog box asking to enter data . It includes OK and Cancel

buttons .

Windows

These commands create, manage, and close a custom window .

a CLOSE WINDOW closes the custom window .

•

	

ERASE WINDOW clears the contents of the custom window and homes the cursor .

•

	

GO TO XY positions the cursor at a specified point in the current custom window .

•

	

OPEN WINDOW opens a custom window of prescribed dimensions on the screen .

•

	

Screen height returns the height in pixels of the screen .

•

	

Screen width returns the width in pixels of the screen .

•

	

SET WINDOW TITLE sets the window title for the current window .

Miscellaneous

These commands also help with the work of managing a clean interface .

a BEEP generates a tone, the duration of which you can specify .

•

	

Current password returns the user's password .

•

	

MESSAGES OFF suppresses 4th Dimension's progress graphics .

•

	

MESSAGES ON turns on 4th Dimension's progress graphics .

•

	

ON ERR CALL installs a procedure for trapping and responding to errors .

•

	

ON EVENT CALL installs a procedure for responding to key presses and mouse

clicks .

10

	

Part I ; Introduction to the Command Reference

Communications with the outside world
The first part of this section covers the six commands for direct importing and
exporting data in DIF, SYLK, and text (ASCII) documents. In other circumstances, as
when subfiles are involved, you may have to use a different set of commands . The
"Communicating With Documents and Ports" section covers these .

Importing and exporting a selection
With these commands, you can import and export data in three different formats :
DIF, SYLK, and text (ASCII) . Export commands use the default output layout, and
import commands use the default input layout .
•

	

EXPORT DIF writes the current selection to a DIF file .
•

	

EXPORT SYLK writes the current selection to a SYLK file .
•

	

EXPORT TEXT writes the current selection to a text file .
a IMPORT DIF reads the specified DIF file and makes it the current selection .
•

	

IMPORT SYLK reads the specified SYLK file and makes it the current selection .
•

	

IMPORT TEXT reads the specified text file and makes it the current selection .

Communicating with documents and ports
With these commands, you can create, write to, and read record-oriented and other
documents . You can also exchange 4th Dimension records and variables between
your database and a document or another Macintosh TM computer running 4th
Dimension .
•

	

DELETE DOCUMENT deletes a document (including those created by other
applications) from disk .

a LOAD VARIABLE loads a variable into memory from a document on disk .
•

	

ON SERIAL PORT CALL installs the procedure to be called if serial port activity
occurs .

•

	

RECEIVE BUFFER assigns whatever is in a serial port buffer to a variable .
•

	

RECEIVE PACKET assigns delimited ASCII strings from a serial port or document .
•

	

RECEIVE RECORD reads a 4th Dimension record from a serial port or document .
•

	

RECEIVE VARIABLE reads a 4th Dimension variable from a serial port or
document.

•

	

SAVE VARIABLE saves a variable to a document on disk .
•

	

SEND PACKET writes ASCII strings sequentially to a document or a serial port .

Communications with the outside world

	

1 1

• SEND RECORD sends a 4th Dimension record to a serial port or a document .
•

	

SEND VARIABLE sends a 4th Dimension variable to a serial port or a document .
•

	

SET CHANNEL creates, opens, or closes a document. It can also be used to set up a
serial port .

•

	

USE ASCII MAP loads an ASCII map into memory. The map transposes characters .

Multi-user commands
This section lists commands for programming multi-user systems .
•

	

CLEAR SEMAPHORE clears a specified flag from the network .
•

	

LOAD RECORD loads the current record into memory to see if it is locked .
•

	

Locked returns TRUE or FALSE depending on the read-only and read-write state
of a record .

a READ ONLY assigns a default read-only state to each record in the file .
•

	

READ WRITE assigns a default read-write state to each record in the file .
•

	

Semaphore returns TRUE if the network already has flag with the same name as
given in its argument . It returns FALSE and creates a flag if the name doesn't exist .

•

	

UNLOAD RECORD removes a record from memory for the current user .

Standard functions
The section presents standard programming functions in the following categories :
a arithmetic and statistical functions
•

	

numeric functions
•

	

transcendental functions
•

	

string functions
a date functions
•

	

time functions

12

	

Part I ; Introduction to the Command Reference

Arithmetic and statistical functions

These functions are available for records at print time and for subrecords at print time
and display time. All act on a given field or subfield in the current selection or
subselection of the current record .
•

	

Average returns the arithmetic mean.
•

	

Max returns the maximum value .
a Min returns the minimum value .
•

	

Squares sum returns a sum of squares figure .
•

	

Std deviation returns a standard deviation figure .
•

	

Subtotal returns the total for a particular break level .
•

	

Sum returns the total .
•

	

Variance returns a variance figure .

Numeric functions

These functions return numeric values.
•

	

Abs converts its argument to an absolute (unsigned, positive) value .
a Dec returns the decimal portion of its argument .
•

	

Int returns the integer portion of its argument .
•

	

Num returns the numeric value of its argument, a numeric string .
•

	

Random returns an integer between 0 and 32,767 .
•

	

Round returns its argument rounded by a specified number of places .
a Trunc returns its argument truncated by a specified number of places .

Transcendental functions
These are the standard trigonometric and logarithmic functions .
•

	

Arctan returns the arctangent of its argument.
•

	

Cos returns the cosine of its argument in radians .
•

	

Exp returns the exponential of its argument .
•

	

Log returns the natural (Naperian) logarithm of its argument .
•

	

Sin returns the sine of its argument in radians .
•

	

Tan returns the tangent of its argument in radians .

Standard functions

	

1 3

String functions

These functions handle strings .
•

	

Ascii returns the ASCII code for the first character in its string argument .

•

	

Char returns the character specified by its numeric argument, an ASCII code .

•

	

GET HIGHLIGHTED TEXT gets the positions of the first and last character of the user
selected text .

•

	

HIGHLIGHT TEXT either places the insertion point or highlights text .

•

	

Length returns the number of characters in a string .

•

	

Lowercase returns all characters in its string argument in lowercase .

•

	

Num returns the numeric value of its argument, a numeric string .

a Position returns the position of the first occurence of one string within another
string .

•

	

String converts a numeric value to its numeric string counterpart .
•

	

Substring returns a specified portion of its string argument .

•

	

Uppercase returns all characters in its string argument in uppercase .

Date functions

These functions work with dates .
•

	

Current date returns the date kept by the Macintosh clock in 4th Dimension date
format .

a Date returns a date in 4th Dimension date format from a date expressed as a string .

•

	

Day number returns the weekday number from a date .

•

	

Day of returns a day of the month number from a date .
a Month of returns a month number from a date .
•

	

Year of returns a year number from a date .

Time functions

These functions deal with the time of day .
•

	

Current time returns the time kept by the Macintosh clock as the number of seconds
since midnight .

•

	

Time returns the number of seconds since midnight from time expressed as a string
in HH:MM :SS format .

•

	

Time string returns a time string in HH:MM:SS format from a number indicating the
number of seconds since midnight .

14

	

Part I : Introduction to the Command Reference

Programming
The section presents commands and functions for applications programming . Its
categories include
•

	

execution flow
•

	

managing variables
a system variables
•

	

Boolean functions
•

	

managing the interpreter

See Chapter 2 of 4th Dimension Programmer's Reference for a discussion of
operators .

Execution flow
These commands control the flow of execution .
a Case of . . .Else . . .End case is the case statement.
a If . . .Else . . .End if is the branching statement .
a while . . .End while is the loop statement .

Managing variables
These commands manage variables .
•

	

CLEAR VARIABLE clears one or more variables from memory .
•

	

LOAD VARIABLE loads a variable into memory from a document on disk .
•

	

SAVE VARIABLE saves a variable to a document on disk .
El Undefined returns TRUE when a variable has not been created (assigned) .

System variables
These are 4th Dimension's own variables . See also Appendix E, "System Variables
and the System Set ."
•

	

Document contains the name of the last document that the application read from or
wrote to. Read only.

•

	

Error contains a 4th Dimension error code, when an error occurs . Read only.

Programming

	

15

El FIdDelimit contains the ASCII code for the current field delimiter .

•

	

KeyCode contains the ASCII code for the most recent key press . (Available only to a
procedure installed by ON EVENT CALL.) Read only .

•

	

Modifiers contains a code for the most recent key press of a modifier key (Shift,
Option, Command, Caps Lock). (Available only to a procedure installed by ON
EVENT CALL.) Read only.

•

	

MouseDown contains 1 when the user clicks the mouse . (Available only to a
procedure installed by ON EVENT CALL .) Read only.

•

	

OK reflects the status of many 4th Dimension operations .
•

	

RecDelimit contains the ASCII code for the current record delimiter .

Boolean functions
Use these functions for writing Boolean expressions .

•

	

False returns FALSE .

•

	

Not returns the negation of a Boolean expression .

•

	

Num when applied to a Boolean expression returns 1 for TRUE and 0 for FALSE .

•

	

True returns TRUE .

Managing the interpreter
These commands work with the interpreter for debugging and executing strings as
commands .
•

	

EXECUTE executes strings that evaluate as valid 4th Dimension commands,
functions, and/or arguments .

•

	

TRACE turns on the Trace facility for debugging .
•

	

NO TRACE turns off the Trace facility .

Reading interrupts
These commands let you read and act on interrupts .
•

	

ABORT stops program execution and returns to the menu .
•

	

ON ERR CALL installs a procedure for trapping and responding to errors .
•

	

ON EVENT CALL installs a procedure for responding to key presses and mouse
clicks .

•

	

ON SERIAL PORT CALL installs a procedure for responding to serial port events .

16

	

Part I ; Introduction to the Command Reference

ABORT

Syntax

	

ABORT

Description

	

ABORT must be executed from within a procedure installed by ON ERR CALL. If the
procedure producing the error was called from a menu, ABORT returns execution to
the calling menu . If the error occurs during a layout procedure, ABORT stops
execution of the procedure . If you are in the Before or During phase of the execution
cycle, you stay in the layout . However, if you are in the After phase, ABORT stops
execution of the procedure and you leave the layout. ABORT has no effect on the OK
variable ; it simply stops execution of the layout procedure. The record, however, will
be saved if the user clicks an Accept button. Likewise, if a dialog procedure is active,
ABORT would have no effect on the values of variables .
Developers use ABORT to protect users from things like file I/O errors. To decide
how and where to place ABORT, you can read the 4th Dimension error number
through the system variable ERROR . See Appendix H, "Error Messages ."
The ABORT command is equivalent to clicking the Abort button in the Error window
or in the Trace window .

Example

	

'Oops ; called by ON ERR CALL Error handling routine
CON FIRM("Error present! Do you want to stop?")
If (OK=1)

ABORT 'End procedure, return to menus
End if

Reference

	

ON ERR CALL.

Part II

The Commands
in Alphabetical Order

1 7

Abs

Syntax

	

Abs (numexp7'

Description

	

Abs returns the absolute (unsigned, positive) value of numexpr. The example assigns
10 to vVector.

Example

	

vVector :=Abs(-1O)

References

	

Dec, Int, Round, Trunc .

ACTIVATE LINK

Syntax

	

ACTIVATE LINK (fieldnamel<< fieldnamel»)

Description

	

ACTIVATE LINK searches the linked file for a record whose field matches the value of
feldnamel, where fieldnamel is a linking field . If found, ACTIVATE LINK stores the
pointer to the record found (the link) with the linking record . If not found, it stores a
null pointer .

The optional fieldnamel must be a field in the linked file . If you specify the second
argument, fieldnamel, 4th Dimension displays a two-column list of records that
match the value in the linking field . The left column displays linked field values and
the right column displays fieldnamel values . If the user selects a record from the list,
that record pointer is stored as the link . If there is only one match, the link is to that
match, and the list does not appear .

ACTIVATE LINK always forces a link, whether the linking field has been modified or
not. Unlike LOAD LINKED RECORD, ACTIVATE LINK doesn't change the current
selection or current record of the linked file or load the linked record . Use ACTIVATE
LINK when you don't want to modify the current selection of the linked file . A typical
instance of this is when you work with recursive links or any situation in which you
don't want to disturb the current selection of the linked file . This is not a commonly
used command. For other discussions on links, see 4th Dimension User's Guide and
4th Dimension Programmer's Reference .

Example

	

ACTIVATE LINK([Geneology]Father)

References

	

CREATE LINKED RECORD, LOAD LINKED RECORD, LOAD OLD LINKED RECORD .

18

	

ACTIVATE LINK

ADD RECORD

Syntax

	

ADD RECORD < (*) I(filename<< ;*»)»

Description

	

ADD RECORD lets the user create, add, and save a new record to the database . ADD
RECORD creates a blank record in memory for filename, marks the record as the
current record, and displays the current input layout. If you do not specify filename,
the default filename applies .
4th Dimension starts the execution cycle (described in 4th Dimension Programmer's
Reference) by executing the input layout procedure . Clicking an Accept button saves
the new record and leaves OK set to 1 . Cancelling sets OK to 0. If you have more
than one Accept button, you must test each individually to see which button the user
clicked .

+ Note: If the user presses Enter, 4th Dimension sets OK to 1, without setting button
variables to 1 .

Even when canceled, the record remains in memory . Issuing the SAVE RECORD
command before changing the current record pointer will save the record anyway .
After ADD RECORD executes, the current selection becomes the record created by
ADD RECORD .

4th Dimension displays the layout in the window with scroll bars and a grow box on
the window. Specifying the optional asterisk argument causes the layout to appear
without scroll bars and a grow box . ADD RECORD can't take input through variables .
To add a record through variables instead of fields, choose CREATE RECORD,
DIALOG, and SAVE RECORD .

Example

	

bOK:=1
DEFAULT FILE([CUSTOMERS])
INPUT LAYOUT("AddRecs")
While(bOK=1)

ADD RECORD
End while

References

	

CREATE RECORD, DELETE RECORD, MODIFY RECORD.

ADD RECORD

	

1 9

Syntax

	

ADD SUBRECORD (subf lename,strexpr<<; *»)

Description

	

ADD SUBRECORD lets the user create and add a new subrecord to the parent record .
ADD SUBRECORD creates a blank subrecord in memory for subfllename to the
current record of the file . It makes this blank subrecord the current subrecord and
displays the subfile input layout named by strecpr. 4th Dimension executes the input
layout procedure as described in 4th Dimension Programmer's Reference .
Clicking an Accept button keeps the new subrecord in memory . Clicking a Don't
Accept button deletes the subrecord from memory . To actually save the new
subrecord, you must use SAVE RECORD, because a subrecord is only saved with the
record to which it belongs .
ADD SUBRECORD can't take input through variables. To add a subrecord through a
form containing variables instead of subfields, choose DIALOG, CREATE
SUBRECORD, and SAVE RECORD .

If you have a subfile within a subfile, you must add the lower level subrecord to a
specific higher level subrecord . Therefore, be sure to select the desired higher level
subrecord before adding the lower level subrecord . If you don't, your new subrecord
entry could be added to any of the higher level subrecords . If neither a current record
nor a higher level subrecord exists, ADD SUBRECORD has no effect.

4th Dimension displays the layout in the window .with scroll bars and a grow box on
the window. Specifying the optional asterisk argument causes the layout to appear
without scroll bars and a grow box.

Example

	

ADD SUBRECORD([Employees]Addresses ;"InputSubs")

References ADD RECORD, CREATE SUBRECORD, DELETE SUBRECORD, DIALOG, MODIFY RECORD,
MODIFY SUBRECORD, SAVE RECORD .

20

	

ADD SUBRECORD

ADD SUBRECORD

ADD TO SET

Syntax

	

ADD TO SET («filename;»strexp~

Description

	

ADD TO SET adds the current record from filename to the set named by strexpr. Use
ADD TO SET to put individual records into an existing set. Combined with USE SET
and DELETE SELECTION, ADD TO SET comes in handy for placing duplicates into a
set and deleting them .
The set must already exist . Otherwise, you'll get an error message . If you don't specify
filename, ADD TO SET uses the default file . If a current record does not exist, ADD
TO SET has no effect.
The example searches for duplicates in a mailing list, adds each duplicate to a set,
and saves them in a set .

Example

	

'Save the Duplicates
gOidNamel :="zzzzzz"
gOldName2 :="zzzzzz"
DEFAULT FILE([Addresses])
CREATE EMPTY SET("Duplicate Names")
ALL RECORDS
SORT SELECTION([Addresses]ZIP ;> ;[Addresses]Name2 ;> ;[Addresses]Namel ;>)
While (Not(End selection))
If(([Addresses]Name2=gOldName2)&([Addresses]Namel =gOldNamel))

ADD TO SET("Duplicate Names")
End if
gOldNamel :=[Addresses]Namel 'Prepare for next test
gOldName2 :=[Addresses]Name2
NEXT RECORD

End while
SAVE SET("Duplicate Names" ;"New Dupes Set")
CLEAR SET("Duplicate Names")

References

	

CLEAR SET, CREATE EMPTY SET, CREATE SET, Records in set, USE SET .

Syntax

	

After

Description

	

4th Dimension generates an After phase for each subrecord and then for the parent
record when the user validates the record to which the subfiles belong . An After phase
occurs when 4th Dimension sets After to TRUE and executes an input layout
procedure. Clicking an Accept button or pressing the Enter key validates a record .
Clicking Cancel or pressing Command-Period cancels a record . 4th Dimension does
not generate an After phase for dialog and output layout procedures .

	:• No After phase: If the user doesn't modify data and does validate the record, there
is no After phase .

For details on the part of After in the execution cycle, see the 4th Dimension
Programmer's Reference. Place After only in an input layout or file procedure .

:• Testing execution phases: Typically, a developer will write If . . .End if statements
or a Case statement for each phase .

The example parses the month out of the SalesDate field and assigns it to the Month
field. The Month field needn't appear in the layout . In this case, the programmer has
created a Month field for sorting and doing breaks on monthly totals . The assigning
of the month takes place in After, for two reasons . First, the user has finished all data
entry. Second, the user doesn't need to see the month number or its assignment .

Example

	

If(After)
Month :=Month of(SalesDate)

End if

References

	

ADD RECORD, Before, During, INPUT LAYOUT, MODIFY RECORD .

After

ALERT

Syntax

	

ALERT (strexp)

Description

	

ALERT puts up an alert box that displays strexpr. The box includes an OK button .
The message area can accommodate as many as 255 characters, depending on the
widths of characters. ALERT is good for passing information to users and for
providing debugging information like variable values . This is the "Note" type Alert
box.

Example

	

ALERT("You have entered "+String(vCount)+" records .")

References

	

CONFIRM, DIALOG, MESSAGE, Request .

ALL RECORDS

Syntax

	

ALL RECORDS «(filename)>>

Description

	

ALL RECORDS makes the current selection of filename all records in the file and
loads the first record as the current record. This action cancels any previous sort
order. If you don't specify filename, ALL RECORDS uses the default file .
When a database is first opened, the current selection for each file is empty . Use ALL
RECORDS to bring all records into the current selection .

Example

	

'Forward : Display each record
DEFAULT FILE([Addresses])
ALL RECORDS
While (Not(End selection))

DISPLAY RECORD
NEXT RECORD

End while

References

	

ALL SUBRECORDS, FIRST RECORD, LAST RECORD .

ALL RECORDS

	

23

Syntax

	

ALL SUBRECORDS (subfilename)

Description

	

ALL SUBRECORDS selects all subrecords for the current record . It does not select
subrecords for all records in the current selection . The same principle applies when
working with levels of subfiles . If neither a current record nor a higher level subrecord
exists, ALL SUBRECORDS has no effect .

In the example, Stats is the filename of the parent file and Sales is the
subfilename.

Example

	

ALL SUBRECORDS([Stats]Sales)

References

	

FIRST SUBRECORD, LAST SUBRECORD, NEXT SUBRECORD, PREVIOUS SUBRECORD,
Records in subselection .

24

	

ALL SUBRECORDS

ALL SUBRECORDS

APPLY TO SELECTION

Syntax

	

APPLY TO SELECTION (<<filename,,>>statement)

Description

	

APPLY TO SELECTION applies a one-line statement or a developer-written procedure
to the current selection in a record-by-record fashion. When doing a data
modification task, APPLY TO SELECTION automatically loads each record, does the
required work, and saves each record if the record data was modified. Because of this
record-by-record approach, APPLY TO SELECTION can take a long time when
working with large selections . Besides doing summaries of data in the current
selection, you can change field values . For example, making price changes, putting
all names in uppercase, or adding a suffix to selected part numbers . MESSAGES OFF
turns off the standard 4th Dimension progress thermometer for this command .

After APPLY TO SELECTION has been called, you can check whether the user has
cancelled the operation by testing the OK variable . If the user has cancelled, OK
returns 0 . Otherwise, it returns 1 . If you don't specify filename, APPLY TO
SELECTION uses the default file . If the current selection is empty, APPLY TO
SELECTION has no effect .
The example computes total sales for a company's Midwest region .

Example

	

Tot:=o
DEFAULT FILE([Sales])
SEARCH([Sales]Region="Midwest")
APPLY TO SELECTION(Tot :=Tot+[Sales]Amount)
ALERT("Midwest sales="+String(Tot ;"$#,###,###.00"))

References

	

ALL RECORDS, SEARCH, SEARCH SELECTION .

APPLY TO SELECTION

	

25

APPLY TO SUBSELECTION

Syntax

	

APPLY TO SUBSELECTION (subfilenamestatement)

Description

	

APPLY TO SUBSELECTION applies statement, a one-line statement, or a developer-
written procedure to the current subrecord selection in subfllename of the current
record. Besides doing summaries of data in the current selection, you can change
subfield values . For example, making price changes, putting all names in uppercase,
or adding a suffix to selected part numbers .
If you modify values in a subrecord, the subrecords will be saved only if you save the
record that contains them . Because subrecords reside in memory, APPLY TO
SUBSELECTION is a far quicker process than APPLY TO SELECTION . If the
subselection is empty, APPLY TO SUBSELECTION has no effect .

Example

	

ALL SUBRECORDS([Invoice]Detail)
APPLY TO SUBSELECTION([Invoice]Detail ; [Invoice]Detail'ItemTotal :=

[InvoiceJDetail'Price*[Invoice]Detail'Units Sold)
vlnvTot :=Sum([Invoice]Detail'ItemTotal)

References

	

ALL SUBRECORDS, APPLY TO SELECTION .

Arctan

Syntax

	

Arctan (numexpr}

Description

	

Arctan returns the arctangent in radians of numexpr, where numexpr is a tangent .
(One degree equals 0.0174532925199432958 radians .) The example assigns
0 .78539766339719831 to vAtan .

Example

	

vAcan :=Arctan(.999999)

References

	

Cos, Exp, Log, Sin, Tan .

Ascii

Syntax

	

Ascii (streacpr)

Description

	

Ascii returns the ASCII code of the first character in strexpr. The Char function is the
counterpart of Ascii, returning a character for an ASCII code . To test for case in 4th
Dimension, use Ascii . For example :

(Ascii("A")=Ascii ("a"))

returns FALSE, whereas

("A"="a") returns TRUE .

The example assigns 65 to the variable GetAsc.

Example

	

GetAsc:=Ascii("ABC")

Reference

	

Char.

Average

The Average function computes the arithmetic mean of the specified field or

subfield. Average has two syntaxes. The first applies to finding the average value of a

particular field in the current selection . It works only at print time . The second applies

to finding the average value of a particular subfield in a specified subfile . In both

cases, the field type must be numeric .

Syntax 1

	

Average (fieldname)

Description 1

	

Average returns the average for fieldname in the current selection . This works only in

In footer or In break at break level 0 (grand totals) in an output layout procedure

when printing with PRINT SELECTION. To compute an average, 4th Dimension must

work with each record in the selection. At print time, 4th Dimension brings each

record into memory and builds the average figure .

Important

Average does not clear after a break. Rather, it calculates a record-by-record

average for the entire selection . Average is meaningful only when printed in

break level 0 .

Example 1

	

If(In footer & End selection([Income]))

vAverage :=Average([Income]Sale)

End If

References 1 In break, In footer, Level, Max, Min, PRINT SELECTION, Squares sum, Std deviation, Sum,

Variance .

Syntax 2

	

Average (subfleldname)

Description 2 Average returns the average value of subfleldname in subfslename for the current

subselection of the current record .

Example 2

	

vAvg :=Average([Invoice]Ordered'ItemTotal)

References 2 Max, Min, Squares sum, Std deviation, Sum, Variance .

BEEP

Syntax

	

BEEP «(posintexp?)»

Description

	

BEEP without an argument causes the computer to emit a tone for 0 .5 second. To
change the duration of the tone, include the optional numeric argument . The
duration of the beep is posintexpr times 1/60. The example would cause a 1-second
beep.

Example

	

BEEP(60)

Reference

	

None .

Syntax

	

Before

Description

	

4th Dimension generates a Before phase when you initiate any activity that uses a
layout (whether input, output, or dialog) . A Before phase occurs when 4th Dimension
sets Before to TRUE and executes a layout procedure . Once 4th Dimension executes
these statements, it sets Before to FALSE . For details on Before in the execution
cycle, see 4th Dimension Programmer's Reference .

+ Testing execution phases : Typically, a developer will write If . . .End if statements
for each phase or a Case statement in which two or three of the phases are the
cases.

For an input layout, if a record contains subrecords, 4th Dimension generates a
Before phase for each subrecord, and then the Before phase for the parent record . A
Before phase is generated for a subrecord multi-line layout when the user presses
Command-Tab to add a new subrecord.
A Before phase is generated for a subfile Full Page layout when the user double-clicks
in a subfile area . Typically, developers use the Before phase to do initialization for a
record. In the example (an input layout routine), 4th Dimension assigns the current
date to the Entry date field and then sets Before to FALSE .

When printing, 4th Dimension sets Before to TRUE for each record, before
printing the record. If you need to select subrecords, make the selection in the Before
phase of the parent record's output layout . 4th Dimension executes the Before phase
for each subrecord . This is the opposite order of that performed for data entry .
When you display a selection with DISPLAY SELECTION or MODIFY SELECTION, 4th
Dimension executes Before and During simultaneously .
Place Before only in a layout or file procedure .

Example

	

If(Before)
If (Entry date = ! 0010010000!)

Entry date :=Current date
End if

End if

References

	

After, During, In break, In footer, In header .

Before

Before selection

Syntax

	

Before selection <<(filename)>>

Description

	

Before selection returns TRUE after PREVIOUS RECORD moves the record pointer
before the first record in the current selection of filename. If you don't specify
filename, Before selection uses the default file. If the current selection is empty,
Before selection returns TRUE .

If you want to print a unique message (including special strings, the time the report
was run, and so on) in the first page's header, you can test Before selection in a
header . Before selection returns TRUE when you print the first header, meaning that
no record in the selection has been printed .

Example

	

'Backward : Move backward through file
DEFAULT FILE([Addresses])
ALL RECORDS
LAST RECORD
While (Not(Before selection))
DISPLAY RECORD
PREVIOUS RECORD

End while

References

	

End selection, In header, PREVIOUS RECORD .

Before selection

	

31

Syntax

	

Before subselection (subfilename)

Description

	

Before subselection returns TRUE when a PREVIOUS SUBRECORD command moves
the current subrecord pointer before the first subrecord in the current subselection of
subfilename for the current record . If the current subselection is empty, Before
subselection returns TRUE . The example displays all subrecords in reverse order for
each record.

Example

	

'Demo before subselection, last subrecord, and previous subrecord
DEFAULT FILE([Stats]hame)
ALL RECORDS
While (Not(End selection))

vReport :="
ALL SUBRECORDS([Stats]Sales)
LAST SUBRECORD([Stats]Sales)
While (Not(Before subselection([Stats]Sales)))

vReport:=vReport+String([Stats]Sales'Bucks)+Char(13)
PREVIOUS SUBRECORD([Stats]Sales)

End while
bContinue :=0
While (bContinue=0)
DIALOG("dStatList")

End while
NEXT RECORD

End while

References

	

End subselection, PREVIOUS SUBRECORD .

32

Before subselection

Before subselection

BUTTON TEXT

Syntax

	

BUTTON TEXT (buttonvar,strexpi)

Description

	

BUTTON TEXT displays strexpr as the text for the button specified by buttonvar .

buttonvar is a button variable . "Button" includes check boxes and radio buttons .

With commands like BUTTON TEXT, you can create generic dialogs and use the same

dialog in different contexts, like searches on different files . The action of changing

the button text is local to the use of the layout . Thus, if you change a button's name, it

does not change it in the layout, but only during the current use of the layout. Be sure

to make the button area large enough to accomodate any text you might assign to the

button. Use BUTTON TEXT only in an input layout procedure .

	:• Button and variable names: Do not confuse the button variable name and the

button title. They are two different things .

Example

	

BUTTON TEXT(NextOne ;"One More")

References

	

DISABLE BUTTON, ENABLE BUTTON .

BUTTON TEXT

	

33

Case of. . .Else . . .End case

Syntax

	

Case of
{ :(boolexpr)
{statement(s)}}<<{*}»
«Else
{statement(s)}»
End case

Description

	

The Case of statement evaluates a series of Boolean expressions or cases one at a
time. Case of executes statements belonging to the first and only the first true
Boolean expressions it encounters, even if subsequent Boolean expressions are true .

When this execution ends, program execution continues with the statement following
End case. You can include an Else clause before the concluding End case . Else acts
as a default activity that only executes when all other Boolean expressions fail .
You can nest Case of statements within Case of statements, as long as the close of
an inner Case of statement does not appear after the close of an outer Case of
statement .
The example shows how you can use Case of to evaluate the execution cycle in an
input layout procedure .

Example

	

Case of
:(Before)

If(Entry date = !00!0010000!)
Entry date :=Current date

End if
:(During)

LOAD LINKED RECORD(CustNo ;[Client]ID No)
Name:=[Client]Client
City :=[Client]City

:(After)
Month :=Month of(Entry Date)

End case

References

	

If . . .Else . . .End if, While . . .End while .

34

	

Case of . . . Else . . . End case

Char

Syntax

	

Char (posintexp?

Description

	

Char returns an alphanumeric value for posintexpr, where posintexpris a valid ASCII
code (0 to 255). You can also find the value of the system variable KeyCode in an ON
EVENT CALL routine with Char and assign symbols to menu items with the CHECK
ITEM procedure .
The example assigns the carriage return character (ASCII 13) to the variable gCR and
then uses the variable to place carriage returns at the end of each line in a mailing
label. The example is a layout procedure for a mailing label layout . It concatenates all
address information into one variable (vLabel), which is the only entity in the label
layout.

Example

	

'vLabel procedure for creating labels
If (Before)
gCR:=Char(13)
vLabel :=Name1+" "+Name2+gCR+Addrl+gCR
If (Add r2#")

vLabel :=vLabel+Addr2+gCR
End if
vLabel :=vLabel+City+", "+St+" "+String(ZIP)

End if

Reference

	

Ascii .

CHECK ITEM

Syntax

	

CHECK ITEM (posintexprl;posintexpr2;strexJn

Description

	

CHECK ITEM places a character, strexpr-either a check mark (ASCII 18) or a
space-by a menu command . posintexprl is the menu title number and posintexpr2
is the number of the item under the title . If you supply a null string or a space
character for strexpr, it erases the check on the specified menu item .

CHECK ITEM is local to the current menu bar . For example, if you leave the current
menu bar and go to another menu bar, and then return to the original bar, the check
on the original bar will be gone .

	.• Restoring the unchecked state: Use MENU BAR to restore all items to their default
(unchecked) state .

The Edit and Apple menus are built in and are not a part of the menu count . The File
menu is menu title number one .

Examples

	

CHECK ITEM(2 ;1 ;Char(18))
CHECK ITEM(2 ;1 ;"")

References

	

Char, DISABLE ITEM, ENABLE ITEM, MENU BAR, Menu selected .

36

	

CLEAR SEMAPHORE

CLEAR SEMAPHORE

Syntax

	

CLEAR SEMAPHORE (strexp~

Description

	

CLEAR SEMAPHORE erases the semaphore flag strexpr for multi-user applications .
See 4th Dimension Developer's Notes for details on this and other multi-user
commands .

CLEAR SET

Syntax

	

CLEAR SET (strexpr)

Description

	

CLEAR SET removes the set named by strexpr from memory and frees the memory
taken by the set. CLEAR SET does not affect your files, selections, or records . If you
want to re-use a set, save it to disk with the SAVE SET command before executing
CLEAR SET. A good practice is to always clear sets when you are finished with them .

The at sign (@) may be used for clearing more than one set at a time . For example,
CLEAR SET ("B@") will clear all sets whose names start with the letter B . Using
CLEAR SET ("@") will clear all sets .

Example

	

'Creates & saves a set of all Palo Alto customers
DEFAULT FILE([Addresses])
ALL RECORDS
SEARCH([Addresses]City="Palo Alto")
CREATE SET("Palo Alto") 'Makes current selection a set
MESSAGE("Now saving Palo Alto set.")
SAVE SET("Palo Alto" ;"Palo Alto Set")
CLEAR SET("Palo Alto")

References

	

ADD TO SET, CREATE EMPTY SET, CREATE SET, LOAD SET, Records in set, SAVE SET,
USE SET.

CLEAR SET

	

37

Syntax

	

CLEAR VARIABLE (strexp7)

Description

	

CLEAR VARIABLE erases all memory variables that begin with strexpr, frees the
memory space they occupy, and leaves them undefined . For example, an argument
of "Co" would erase variables like Company and CodeNum .

Depending on the need at hand, CLEAR VARIABLE works well at the beginning
and/or end of a procedure to free memory and to prevent problems that could arise
from different routines using the same variable names with unexpected values . Use
CLEAR VARIABLE for initialization and global cleanup .

Example

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM("MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar :=Request("Enter value of 'MyVar")
SAVE VARIABLE("MyDoc";MyVar)

End if
Else

ALERT("Value of 'MyVar' is "+MyVar)
End if

References

	

LOAD VARIABLE, RECEIVE VARIABLE, SAVE VARIABLE, SEND VARIABLE, Undefined .

38

	

CLEAR VARIABLE

CLEAR VARIABLE

Important
Executing CLEAR VARIABLE (") clears all variables, including system variables .
This leaves all variables undefined,

+ Local variables: You can economize on memory by using local variables where
appropriate . To signify a local variable, precede the variable name with a dollar
sign ($) . For example: $LoopCount . 4th Dimension automatically clears local
variables when completing the routine in which the variables are defined and used .
Local variables are accessible only to the procedure in which they are defined .

CLOSE WINDOW

Syntax

	

CLOSE WINDOW

Description

	

CLOSE WINDOW closes the window created by an OPEN WINDOW command. If you
want to switch from one window to another, you must close the current window before
opening a new one . Otherwise, 4th Dimension will continue writing to the first window
and not open the second window . (4th Dimension allows only one custom window
open at a time.) CLOSE WINDOW has no effect if a custom window isn't open ; it will
not close the 4th Dimension window. The example writes ten items to a window
through MESSAGE . When close window takes effect, you see further items written to a
message box.

Example

	

'Demo CLOSE WINDOW
gLine:=0
DEFAULT FILE([Catalog])
ALL RECORDS
OPEN WINDOW(5 ;40 ;250 ;300 ;0 ;"Window")
While (Not(End selection))

gLine:=gLine+1
If (gLine=10)
CLOSE WINDOW

End if
MESSAGE([Catalog]Description+Char(13))
NEXT RECORD

End while

References ERASE WINDOW, OPEN WINDOW .

CLOSE WINDOW

	

39

CONFIRM

Syntax

	

CONFIRM (strexp)

Description

	

CONFIRM creates a dialog box that displays strexpr as a prompt message . A CONFIRM
box has two buttons : OK and Cancel . (ALERT creates a dialog box with just the OK
button.) Also see Request . Clicking OK sets the system variable OK to 1 ; clicking
Cancel sets OK to 0. The OK button is the default button . Confirm is a Caution type
Alert box .
	.• By the way. If you need to have a user confirm or refuse more than one item of

data, design a dialog box with variables and buttons, rather than displaying
multiple Confirm boxes .

Example

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM(" 'MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar:=Request("Enter value of 'MyVar")
SAVE VARIABLE("MyDoc" ;MyVar)

End if
End if

References

	

ALERT, DIALOG, MESSAGE, Request .

Cos

Syntax

	

Cos (numexpr)

Description

	

Cos returns the cosine of numexpr, where numexpr is expressed in radians . (One
degree equals 0 .01745329 radians.) The example returns the cosine of 45 degrees,
0.707106781186547524 .

Example

	

vCos :=Cos(45*0 .0174532925199432958)

References

	

Arctan, Exp, Log, Sin, Tan .

40

	

Cos

CREATE EMPTY SET

Syntax

	

CREATE EMPTY SET (<<filename&,»strexp')

Description

	

CREATE EMPTY SET creates an empty set for filename and gives the empty set the
name strexpr. You can add to this empty set with ADD TO SET and create a current
selection with USE SET. If you don't specify filename, CREATE EMPTY SET applies
to the default file .

Example

	

'Save duplicates
gOIdNamel :="zzzzzz"
gOldName2 :="zzzzzz"
DEFAULT FILE([Addresses])
CREATE EMPTY SET ("Duplicate Names")
ALL RECORDS
SORT SELECTION([Addresses]ZIP ;> ;[Addresses]Name2 ;> ;[Addresses]Namel ;>)
While (Not(End selection))

If (([Addresses]Name2=gOldName2)&([Addresses]Namel=gOldNamel))
ADD TO SET("Duplicate Names")

End if
gOidNamel :=[Addresses]Namel 'Prepare for next test
gOldName2 :=[Addresses]Name2
NEXT RECORD

End while
SAVE SET("Duplicate Names" ;"New Dupes Set")
CLEAR SET ("Duplicate Names")

References

	

ADD TO SET, CLEAR SET, CREATE SET, SAVE SET, USE SET.

CREATE EMPTY SET

	

41

CREATE LINKED RECORD

Syntax

	

CREATE LINKED RECORD eidname)

Description

	

CREATE LINKED RECORD has two effects. If no linked record exists (if a match is not
found for the current value of fieidname), CREATE LINKED RECORD creates a blank
linked record. If the linked record exists, CREATE LINKED RECORD acts like LOAD
LINKED RECORD . That is, it loads the linked record into memory and stores the
pointer to that record in the linking record . You must execute SAVE LINKED RECORD
to save the record .
CREATE LINKED RECORD is activated the first time it's invoked for a record, and
thereafter only when fieidname is modified . Therefore, if you place CREATE LINKED
RECORD in the Before or After phase of the execution cycle, you must trick CREATE
LINKED RECORD by performing a modification that really changes nothing (like
PartNo :=PartNo) .

Use CREATE LINKED RECORD instead of LOAD LINKED RECORD when you want the
procedure, rather than the user, to supply data to the new linked record .
For other discussions on links, see 4th Dimension User's Guide and 4th Dimension
Programmer's Reference .

Example

:(After)
'Reinstate old Quantity to protect against false modification

LOAD OLD LINKED RECORD(PartNo)
[Catalog]OnHand :=[Catalog]OnHand+Old(Quantity)
SAVE OLD LINKED RECORD(PartNo)
PartNo:=PartNo

'Subtract Quantity from Catalog Onhand & save new On hand
CREATE LINKED RECORD(PartNo) 'Create a link based on PartNo
[Catalog]ItemNo :=PartNo 'Identify object of link
[Catalog]OnHand:=[Catalog]OnHand-Quantity 'Subtract order qty from catalog
SAVE LINKED RECORD(PartNo)

References

	

ACTIVATE LINK, LOAD LINKED RECORD, LOAD OLD LINKED RECORD, Old, SAVE LINKED
RECORD, SAVE OLD LINKED RECORD .

42

	

CREATE LINKED RECORD

CREATE RECORD

Syntax

	

CREATE RECORD <<(filename)>>

Description

	

CREATE RECORD creates a blank record for filename, in memory, and makes it the
current record and the current selection (a one-record current selection) . If you don't
follow CREATE RECORD with SAVE RECORD, before changing the current record
pointer, 4th Dimension ignores the created record and doesn't save it . If you don't
specify filename, CREATE RECORD applies to the default file . If you want the user to
add data through an input layout, use ADD RECORD .

Typically, you can use CREATE RECORD in four ways :
•

	

when getting input through a dialog layout, using variables
•

	

when moving data to another file
•

	

when reading data into a file from a desktop document
•

	

when importing data through a network or modem

Example

	

'AddDate
DEFAULT FILE([I .Card])
bOK:=1
While (bOK=1)

vDate:=""
DIALOG("DateTest")
CREATE RECORD
[I .Card]Name :=vDate
[I .Card]TestDate :=Date(vDate)
If (bOK=1)'Test to make sure last record is not a blank
SAVE RECORD

End if
End while

References

	

ADD RECORD, DIALOG, MODIFY RECORD, SAVE RECORD .

CREATE RECORD

	

43

44

	

CREATE SET

CREATE SET

Syntax

	

CREATE SET («filename,» strexpr)

Description

	

CREATE SET creates a set named strexpr and places the current selection from

filename in the set. strexpr may be from 1 to 80 characters long. Once you have

created a set, you can save it, load it, and do set operations with other sets from the

same file. If you don't specify filename, CREATE SET applies to the default file .

	.• Sets and the current record.' When you create a set, the position of the currrent

record is kept in the set. USE SET retrieves the position of this record and makes it

the new current record. If you delete this record before you execute USE SET, 4th

Dimension selects the first record in the set as the current record . Also, if you form

a set that does not contain the position of the current record, USE SET selects the

first record in the set as the current record .

Example

	

'Creates & saves a set of all Palo Alto customers

DEFAULT FILE([Addresses])

SEARCH([Addresses]City="Palo Alto")

CREATE SET("Palo Alto") `Makes current selection a set

MESSAGE("Now saving Palo Alto set.")

SAVE SET("Palo Alto" ;"Palo Alto Set")

CLEAR SET("Palo Alto")

References

	

ADD TO SET, CLEAR SET, CREATE EMPTY SET, LOAD SET, Records in set, SAVE SET,

SEARCH, SEARCH BY INDEX, SEARCH SELECTION, USE SET .

Description

	

CREATE SUBRECORD adds a new subrecord to subfllename for the current record
and makes it the current subrecord . 4th Dimension saves the created subrecord only
if you save the record that contains it with the SAVE RECORD command in a global
procedure or if the user clicks an Accept button in an input layout . If you use CREATE
SUBRECORD, and there is no current record, CREATE SUBRECORD has no effect . If
you want the user to add data through an input layout, use ADD SUBRECORD .
You can create numerous subrecords without having to save each one individually .
All changes to a subfile (additions, modifications, and deletions) are saved only
when you save the parent record .
The example shows a portion of a procedure that retrieves records and subfiles from a
text file .

Example

While(i<gStop)
CREATE SUBRECORD([I .Card]Phone)
[LCard]Phone'PhNum :=§("gRec"+String(i))

i :=i+1
[LCard]Phone'Comment :=§("gRec"+String(i)}

i :=i+1
End while
SAVE RECORD

References ADD SUBRECORD, MODIFY SUBRECORD, SAVE RECORD.

CREATE SUBRECORD

Syntax

	

CREATE SUBRECORD (subfilename)

CREATE SUBRECORD

	

45

Current date

Syntax

	

Current date

Description

	

Current date returns the current date from the Macintosh clock as a 4th Dimension
date .

Example If(Before)
Entry date :=Current date

End if

References

	

Date, Day number, Day of, Month of, Year of .

Current password

Syntax

	

Current password

Description

	

Current password returns the string the user typed to get into the database . The
function returns a null string if no password exists .

Example

	

Wholslt :=Current password

Reference

	

None .

46

	

Current password

Current time

Syntax

	

Current time

Description

	

Current time returns the current time from the Macintosh clock in seconds since
midnight. Current time is always between 0 and 86,399 inclusive . Time string
converts seconds into an hours, minutes, and seconds string . The example is a
routine that pauses execution for approximately three seconds . This works well when
trying to hold DISPLAY RECORD or MESSAGE output on the screen .

Example

	

'Pause display for 3 seconds . Works near midnight.
vNow :=Current time
While(Abs(Current time-vNow)<3)
End while

References

	

Time, Time string .

Current time

	

47

Syntax

	

Date (strexpr)

Description

	

Date returns a 4th Dimension date (for example : !04115190!) from a strexpr
expressing the date . You can express date elements as one or two digits . The following
characters are valid date separators : slash (/), space (), period (.), and hyphen (-) .
strexpr must take the order mm-dd-yy . If you do not enter the date as a string (for
example, you omit the enclosing double quotation marks), 4th Dimension will not
generate an error, but your test or other activity may fail . Date only reads digits and
delimiters ; you cannot enter alphabetic characters like "Jan-1-1990 ."
If your year number contains only two digits, 4th Dimension automatically adds 1900
to it . If a year number contains more than two digits, 4th Dimension won't change it .
If you need to enter a year between 1 and 100 A.D ., you must fill with at least one
leading zero. For example, 0033 or 033 . If you must work with B .C. dates, use the Long
integer type . Date numbers must be positive .
The example takes a date entered as a string from a Request, converts the string to a
4th Dimension date, and searches for records containing that date . Invoice Date is
typed as a Date field .

Example

	

'Search for date
RegDate:=Request("Enter date" ; String(Current date))
If(OK=1)

DEFAULT FILE([Invoice History])
SEARCH([Invoice History]Invoice Date=Date(RegDate))
DISPLAY SELECTION

End if

References

	

Current date, Day number, Day of, Month of, Year of .

Date

Day number

Syntax

	

Day number (date)

Description

	

Day number returns a number representing the week day on which date falls (Sunday
equals 1). The example returns the current day number .

Example

	

ALERT("It's Day number "+String(Day number(Current date)))

References

	

Current date, Date, Day of, Month of, Year of .

Day of

Syntax

	

Day of (date)

Description

	

Day of returns the day of the month from date, where date is a valid 4th Dimension
date. The example would assign 14 to the variable vDay .

Example

	

vDay :=Day of(!8114190!)

References

	

Current date, Date, Day number, Month of, Year of .

Syntax

	

Dec (numexpr}

Description

	

Dec returns the decimal part of numexpr. The value returned is always positive or
zero. The example converts decimal weights to pounds and ounces . The example
would convert 8.5 pounds to 8 pounds 8 ounces .

Example

	

vLb :=lnt(Weight)
vOz :=16*Dec(Weight)

References

	

Abs, Int, Round, Trunc .

Dec

DEFAULT FILE

Syntax

	

DEFAULT FILE (filename)

Description

	

DEFAULT FILE makes filename the default file . Once you execute this statement, you
can omit optional filename arguments in commands where filename is an optional
argument. In the example, the programmer was able to omit the filename from the
INPUT LAYOUT and ADD RECORD commands, because DEFAULT FILE has already
stated it.

Example

	

OK

Reference

	

None .

Once you have declared a file to be the default file, it remains so, until you declare a
different file as the default. This means you can specify other files in a procedure
without giving up the default status of the named file . When working with statements in
a global procedure that require field names, you must still include the filename prefix
to the field name. For example,

vDate :=[Sales]SaleDate

If you were to omit the [Sales] filename prefix from this assignment, 4th Dimension
would interpret SaleDate as a variable . The only time you can omit the filename
prefix from a field name is in a layout procedure, when referring to a field name in the
layout's file .

DEFAULT FILE([CUSTOMERS])
INPUT LAYOUT("Add recs")
While(OK=1)

ADD RECORD
End while

DEFAULT FILE

	

51

Syntax

	

DELETE DOCUMENT (docname)

Description

	

DELETE DOCUMENT deletes the document (Macintosh file) named by docname .
Deleting a document sets OK to 1 . If DELETE DOCUMENT can't delete a document,
OK returns a 0. DELETE DOCUMENT will not work on opened documents and non-
existent documents .

Example

	

DELETE DOCUMENT("Customers .Text")

References

	

EXPORT DIF, EXPORT SYLK,'EXPORT TEXT, SAVE SET, SAVE VARIABLE, SEND PACKET,
SEND RECORD, SEND VARIABLE, SET CHANNEL .

52

	

DELETE DOCUMENT

DELETE DOCUMENT

For security purposes, you cannot give a null string argument . If you do this, 4th
Dimension will not show the standard dialog for choosing a document and will
display an error message .

+ Path names: You can access documents in other folders by writing the pathname of
the folder as a part of docname. See Appendix F, "4th Dimension and Macintosh
Codes," for a brief discussion of pathnames .

Warning
DELETE DOCUMENT will delete 4th Dimension documents, documents created by
other applications, and the applications as well, Deleting is permanent and
cannot be undone .

DELETE RECORD

Syntax

	

DELETE RECORD «' zlename)>>

Description

	

DELETE RECORD deletes the current record of filename . After deletion, the current
selection is empty. As a result, you can't use DELETE RECORD to scan through a
selection. To delete a group of records, use DELETE SELECTION . If you don't specify
filename, DELETE RECORD uses the default file. If there is no current record,
DELETE RECORD has no effect.

Warning
A deletion is permanent and cannot be undone .

Example

	

DELETE RECORD([Customers])

Reference

	

DELETE SELECTION .

DELETE RECORD

	

53

54

	

DELETE SELECTION

DELETE SELECTION

Syntax DELETE SELECTION <<(filename)>>

Description

	

DELETE SELECTION deletes the current selection of records from filename . After

deletion, the current selection is empty . If you don't specify filename, the command

uses the default file . If the current selection is empty, DELETE SELECTION has no

effect .

Warning

A deletion is permanent and cannot be undone .

Example

	

'Delete 1990 Invoices

DEFAULT FILE([Invoice History])

ALL RECORDS

SEARCH(Year of([Invoice History] Invoice Date)=1990)

CONFIRM(String(Records in selection)+" are to be deleted . Continue?")

If (OK=1)

DELETE SELECTION

ALL RECORDS

End if

DISPLAY SELECTION

Reference

	

DELETE RECORD.

DELETE SUBRECORD

Syntax

	

DELETE SUBRECORD (subfilename)

Description

	

DELETE SUBRECORD marks the current subrecord for deletion . subfilename names
the subfile of the current record to which the current subrecord belongs . After
DELETE SUBRECORD marks the subrecord for deletion, the current subrecord
selection is empty. As a result, you can't use DELETE SUBRECORD to scan through a
subselection. 4th Dimension deletes marked subrecords only if you save the current
record with SAVE RECORD or if the user clicks an accept button . This command has
no effect if no current subrecord exists .

:• Deleting parent records : Deleting a parent record automatically deletes all its
subre cords .

Example

	

DELETE SUBRECORD([Addresses]PhoneNos)

References

	

DELETE RECORD, SAVE RECORD .

DELETE SUBRECORD

	

55

Syntax

	

DIALOG («filename;»strexpr)

Description

	

DIALOG presents the dialog layout specified by strexpr. You can use DIALOG

•

	

to get input through layout variables
•

	

to present a group of related choices (like telecommunications settings)
•

	

to get input for custom searches and sorts
•

	

to create special applications like on-screen calculators

:• Windows: You can use OPEN WINDOW to create windows that look like standard
dialogs .

Dialog layouts can only take input through variables, not input fields . They can,
however, display fields . If you omit buttons from dialog layout, 4th Dimension will
automatically create OK and Cancel buttons . If you don't specify filename, DIALOG
will use the default file .
4th Dimension executes the Before and During phases of dialog layout procedures
(see Chapter 3 of 4th Dimension Programmer's Reference) . You can test the system
OK variable to see if the user clicked an Accept button . Clicking an Accept button
causes OK to return 1 . Otherwise, it returns 0 .

Example

	

DateLook : Select invoices with dates since input date
DEFAULT FILE([Invoice])
OUTPUT LAYOUT("Output")
ALL RECORDS
vdate :=Current date 'vDate is date variable
DIALOG("Get Date")
If(bOK=1)

SEARCH([Invoice]InvoiceDate>vDate)
DISPLAY SELECTION

End if

References

	

ALERT, Confirm, INPUT LAYOUT, MESSAGE, Request .

DIALOG

DIFFERENCE

Syntax

	

DIFFERENCE (strexprl ;strexpr2;strexpr3)

Description

	

DIFFERENCE creates a set (named by strexpr3) by comparing setl and set2, named
respectively by strexprl and strexpr2. DIFFERENCE puts the elements that are
unique to setl into seta . Seta needn't exist prior to issuing this command . In fact, if it
does exist, 4th Dimension will delete the old set and recreate it after recomputing the
new set. Further, seta can be either setl or set2 .

Example

	

DIFFERENCE("Above9";"BeIow20";"Tens")

References

	

CLEAR SET, INTERSECTION, LOAD SET, SAVE SET, UNION, USE SET .

DIFFERENCE

	

57

58

	

DISABLE BUTTON

DISABLE BUTTON

Syntax

	

DISABLE BUTTON (buttonvar}

Description

	

DISABLE BUTTON grays out (disables) the button specified by buttonvar. buttonvar

is the button variable. Like BUTTON TEXT, DISABLE BUTTON is local to the layout

and only works when the layout is on the screen.

Place DISABLE BUTTON only in a layout procedure . DISABLE BUTTON works with all

4th Dimension buttons and check boxes. Use DISABLE BUTTON when you want to

prevent access to a button. For example, you would disable a button named Previous

Record when the record pointer points to the first record of the current selection.

Buttons include Accept buttons, Don't Accept buttons, Button buttons, Radio

buttons, and Check boxes .

Example

	

If (Before)

vWholename :=[RoloText]First+" "+[RoloText]Last

vPNum :=[RoloText]Extension

vRem :=[RoloText]Comment

If (gRecNo=1)

DISABLE BUTTON(bPrevious)

Else

ENABLE BUTTON(bPrevious)

End if

If (gRecNo=gTotRecs)

DISABLE BUTTON(bNext)

Else

ENABLE BUTTON(bNext)

End if

End if

References

	

BUTTON TEXT, ENABLE BUTTON .

DISABLE ITEM

Syntax

	

DISABLE ITEM (posintexprl;posintexpr2)

Description

	

DISABLE ITEM grays out (disables) the menu item described by its two arguments .
posintexprl is the number of the menu title that you create . Numbering excludes the
Apple and Edit menus (File is menu number one) . posintexpr2 is the number of the
item within the menu . Thus, the example would disable the fourth item in the second
menu title . If posintexpr2 is 0, the menu title and all its items are disabled. Like
CHECK ITEM, DISABLE ITEM is local to the menu bar .

	.• Restoring defaults: You can use MENU BAR to restore the original menu bar, as
you defined it in the Design environment thus restoring all menu and item defaults .

You enable a disabled menu item with ENABLE ITEM . If you plan to have a particular
item disabled all or most of the time, it's easier to disable it in the menu editor . This
command does the same thing as toggling off the Enable box in the menu editor .

Example

	

DISABLE ITEM(2 ;4)

References

	

CHECK ITEM, ENABLE ITEM, MENU BAR .

DISABLE ITEM

	

59

60

	

DISPLAY RECORD

DISPLAY RECORD

Syntax

	

DISPLAY RECORD <<(filename)>>

Description

	

DISPLAY RECORD displays the current record using the current input layout only as

long as another event does not change the display . If you created a window, 4th

Dimension will display the record in it. Use DISPLAY RECORD to display records

individually with input layout.

Normally, you execute DISPLAY RECORD in a global procedure. You can, however,

place it in a layout procedure when the record you want to display belongs to a file

other than the layout's file .

To display a record through an input layout other than the default input layout,

specify the layout with INPUT LAYOUT before DISPLAY RECORD . If you name a

different layout for display, you must specify the default input layout near the end of

the routine . If you don't specify filename, the command uses the default file . The

example includes a three-second timeout loop to hold the record on the screen .

Example

	

'DisplayLoop
: Displays records serially

DEFAULT FILE([Models])

ALL RECORDS

INPUT LAYOUT("dDisplay")

While (Not(End selection))

DISPLAY RECORD
'Pause display for 3 seconds

. Works near midnight .

vNow:=Current time

While(Abs(Current time-vNow)<3)

End while

NEXT RECORD

End while

INPUT LAYOUT("InOut2") 'Restore std layout

References

	

DISPLAY SELECTION, INPUT LAYOUT, OPEN WINDOW .

DISPLAY SELECTION

Syntax

	

DISPLAY SELECTION < (*)I (filename<<;*»)»

Description

	

DISPLAY SELECTION displays all records in the current selection of filename through

the current output layout . If the selection contains only one record and you do not

include the optional asterisk, the record appears in the input layout. If you include

the asterisk, 4th Dimension will display a one record selection in the output layout .

To see a record in a multiple record selection in an input layout, the user may double-

click on the desired record . If you have opened a window, 4th Dimension will display

the selection in it. If you don't specify filename, the command uses the default file .

DISPLAY SELECTION executes the Before and During phases simultaneously, once

for each record .

+ DISPLAYorMODWY DISPLAY SELECTION and MODIFY SELECTION work alike

in all respects except one . That is, when the user double-clicks a record, both

display the record in the current input layout, but only MODIFY SELECTION lets

the user modify the contents of the record .

Normally, you execute DISPLAY SELECTION in a global procedure . You can,

however, place it in a layout procedure when the selection you want to display belongs

to a file other than the layout's file . If you do not include a button in your layout, 4th

Dimension will supply its own . For output layouts, the button "Done" appears in the

lower right corner of the window. For input layouts, the 4th Dimension button panel

appears. When creating an output layout, place an Accept button in the footer area of

the layout.

If the user clicks a button or selects a menu item, the layout procedure for the currently

displayed layout will be activated . You can then test Menu selected or the button and

perform an action such as a sort or search.

The user can scroll through the selection and click on a record to select it . Clicking a

different record deselects the first record and selects the second record. To select a

contiguous group of records, click the first record and Shift-click the last record . To

select noncontiguous records, Command-click each desired record . To display any

record in the current input layout, double-click on the record.

DISPLAY SELECTION

	

61

Example

	

DEFAULT FILE([Accounts])
ALL RECORDS
DISPLAY SELECTION ([Accounts] ;*)
CREATE EMPTY SET("MyPicks")
UNION("UserSet" ;"MyPicks" ;"MyPicks")
USE SET("MyPicks")
PRINT SELECTION
CLEAR SET("MyPicks")

References

	

DISPLAY RECORD, MODIFY SELECTION, OPEN WINDOW, USE SET .

62

	

DISPLAY SELECTION

After DISPLAY SELECTION, you can find the records selected by the user by using the
set named UserSet, that 4th Dimension automatically creates whenever the user
makes a selection. If you want to save this set, you should first do a UNION operation
between UserSet and an empty set of the same file, because at the next DISPLAY
SELECTION, 4th Dimension first erases and then recalculates UserSet . Further,
UserSet, as a system set, does not belong to any file .

:• Note: DISPLAY SELECTION leaves the current record as "undefined ." Use FIRST
RECORD, LAST RECORD, or ALL RECORDS to reselect it .

During

Syntax

	

During

Description

	

4th Dimension generates a During phase for an input layout or dialog layout
procedure :
•

	

when the user modifies a field and moves to another field
•

	

when the user modifies a variable and moves to another variable
•

	

when the user clicks a button, radio button, or a check box
•

	

when the user clicks in an external area
•

	

when the user selects from a custom menu, but not from the Apple or Edit menus
•

	

when the user makes a selection from a scrollable area
•

	

within a subrecord, only when the user enters data for that particular subrecord
•

	

within a subrecord, when the subrecord must be redrawn
a when the user presses the Enter key
For printing, 4th Dimension generates Before and During phases for each record .
When doing any calculation on a page-by-page basis (like summing a field), execute
these calculations in the During phase . If you execute them in the Before phase, the
calculations will include the first record on the next page, making your page figures
incorrect .
When displaying with DISPLAY SELECTION or MODIFY SELECTION, 4th Dimension
calls Before and During simultaneously for each record. In a subfile layout
procedure, During goes TRUE when you modify a subfield, regardless of whether
the layout is Full Page or Multi-line . For details on the part of During in the execution
cycle, see 4th Dimension Programmer's Reference .

4• Testing execution phases. Typically, a developer will write If . . .End if statements
for each phase or a Case statement in which two or three of the phases are the
cases .

Example

	

If(During)
LOAD LINKED RECORD(CustNo ;[Client]ID No)
Name :=[Client]Client
City :=[Client]City

End if

References

	

After, Before, In break, In footer, In header .

Syntax

	

ENABLE BUTTON (buttonvar}

Description

	

ENABLE BUTTON reactivates a button specified by buttonvar and previously disabled
by DISABLE BUTTON . buttonvaris the button variable name . Like BUTTON TEXT and
DISABLE BUTTON, ENABLE BUTTON is local to the layout. Buttons include Accept
buttons, Don't Accept buttons, Button buttons, Radio buttons, and Check boxes .
Place ENABLE BUTTON only in a layout or dialog procedure .

Example

	

If (Before)
vWholename :=[RoloText]First+" "+[RoloText]Last
vPNum :=[RoloText]Extension
vRem :=[RoloText]Comment
If (gRecNo=1)

DISABLE BUTTON(bPrevious)
Else

ENABLE BUTTON(bPrevious)
End if
If (gRecNo=gTotRecs)

DISABLE BUTTON(bNext)
Else
ENABLE BUTTON(bNext)

End if
End if

References

	

BUTTON TEXT, DISABLE BUTTON .

64

	

ENABLE BUTTON

ENABLE BUTTON

ENABLE ITEM

Syntax

	

ENABLE ITEM (posintexprl ;posintexpr2)

Description

	

ENABLE ITEM enables a menu command disabled by the DISABLE ITEM procedure
or disabled in the Design environment. posintexprl is the number of the menu title
and posintexpr2 the number of the item within that bar . Numbering excludes the
Apple and Edit menus (File is menu number one) . The example would enable the
fourth item in the second menu title . Like CHECK ITEM and DISABLE ITEM, ENABLE
ITEM is local to the menu bar .
Use MENU BAR to restore the original menu bar as you defined it in the Design
environment, thus restoring all menu and item defaults .
If you plan to have a particular item enabled all or most of the time, it's easier to
enable it in the menu editor. This command does the same thing as checking the
Enable box in the menu editor. If posintexpr2 is zero, the title is enabled and the
individual items reflect the state of their most recent enabling or disabling .

Example

	

ENABLE ITEM(2 ;4)

References

	

CHECK ITEM, DISABLE ITEM, MENU BAR, Menu selected .

ENABLE ITEM

	

65

Syntax

	

End selection <<(filename)>>

Description

	

End selection returns TRUE when the NEXT RECORD command moves the record
pointer past the last record in the current selection of filename. If you don't specify
filename, End selection uses the default file . If the current selection is empty, End
selection returns TRUE .

Once End selection is TRUE, you can only move the record pointer back into the
selection with either LAST RECORD or FIRST RECORD . PREVIOUS RECORD will not
do the job .
During printing, you can test End selection in a footer . End selection returns TRUE
when you print the last footer, meaning that all the records in the selection have been
printed. This can come in handy when you want to print a special message at the end
of a printout. The example moves the record pointer through the current selection,
displaying each record as it goes . Moving past the last record sets End selection to
TRUE, ending the loop.

Example

	

'Forward : Display each record fast
DEFAULT FILE([Addresses])
ALL RECORDS
While (Not(End selection))
DISPLAY RECORD
NEXT RECORD

End while

References

	

Before selection, FIRST RECORD, LAST RECORD, NEXT RECORD, PREVIOUS RECORD .

66

	

End selection

End selection

Syntax

	

End subselection (subfllename)

Description

	

End subselection returns TRUE when NEXT SUBRECORD moves the subrecord
pointer for the current record past the last subrecord in the current subselection of
subfilename. The example shows a portion of a procedure that writes file data,
including subrecord data to a text file, using SEND PACKET.

Example

While (Not(End subselection([I .Card]Phone))) 'Write subfile items
SEND PACKET([I .Card]Phone'PhNum+Char(13))
SEND PACKET([I .Card]Phone'Comment+Char(13))
NEXT SUBRECORD([I .Card]Phone)

End while

References

	

Before subselection, FIRST SUBRECORD, LAST SUBRECORD, NEXT SUBRECORD,
PREVIOUS SUBRECORD .

End subselection

End subselection

	

67

Syntax

	

ERASE WINDOW

Description

	

ERASE WINDOW clears the contents of the window created by OPEN WINDOW and
returns the cursor to the upper left corner of the window, the GO TO XY(0 ;0)
position. Don't confuse ERASE WINDOW, which clears the contents of a window with
CLOSE WINDOW, which takes the window off the screen . The example causes the
window to display a maximum of five lines at a time .

Example

	

'Demo ERASE WINDOW
gLine :=0
DEFAULT FILE([Catalog])
ALL RECORDS
OPEN WINDOW(5 ;40 ;250 ;300 ;0 ;"Inventory Window")
While (Not(End selection))

gLine:=gLine+1
MESSAGE([Catalog]Description+Char(13))
NEXT RECORD
If(Mod(gLine ;S)=0)
ERASE WINDOW

End If
End while

References CLOSE WINDOW, GO TO ~Y, OPEN WINDOW .

68

	

ERASE WINDOW

ERASE WINDOW

EXECUTE

Syntax

	

EXECUTE (strexp~

Description

	

4th Dimension executes strexpr as a statement. The statement cannot contain local
variables. You can include the name of a procedure in an EXECUTE statement .
strexpr can contain any command string except the control of flow statements If,
While, Case, Else, and their End statements . If you want the value of strexpr to
include double quotation marks, include them as Char(34) expressions .
You can use EXECUTE to build 4th Dimension instructions, like file functions "on
the fly." For example, because you cannot pass filenames as parameters, as in
MyProc([MyFilel]), you must pass them as strings-MyProc("MyFilel ")-and use
EXECUTE to build new commands: EXECUTE("FIRST RECORD(["+$1+"])") .

The first example would create and execute the following statement, if gOp were a
plus sign:

vResult:=Fieldl+Field2
The second example will execute the following statement :

v{i} :=Position("a" ;Fieldl)

Examples

	

EXECUTE("vResult:=Fieldl"+gOp+"Field2")
EXECUTE("v{i} := Position("+Char(34)+"a"+Char(34)+" ; Field 1)")

Reference

	

None .

Exp

Syntax

	

Exp (numexpr)

Description

	

Exp raises the natural log base (e = 2 .71828182845904524) by the power of numexpr.
Exp is the inverse function of Log . The example assigns 7 .38905609893065023, the
exponential of 2, to v. (The log of v is 2 .)

Example

	

v :=Exp(2)

References

	

Arctan, Cos, Log, Sin, Tan .

Exp

	

69

70

	

EXPORT DIF

EXPORT DIF

Syntax

	

EXPORT DIF <<(«filename;» docname)»

Description

	

EXPORT DIF writes the current selection from filename to disk as a DIF document

named docname, using the current output layout . If you supply a null string for

docname, the standard file dialog box appears, so that the user can choose the file to

save to. You can get the name of the file opened from the system variable Document .

If you don't specify filename, EXPORT DIF uses the default file .

All EXPORT commands transfer fields and variables to docname based on the order

they appear in the output layout. The first field or variable to be exported is the one

closest to the top of the layout . If two fields are equally close, the leftmost is exported

first. Make sure you choose an output layout that saves the fields and/or variables you

want saved in the order you want them saved . You can use a layout procedure as a part

of this process .

During the export operation, 4th Dimension displays a window to show the progress

of the export. The window also includes a Stop button . If the user clicks the Stop

button, the exporting operation stops . You can test the OK system variable to see

what the user has done. If the export is completed, OK returns 1 . If the user

interrupts the export, OK returns 0. The export always takes place under the current

ASCII map .

If you choose a special export layout, as in the example, you may want to respecify the

database's default input layout near the end of the routine .

Example

	

DEFAULT FILE([Addresses])

SEARCH([Addresses]City="Palo Alto")

OUTPUT LAYOUT("Exporter")

EXPORT DIF("Palo Alto Addresses")

OUTPUT LAYOUT("Outputl ")

References

	

EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, RECEIVE

PACKET, SEND PACKET, USE ASCII MAP .

EXPORT SYLK

Syntax

	

EXPORT SYLK < («filename;» docname)»

Description

	

EXPORT SYLK writes the current selection from filename to disk as a SYLK document

named docname, using the current output layout . If you supply a null string for

docname, the standard file dialog box appears, so that the user can choose the file to

save to. You can get the name of the file opened from the system variable Document .

If you don't specify filename, EXPORT SYLK uses the default file .

All EXPORT commands transfer fields and variables to docname based on the order

they appear in the output layout . The first field or variable to be exported is the one

closest to the top of the layout . If two fields are equally close, the leftmost is exported

first. Make sure you choose an output layout that saves the fields and/or variables you

want saved in the order you want them saved. You can use a layout procedure as a part

of this process .

During the export operation, 4th Dimension displays a window to show the progress

of the export. The window also includes a Stop button . If the user clicks the Stop

button, the exporting operation stops. You can test the OK system variable to see

what the user has done. If the export is completed, OK returns 1 . If the user

interrupts the export, OK returns 0. The export always takes place under the current

ASCII map .

Example

	

DEFAULT FILE([Addresses])

SEARCH([Addresses]City="Palo Alto")

OUTPUT LAYOUT("Exporter")

EXPORT SYLK("Palo Alto Addresses")

OUTPUT LAYOUT("Outputl ")

References

	

EXPORT DIF, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, RECEIVE

PACKET, SEND PACKET, USE ASCII MAP .

EXPORT SYLK

	

7 1

72

	

EXPORT TEXT

EXPORT TEXT

Syntax

	

EXPORT TEXT < («filename,» docname)»

Description

	

EXPORT TEXT writes the current selection from filename to disk as a text document
(ASCII file) named docname, using the current output layout . If you supply a null
string for docname, the standard file dialog box appears, so that the user can choose
the file to save to . You can get the name of the file opened from the system variable
Document. If you don't specify filename, EXPORT TEXT uses the default file .

All EXPORT commands transfer fields and variables to docname based on the order
they appear in the output layout . The first field or variable to be exported is the one
closest to the top of the layout . If two fields are equally close, the leftmost is exported
first. Make sure you choose an output layout that saves the fields and/or variables you
want saved in the order you want them saved . You can use a layout procedure as a part
of this process .
During the export operation, 4th Dimension displays a window to show the progress
of the export. The window also includes a Stop button . If the user clicks the Stop
button, the exporting operation stops . You can test the OK system variable to see
what the user has done. If the export is completed, OK returns 1 . If the user
interrupts the export, OK returns 0 . The export always takes place under the current
ASCII map .
The default field delimiter is the TAB character (ASCII 9) . The default record
delimiter is the carriage return character (ASCII 13) . You can change these by
assigning values to the two system delimiter variables, FIdDelimit and RecDelimit .

Important

Because text fields can contain carriage returns, don't use a carriage return as
a delimiter if you are exporting text fields .

Fields are variable length . If you need fixed length fields, create a layout procedure
that takes fields and creates fixed length variables . The layout should contain only
variables and no fields . Here is an example :
ExportVarl :=Substring(MyFieldl+(" "*20) ;1 ;20)

Example

	

DEFAULT FILE([Addresses])
SEARCH([Addresses]City="Palo Alto")
OUTPUT LAYOUT("Exporter")
EXPORT TEXT("Palo Alto Addresses")
OUTPUT LAYOUT("Outputl ")

References

	

EXPORT DIF, EXPORT SYLK, IMPORT DIF, IMPORT SYLK, IMPORT TEXT, RECEIVE
PACKET, SEND PACKET, USE ASCII MAP .

False

Syntax

	

False

Description

	

False always returns the Boolean value FALSE .

Example

	

'False demo
MyVar := False
If (Not(MyVar))

str:="I'm false ."
Else

str:="I'm true ."
End if
ALERT(str)

References

	

Not, True .

Syntax FIRST RECORD <<(filename)>>

Description

	

FIRST RECORD sets the record pointer to the first record in current selection of
filename and loads the record into memory, making it the current record . All
search, selection, and sorting procedures automatically set the record pointer to the
first record. Use FIRST RECORD when you need to move the pointer back to the first
record. If you don't specify filename, FIRST RECORD uses the default file . If the
current selection is empty, FIRST RECORD has no effect .
The example displays a file of models . To keep the display loop going, the program
tests for End selection, meaning that the NEXT RECORD has pushed the pointer past
the last record. If this condition is TRUE, FIRST RECORD returns the pointer to the
first record, so that the display can continue uninterrupted .

Example

	

' DispIayLoop: Displays records
DEFAULT FILE([Models])
ALL RECORDS
vTimes:=1
While (vTimes <= 5)

While (Not(End selection))
DISPLAY RECORD
NEXT RECORD

End while
FIRST RECORD 'Set record pointer to first record
vTimes:=vTimes+l

End while

References

	

Before selection, End selection, LAST RECORD, NEXT RECORD, PREVIOUS RECORD .

74

	

FIRST RECORD

FIRST RECORD

FIRST SUBRECORD

Syntax

	

FIRST SUBRECORD (subfilename)

Description

	

FIRST SUBRECORD makes the first subrecord in the current subselection of
subfilename the current subrecord . subfilename refers to a subfile belonging to the
current record . All search, selection, and sorting procedures automatically set the
record pointer to the first subrecord . If the subselection is empty, FIRST SUBRECORD
has no effect. In the example, FIRST SUBRECORD loads the first subrecord in the
Phone subfile .

Example

	

'SendSub: Writes a file, including subfiles to disk
SET CHANNEL(10 ;"SubFile .Txt")
DEFAULT FILE([I .Card])
ALL RECORDS
While (Not(End selection))
SEND PACKET([I .Card]Name+Char(13))
ALL SUBRECORDS([I.Card]Phone)
FIRST SUBRECORD([I.Card]Phone)
While (Not(End subselection([I .Card]Phone)))
SEND PACKET([I.Card]Phone'PhNum+Char(13))
SEND PACKET([LCard]Phone'Comment+Char(13))
NEXT SUBRECORD([I .Card]Phone)

End while
SEND PACKET("*****"+Char(13)) 'end of record marker
NEXT RECORD

End while
SEND PACKET("%%%%") 'end of file marker
SET CHANNEL(11) 'close file

References

	

Before subselection, End subselection, LAST SUBRECORD, NEXT SUBRECORD,
PREVIOUS SUBRECORD .

FIRST SUBRECORD

	

75

FONT

FONT has two syntaxes . With the first, you specify the font through a numeric
expression and with the second through a string expression. FONT comes in handy
for highlighting variables in reports . For example, you could use a different font for
all customers owing over $10,000 . The numeric codes and their font names are
presented in Table II-1 below and in Appendix F, "4th Dimension and Macintosh
Codes ."

Table II-1
Font numbers

Font number

	

Font

	

Font number

	

Font

0

	

systemFont (Chicago)

	

9

	

toronto
1

	

applFont

	

11

	

cairn
2

	

newYork

	

12

	

losAngeles
3

	

geneva

	

20

	

times
4

	

monaco

	

21

	

helvetica
5

	

venice

	

22

	

courier
6

	

london

	

23

	

symbol
7

	

athens

	

24

	

taliesin
8

	

sanFran

Syntax 1

	

FONT (var,posintexpr)

Description 1

	

FONT sets the font for var, where var is a variable or scrollable area in a layout .
posintexpr is any valid Apple font code .

Example 1

	

FONT(Salary ;2)

Syntax 2

	

FONT (varstrexpr}

Description 2 FONT sets the font for var, where var is a variable or scrollable area in a layout .
strexpr is any valid Apple font name .

Example 2

	

FONT(Salary ;"Chicago")

References

	

FONT SIZE, FONT STYLE .

76

	

FONT

FONT SIZE

Syntax

	

FONT SIZE (var;posintexpr)

Description

	

FONT SIZE sets the font size for var, where var is a variable or scrollable area in a
layout. posintexpr is any integer between 1 and 128 . If the size doesn't exist,
characters will scale to the size given by posintexpr. If posintexpr is 0, the font size
reverts to the size originally defined in the layout .

Example

	

FONT SIZE(Salary ;l2)

References

	

FONT, FONT STYLE.

FONT STYLE

Syntax

	

FONT STYLE (var;posintexpr)

Description

	

FONT STYLE sets the font style for var, where var is a variable or scrollable area in a
layout, posintexpr is Macintosh font style code . By adding codes together, you can
display characters in combined style. If you want one style (like bold or italic), just
give the style number . The numeric codes for FONT STYLE are presented in
Table II-2 below and in Appendix F, "4th Dimension and Macintosh Codes ."

Table II-2
Font styles

Example

	

Bold :=1
Outline :=8
FONT STYLE(Salary ;Bold+Outline)

References

	

FONT, FONT SIZE .

FONT STYLE

	

77

Style number Style Style number Style

1 Bold 16 Shadow
2 Italic 32 Condensed
4 Underline 64 Extended
8 Outline

FORM FEED

Syntax

	

FORM FEED

Description

	

FORM FEED issues a form feed, pushing paper to the next top of form position .
FORM FEED is useful for creating breaks in reports. PRINT LAYOUT must be followed
by the FORM FEED command to print.

	.• Automatic form feeds : PRINT LABEL and PRINT SELECTION automatically issue
a form feed after the last element in the report is printed .

Example

	

FORM FEED

References

	

PRINT LABEL, PRINT LAYOUT, PRINT SELECTION, PRINT SETTINGS .

78

	

GET HIGHLIGHTED TEXT

GET HIGHLIGHTED TEXT

Syntax

	

GET HIGHLIGHTED TEXT (var) fieldname,numvari ;numvarl)

Description

	

GET HIGHLIGHTED TEXT places the position of the first character of selected text in
numvarl and the position of the last character of the selected text plus one in
numvarl. If numvarl and numvarl are equal, the user has no selected text and the
insertion point is before the numvarl character. GET HIGHLIGHTED TEXT can work
on var (a variable) or on fieidname (a field) .

In the example, GET HIGHLIGHTED TEXT finds the start and end positions of the
selected text. Then, the Substring function extracts the text .

Example

	

GET HIGHLIGHTED TEXT(MyText ;vl ;v2)
MySel := Substring(MyText ;vl ;(v2-vl))

References

	

HIGHLIGHT TEXT, Substring .

GO TO FIELD

Syntax

	

GO TO FIELD (fieldname)

Description

	

GO TO FIELD selects the field named by fieldname in an input layout . Thus, it is like

clicking a field. The example selects the Part number field for entry before the layout

appears on the screen . Because the example is a layout procedure, no filename prefix

appears before the fieldname PartNo .

Example

	

'Layout procedure
: Order Form

If (Before)

GO TO FIELD(PartNo)

End if

References

	

Modified, REJECT.

GO TO XV

Syntax

	

GO TO XY (posintexprl ;posintexpr2)

Description

	

GO TO XY places the cursor at the specified character position in a created window .

posintexprl is the X-axis value and posintexpr2 is the Y-axis value. The top left corner

is 0, 0. 4th Dimension automatically places the cursor at 0, 0 when it creates a window

and when you call ERASE WINDOW. Use GO TO XY to position messages in a text

window created with OPEN WINDOW. The example indents each line by 5 columns .

+ Monaco font. GO TO XY handles precise cursor positioning, because 4th

Dimension uses the nonproportional Monaco font to display text in a custom

window. All characters in this font are the same width .

Example

	

'Windows
: Demo GO TO XY

gLine:=0

DEFAULT FILE([Catalog])

ALL RECORDS

OPEN WINDOW(5 ;40 ;250 ;300 ;0 ;"Window")

While (Not(End selection))

gLine:=gLine+1

GO TO XY(5;gLine)

MESSAGE([Catalog]Description+Char(13))

NEXT RECORD

End while

References ERASE WINDOW, OPEN WINDOW .

GO TO XY

	

79

GRAPH

Syntax

	

GRAPH (var;posintexpr ;strvarXl subfieldnameX;numvarYl subfieldnameY)

Description

	

GRAPH can graph data from subfields and/or from variables . The GRAPH syntax
includes four elements :
•

	

the graph area variable (var)
•

	

a numeric expression stating the type of graph (posintexpr)
•

	

an X-coordinate element, always an alphanumeric type (strvarX or
subfieldnameX)

•

	

a numeric Y-coordinate element (numvarYor subfieldname)'); you can have as
many as eight when programming

var is the name you gave the graph area in the layout that displays the graph. (You
must have prepared a graph area in a layout .) posintexpr is in the range of 1 through 8
and represents the type of graph to be drawn (see Table II-3) . Each coordinate can be
either a variable or a subheld . The X coordinate element must be an alphanumeric
field, because it labels the x-axis . The Y coordinate element represents the values to
be graphed on the y-axis and must be of a numeric type .

+ Graphing variable arrays: When graphing an array of variables, you must include
the number of elements in the array . This number is kept in the zero array element .
For example, if you graph v1 through v32, assign 32 to v0 .

Because the GRAPH command functions only in terms of a layout's graph area, var,
place GRAPH only in the layout procedure for the layout to which var belongs.

Table II-3
Graph types

Graph type Graph
number Graph type

Graph
number

Column 1 Area 5
Proportional column 2 Scatter 6
Stacked column 3 Pie 7
Line 4 Picture 8

The first example sends data to a graph area named gSales to be drawn as a bar
chart. It graphs by sales representative names along the x-axis taking data from the
History file's subfield, Info. The y-axis compares actual sales against goals .

	:• Pie charts: Pie charts only graph the first Y coordinate .

Examples

	

GRAPH(gSales;l ;[History]Info'SalesRep ;[History]Info'Sales ;[History]Info'Goal)

'Display an example graph .
If (During)
X0:=2
X1 :="Profit"
X2:="Sales"
Ya:=" 1990" ' The Ya label
Yb:="1991" ' The Yb label
Ya0:=2
Yal :=30
Ya2:=40
Yb0:=2
Ybl :=50
Yb2:=75
GRAPH(vGraph ;l ;X ;Ya ;Yb)

End if

References

	

GRAPH FILE, OUTPUT LAYOUT .

GRAPH

	

81

GRAPH FILE

Syntax 1

	

GRAPH FILE («filename,»posintexpr fieldnameXfieldnameY)

Syntax 2

	

GRAPH FILE <<(filename)>>

Description 1

	

GRAPH FILE graphs the data in selected fields of a file . posintexpr is in the range of 1
through 8 and represents the type of graph to be drawn (see Table II-3) . fieldnameX
must be an alphanumeric field and labels the x-axis . You can have as many as eight
fieldnameY (but only five in the User environment) . fieldnameY represents the
values to be graphed on the y-axis and must be of a numeric type .

82

	

GRAPH FILE

+ Pie charts: Pie charts graph only the first Y coordinate .
Both syntaxes let the user copy the graph from the screen to the Clipboard (and if you
wish, into the Scrapbook) . If you don't specify filename, GRAPH FILE uses the
default file .

+ Graph menus: Both syntaxes bring up two menus (Pictures and Graph type), so the
user can regraph and paste .

+ Note: GRAPH FILE will graph only the first 100 records in the selection.

Description 2 GRAPH FILE without graphing arguments brings up the standard graph window, so
that the user can select fields, type, and so on . If you don't specify filename, GRAPH
FILE applies to the default file .

Example

	

DEFAULT FILE([SALES])
ALL RECORDS
If(Records in selection>0)

'Create a graph under Syntax 1
GRAPH FILE(2 ;Seller ;ActuaISales ;Goal)

'Let the user create a graph (Syntax 2)
GRAPH FILE

End if

Reference

	

GRAPH.

HIGHLIGHT TEXT

Syntax

	

HIGHLIGHT TEXT (var) fieldname;posintexprl ;posintexpr2)

Description

	

HIGHLIGHT TEXT highlights a group of characters in var (a variable) or in fieidname
(a field) . posintexprl represents the first character position you wish to highlight.
posintexpr2 represents the last character plus one in the group of characters to be
highlighted . You can position the insertion point in a string without highlighting a
character by giving the same value to posintexprl and posintexpr2. HIGHLIGHT TEXT
works on all fields .
If posintexpr2 is greater than the number of characters between posintexprl and the
end of the text, 4th Dimension selects all characters between posintexprl and the end
of the text .
You can call HIGHLIGHT TEXT for a field before the cursor is in that field . When the
cursor enters the field, the highlighted text will appear. Place HIGHLIGHT TEXT in a
layout procedure only .

Examples

	

HIGHLIGHT TEXT(vText ;3 ;3) 'insertion before 3rd character

HIGHLIGHT TEXT(vText ;2 ;3) 'highlight the 2nd character

HIGHLIGHT TEXT(vText;4;32767) 'highlight 4th character and all the rest

Reference

	

GET HIGHLIGHTED TEXT .

HIGHLIGHT TEXT

	

83

Syntax

	

If (boolexpr)
{statement(s)}
{Else
{statement(s)}}
End if

Description

	

If executes statement(s) following it when boolexpr returns TRUE. If boolexpr
returns FALSE, the statement(s) following Else executes. The Else clause is
optional .

Example

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM("MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar:=Request("Enter value of 'MyVar")
SAVE VARIABLE("MyDoc";MyVar)

End if
Else

ALERT("Value of 'My Var' is "+MyVar)
End if

References

	

Case of . . .Else . . .End case, While . . .End while .

84

	

If . . . Else . . . End if

If . . .EIse .End..if

Important
Be sure to guard the precedence in Boolean expressions . If you have multiple
conditions, enclose each condition in its own set of parentheses . For example ;
((B>1) & (C<0)) . A second example is B>(3*5) .

You can nest If statements within If statements, as long as the close of an inner If
statement does not appear after the close of an outer If statement . All If statements
must begin and end within a given routine . (You cannot distribute parts of an If
statement over two or more routines .)
The example tests for an undefined variable . If the variable is undefined, the
statements following the If clause ask for a number and save the variable . If the
variable already exists, the Else clause puts up an Alert box, stating the value of the
variable .

IMPORT DIF

Syntax

	

IMPORT DIF < (<<filename;»docname)»

Description

	

IMPORT DIF loads the DIF document specified by docname into filename in
accordance with the current input layout . The command saves each record as it is
imported. If you supply a null string for docname, the standard file dialog box
appears, so that the user can choose the desired file to import . You can get the name
of the file opened from the system variable Document . If you don't specify filename,
IMPORT DIF uses the default file .
Be sure to import through an input layout that contains the correct fields and/or
variables in the correct order. All IMPORT commands transfer data into layout fields
and variables based on the order they appear in the input layout . The first data item
read from the docname document is stored in the topmost field or variable in the
input layout. If two fields or variables are equally close, the leftmost is imported first .
You can make use of a layout procedure when importing data . 4th Dimension
executes the layout procedure for each record before saving the record.
During the import operation, 4th Dimension displays a window to show the progress
of the import . The window also includes a Stop button . If the user clicks the Stop
button, importing stops, but previously imported records are already saved . You can
test the OK system variable to see what the user has done . If the import is completed,
OK returns 1 . If the user interrupts the import, OK returns 0 . The import always takes
place under the current ASCII map .
If you choose a special import layout, as in the example, you may need to respecify
the database's default input layout near the end of the routine .

Example

	

'GetDIF; Mail List db, Addresses file
DEFAULT FILE([Addresses])
INPUT LAYOUT("Importer")
MESSAGE("Now loading DIF file .")
IMPORT DIF("MaiI .DIF")
INPUT LAYOUT("Inputl ") 'Reset default

References

	

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT SYLK, IMPORT TEXT, RECEIVE
PACKET, SEND PACKET, USE ASCII MAP .

IMPORT DIF

	

85

IMPORT SYLK

Syntax

	

IMPORT SYLK <<(<<filename;»docname)»

Description

	

IMPORT SYLK loads the SYLK document specified by docname into filename in

accordance with the current input layout. The command saves each record as it is

imported. If you supply a null string for docname, the standard file dialog box

appears, so that the user can choose the desired file to import. You can get the name

of the file opened from the system variable Document . If you don't specify filename,

IMPORT SYLK uses the default file .

Be sure to import through an input layout that contains the correct fields and/or

variables in the correct order. All IMPORT commands transfer data into layout fields

and variables based on the order they appear in the input layout. The first data item

read from the docname document is stored in the topmost field or variable in the

input layout. If two fields or variables are equally close, the leftmost is imported first.

You can make use of a layout procedure when importing data . 4th Dimension

executes the layout procedure for each record before saving the record .

During the import operation, 4th Dimension displays a window to show the progress

of the import. The window also includes a Stop button . If the user clicks the Stop

button, the importing operation stops, but previously imported records are already

saved. You can test the OK system variable to see what the user has done . If the import

is completed, OK returns 1 . If the user interrupts the import, OK returns 0. The

import always takes place under the current ASCII map .

If you choose a special import layout, as in the example, you may need to respecify

the database's default input layout near the end of the routine .

Example

	

'GetSYLK
; Mail List db, Addresses file

DEFAULT FILE([Addresses])

INPUT LAYOUT("Importer")

MESSAGE("Now loading SYLK file .")

IMPORT SYLK("MaiI .SYLK")

INPUT LAYOUT("Inputl") 'Reset default

References

	

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT TEXT, RECEIVE

PACKET, SEND PACKET, USE ASCII MAP .

86

	

IMPORT SYLK

IMPORT TEXT

Syntax

	

IMPORT TEXT <<(«filename;» docname)»

Description

	

IMPORT TEXT loads the text (ASCII) document specified by docname into filename
in accordance with the current input layout. The command saves each record as it is
imported. If you supply a null string for docname, the standard file dialog box
appears, so that the user can choose the desired file to import . You can get the name
of the file opened from the system variable Document. If you don't specify filename,
IMPORT TEXT uses the default file .
Be sure to import through an input layout that contains the correct fields and/or
variables in the correct order. All IMPORT commands transfer data into layout fields
and variables based on the order they appear in the input layout . The first data item
read from the docname document is stored in the topmost field or variable in the
input layout. If two fields or variables are equally close, the leftmost is imported first .
You can make use of a layout procedure when importing data . 4th Dimension
executes the layout procedure for each record before saving the record.
During the import operation, 4th Dimension displays a window to show the progress
of the import. The window also includes an Stop button . If the user clicks the Stop
button, importing stops, but previously imported records are already saved . You can
test the OK system variable to see what the user has done . If the import is completed,
OK returns 1 . If the user interrupts the import, OK returns 0 . The import always takes
place under the current ASCII map .
If you choose a special import layout, as in the example, you may need to respecify
the database's default input layout near the end of the routine .
By default, the TAB (ASCII 9) is the field delimiter and the carriage return (ASCII 13)
character is the record delimiter . Before calling IMPORT TEXT you can change the
delimiters for fields and records by assigning new values to the FIdDelimit and
RecDelimit system variables using the appropriate ASCII character codes.

Example

	

'GetText ; Mail List db, Addresses file
DEFAULT FILE([Addresses])
INPUT LAYOUT("Importer")
MESSAGE("Now loading text file .")
IMPORT TEXT("MaiI .Text")
INPUT LAYOUT("Inputl ") 'Reset default

References

	

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, RECEIVE
PACKET, SEND PACKET, USE ASCII MAP .

IMPORT TEXT

	

87

Syntax

	

In break

Description

	

In break returns TRUE when 4th Dimension prints the break area of a layout . That is,
when a sort level changes . 4th Dimension assigns the grand total the sort level 0, the
first sorted field level 1, and so on through the next to the last sort . The last sort is not
counted .
To generate figures in a break, you must set up a variable in the layout's break area (the
area between the D and B lines) and assign the particular figures to the variable
within the In break portion of the layout procedure . Do not put In break in Before
or During . Each of these is a distinct phase of the execution cycle and should stand
alone. Place In break in an output layout procedure only .
In break is necessary for printing a sorted selection with subtotals . In this case, when
In break returns TRUE, you can print a subtotal, using the Subtotal function. You
can test the level of the subtotal with the Level function, as in the example .

Example

	

'Report3 output layout procedure
If (Before)

gouarter :=[Income]Quarter
vStrl :=""
vStr2:="

End if
If (In break)

Case of
(Level=l)
vStrl :="Subtotal for Quarter "+String(gQuarter)+" : $"+String(Subtotal(Sale))
(Level=0)
vStrl :="Final figures to date Maximum : $"+String(Max([Income]Sale))
vStr2 :="

	

Total: $"+String(Sum(Sale))
End case

End if

References

	

Before, During, In footer, In header, Level, SORT, SORT SELECTION, Subtotal .

88

	

In break

In break

Important
The Subtotal function must be present to print any break .

4th Dimension breaks on every sorted field except the last one . For example, if you
sort on [Sales]Region, [Sales]Rep, and [Sales]Customer, 4th Dimension generates a
level 1 break for [Sales]Region and a level 2 break for [Sales]Rep . [Sales]Customer
has no break level . To generate a level 3 break for [Sales]Customer, do a fourth sort,
even if it's on [Sales]Customer once again .

In footer

Syntax

	

In footer

Description

	

In footer returns TRUE when 4th Dimension prints the footer area of a layout. That
is, at the end of every page . In footer is useful if you want to set up one or more
variables within the footer area (the area between the B and F lines) . Through
variables, you can supply information like page number, date, and so on . Do not put
In footer in Before, During, or other execution cycle phases . Each of these is a distinct
phase of the execution cycle and should stand alone . Place In footer in an output
layout procedure only .

	:• Determining the end of a report: You can use the End selection function in the
footer phase of a layout procedure to determine the end of a document when using
PRINT SELECTION .

Example

	

If(In footer)

PageNo:=PageNo+1
End if

References

	

Before, During, In break, In header, Level, Subtotal .

Syntax

	

In header

Description

	

In header returns TRUE when 4th Dimension prints the header area of a layout . In
header is useful for setting up one or more variables within the header area (the area
between the top and the H line). Through variables, you can supply information like
page number, date, and so on . Do not put In header in Before, During, or other
execution cycle phases. Each of these is a distinct phase of the execution cycle and
should stand alone . Place In header in an output layout procedure only .

+ Determining the beginning of a report : You can use the Before selection function
in the header phase of a layout procedure to determine the beginning of a
document when using PRINT SELECTION .

Example

	

If(In header)
If(Before selection)
PageNo :=O

End if
PageNo:=PageNo+1

End if

References

	

Before, During, In break, In footer .

In header

INPUT LAYOUT

Syntax

	

INPUT LAYOUT(«filename;»strexpr}

Description

	

INPUT LAYOUT specifies which layout (named by strexpr) 4th Dimension will present
for data entry to filename . The layout must belong to filename. If you don't specify
filename, INPUT LAYOUT uses the default file .
INPUT LAYOUT keeps the specified layout as the default input layout . If you specify a
different input layout than the default, be sure to specify the old default layout after the
input operation, if you want to return to it as the default .
INPUT LAYOUT does not cause the layout to appear . Commands like ADD RECORD
and MODIFY RECORD will present the specified layout for data entry and
modification . When importing data, the input layout won't appear . It serves as an
organizer and channel between the external file and a 4th Dimension database file . If
you do not specify an input layout for activities like IMPORT TEXT, ADD RECORD, and
MODIFY RECORD, 4th Dimension uses the default input layout .
You cannot type data into variables in a layout specified by INPUT LAYOUT (only
fields serve this purpose) . However, you can display information through variables
and you can use button variables in an INPUT LAYOUT layout. If you want to gather
information with variables, call the layout with DIALOG .

+ Special use of the input layout: Both DISPLAY SELECTION and MODIFY
SELECTION display a record in the current input layout if there is only one record
in the current selection .

Example

	

'GetText; Mail List db, Addresses file

DEFAULT FILE([Addresses])
INPUT LAYOUT("Importer")
MESSAGE("Now loading text file .")
IMPORT TEXT("MaiI .Text")
INPUT LAYOUT("Inputl") 'Reset default
ALERT(lmport successfully completed .")

References

	

ADD RECORD, DISPLAY RECORD, IMPORT DIF, IMPORT SYLK, IMPORT TEXT,

MODIFY RECORD, OUTPUT LAYOUT, PRINT RECORD .

INPUT LAYOUT

	

91

mtn

Syntax

	

Int (numexpr)

Description

	

Int returns the largest whole number that is less than or equal to numexpr. If numexpr

is negative, Int truncates it toward negative infinity .

Examples

	

x:=lnt(123 .4) 'x gets 123
y:-Int(-123.4) 'y gets -124

References

	

Abs, Dec, Round, Trunc .

INTERSECTION

Syntax

	

INTERSECTION (strexpri;strexpr2;strexpr3)

Description

	

INTERSECTION creates a set from the intersection of two sets : seti (specified by
strexpri) and set2 (specified by strexpr2). strexpr3 names the resulting set, seta .
INTERSECTION includes only those elements common to both setl and set2 . Set3
needn't exist prior to issuing this command . In fact, if it does exist, 4th Dimension
will delete the old set and recreate it after recomputing the new set. Further, Seta can
be either setl or set2 .

Example

	

INTERSECTION("New York" ;"Women" ;"NewList")

References

	

CLEAR SET, DIFFERENCE, SAVE SET, UNION, USE SET .

92

	

INTERSECTION

INVERT BACKGROUND

Syntax

	

INVERT BACKGROUND (vat

Description

	

INVERT BACKGROUND operates as a toggle to invert the background behind a
particular variable in a layout . INVERT BACKGROUND is local to its layout and the
current record . Place INVERT BACKGROUND in the layout procedure for the layout
containing var only. It is the display, not the data, that gets inverted. It works both
when printing and when displaying .

Example

	

INVERT BACKGROUND(vDay)

References

	

FONT, FONT SIZE, FONT STYLE, HIGHLIGHT TEXT.

LAST RECORD

Syntax

	

LAST RECORD <<(filename)>>

Description

	

LAST RECORD sets the record pointer on the last record in the current selection of
filename and makes the last record the current record . If you don't specify filename,
LAST RECORD uses the default file . The example loads the last record in the file and
displays each record in reverse order .

Example

	

'Backward : demo LAST RECORD & Before selection
DEFAULT FILE([Addresses])
ALL RECORDS
LAST RECORD
While (Not(Before selection))
DISPLAY RECORD
PREVIOUS RECORD

End while

References

	

Before selection, End selection, FIRST RECORD, NEXT RECORD, PREVIOUS RECORD .

LAST RECORD

	

93

Length

Syntax

	

Length (strexp~

Description

	

Length returns the number of characters in strexpr.

Example

	

vLength :=Length("abc") 'vLength gets 3

References

	

Position, Substring .

LAST SUBRECORD

Syntax

	

LAST SUBRECORD (subfilename)

Description

	

LAST SUBRECORD sets the subrecord pointer to the last subrecord and makes it the
current subrecord of the current subselection of subfilename. subfilename refers to a
subfile belonging to the current record . The example shows a portion of a procedure
that uses LAST SUBRECORD and PREVIOUS SUBRECORD to start at the last
subrecord of a subselection and move backward through the subselection .

Example

ALL SUBRECORDS([Stats]Sales)
LAST SUBRECORD([Stats]Sales)
While (Not(Before subselection([Stats]Sales)))

vReport:=vReport+String([Stats]Sales'Bucks)+Char(13)
PREVIOUS SUBRECORD([Stats]Sales)

End while

References

	

Before subselection, End subselection, FIRST SUBRECORD, NEXT SUBRECORD,
PREVIOUS SUBRECORD .

Level

Syntax

	

Level

Description

	

Level returns the level at which the next total will take place. The range of Level is
from 0 to 30 . 4th Dimension assigns a number to the Level function when you print a
sorted selection with PRINT SELECTION and when you call the Subtotal function in a
layout procedure. The Level function returns 0 when 4th Dimension prints a grand
total, 1 when 4th Dimension prints a break on the first sorted field, 2 when 4th
Dimension prints a break on the second sorted field, and so on .
4th Dimension breaks on every sorted field except the last one . For example, if you
sort on [Sales]Region, [Sales]Rep, and [Sales]Customer, 4th Dimension generates a
level 1 break for [Sales]Region and a level 2 break for [Sales]Rep. [Sales]Customer
has no break level. To generate a level 3 break for [Sales]Customer, do a fourth sort,
even if it's on [Sales]Customer once again .
Use Level to customize different break levels . In the example, the level determines
which strings 4th Dimension prints at each break and the subtotal amount . Place the
Level function in the Break phase of a layout procedure .

Example

	

' Report3 output layout procedure
If (Before)

gQuarter:=[Income]Quarter
vStr1 :="
vStr2 :="

End if
If (In break)

Case of
(Level=l)
vStrl :="Subtotal for Quarter "+String(gQuarter)+" : $"+String(Subtotal(Sale))

(Level=0)
vStrl :="Final figures to date Maximum : $"+String(Max([Income]Sale))
vStr2 :="

	

Total: $"+String(Sum(Sale))
End case

End if

References

	

In break, In footer, SORT SELECTION, Subtotal .

LOAD LINKED RECORD

Syntax

	

LOAD LINKED RECORD (fieldnamel<< fieldnamel»)

Description

	

LOAD LINKED RECORD establishes a relationship between two fields (usually in two
files) where fieldnamel is the linking field (the field from which the arrow extends in
the Design environment) . A link, the basis of the relationship between the two files, is
a pointer to the linked record . This pointer is stored in the linking record . Because
the pointer is saved with the linking record, finding the linked record is extremely
fast. Each link adds four bytes per linking record .

LOAD LINKED RECORD is activated the first time it's invoked for a record, and
thereafter only when fieldnamel is modified.
LOAD LINKED RECORD finds the linked record pointed to by fieldnamel, points to it,
and loads it into memory, making it the current record for its file .

:• Linked field: A linked field is the specific field in the linked file, the value of which
uniquely identifies its record to the linking procedure .

The Mandatory attribute applied to a linking field will require that a matching record
can be linked. If the user enters data that has no corresponding record in the linked
file, 4th Dimension will ask the user if the user wants to create a new record for the
linked file. 4th Dimension will automatically link the new record .
If the Mandatory attribute is not set and LOAD LINKED RECORD does not find a
matching record, 4th Dimension stores a null pointer with the linking record . A null
pointer points to no record in the linked file and LOAD LINKED RECORD will load no
record.
The optional fieldnamel must be a field in the linked file . The type offeldname2
cannot be Text, Date, or Subfile . If you specify the second argument, fieldnamel,
4th Dimension displays a two-column list of records that match the value in the
linking field . The left column displays linked field values and the right column
displaysfeldname2 values . If the user selects a record from the list, that record
pointer is stored as the link . If there is only one match, the link is to that match, and
the list does not appear . This is useful if you have more than one record containing
the same field value in the linked file .
The user can also use a wildcard character (®) in the linking field, if the field is a field
of type Alpha. In the example, the command

LOAD LINKED RECORD(Name ;[Client]IdentNo)

lets the user enters A® to see a list of all clients whose name begins with A along with
each client's identification number .

96

	

LOAD LINKED RECORD

•3 Modifying the linking field: If you call LOAD LINKED RECORD only in the After

phase of the execution cycle, you must force the link with a field modification . You

can do this by assigning the linking field to itself. For example : Name := Name .

LOAD LINKED RECORD works with links to subfiles, but you must have a link to the

record-level file and to the subfile linked field. When using a link to a subrecord, you

must first use LOAD LINKED RECORD to load the linked record into memory . Then

do a second LOAD LINKED RECORD to the subfile . For other discussions on links, see

4th Dimension User's Guide and 4th Dimension Programmer's Reference .

In the example, the Name field receives data from the Client file through Client's

Name field. The rest of the procedure states that, based on the link, the linking Name

field will get its data from the [Client]IdentNo field and that City will get data from the

[Client]City field . The procedure does not name the linking file, because the example

routine is an input layout procedure .

Example

	

If(During)

If(Modified(Name))

LOAD LINKED RECORD(Name ;[Client]IdentNo)

ID:=[Client]IdentNo

City :=[Client]City

End if

End if

References

	

ACTIVATE LINK, CREATE LINKED RECORD, LOAD OLD LINKED RECORD, Old, SAVE

LINKED RECORD, SAVE OLD LINKED RECORD .

LOAD LINKED RECORD

	

97

LOAD OLD LINKED RECORD

Syntax

	

LOAD OLD LINKED RECORD (fieidname)

Description

	

When a record is modified, 4th Dimension makes the changes to a duplicate of the
original record . LOAD OLD LINKED RECORD works like LOAD LINKED RECORD,
except that it uses the record pointer stored in the original linking record .
You execute LOAD OLD LINKED RECORD to access the record previously linked to the
linking record. If you want to modify this old linked record and save it, you must
execute SAVE OLD LINKED RECORD . For other discussions on links, see
4th Dimension User's Guide and 4th Dimension Programmer's Reference .

Example

	

'Layout procedure : AddOrderln
Case of

:(Before)
Order No:=gOrderNo
GO TO FIELD(PartNo)

:(During) 'User modifies linking field, creating a new linked rec
LOAD LINKED RECORD(PartNo)
Item :={Catalog]Description
Item Price :=[Catalog]Price
vOnhand :=[Catalog]OnHand-Quantity
Order Total :=ltemPrice*Quantity

:(After) 'This works in all cases--whether modified or not
'After validation, Save the new data in linked record
'Subtract order qty from catalog

{Catalog]OnH and :=[Catalog]On Hand-Quantity
SAVE LINKED RECORD(PartNo)

Be sure to update the old linked record,
Re-instate old Quantity

LOAD OLD LINKED RECORD(PartNo)
[Catalog]OnHand :=[Catalog]OnHand+Old(Quantity)
SAVE OLD LINKED RECORD(PartNo)

End Case

References

	

ACTIVATE LINK, CREATE LINKED RECORD, LOAD LINKED RECORD, Old, SAVE LINKED

RECORD, SAVE OLD LINKED RECORD .

98

	

LOAD OLD LINKED RECORD

LOAD RECORD

Syntax LOAD RECORD <<(filename)>>

Description

	

LOAD RECORD loads the current record of filename into memory. See 4th

Dimension Utilities and Developer's Notes for details on this and other multi-user

commands .

LOAD SET

Syntax

	

LOAD SET («filename;» strexpr;docname)

Description

	

LOAD SET loads a set into memory from disk . filename is the name of the file with

which the set is associated . strexpr is the set name, and docname is the name of

document to which you saved the set. If you don't specify filename, LOAD SET uses

the default file .

The syntax gives you the option of giving the set and its document different names . A

set document can contain only one set . If you supply a null string for docname, the

standard file dialog box appears, so that the user can choose the file to load . You can

save a set with the SAVE SET command .

You can test the OK system variable to make sure the set loaded correctly . If it did,

OK returns 1 . If not, OK returns 0 .

Warning

If the data file has changed (additions and deletions), LOAD SET and USE SET

may select records that were not in the original set .

Example

	

'Export Palo Alto Text
; Mail List db

'Saves a text file of all Palo Alto customers

DEFAULT FILE([Addresses])

LOAD SET([Addresses] ;"Palo Alto";"Palo Alto Set")

USE SET("Palo Alto")

OUTPUT LAYOUT("Exporter")

EXPORT TEXT("Palo Alto Addresses")

CLEAR SET("Palo Alto")

OUTPUT LAYOUT("Outputl ")

References

	

CLEAR SET, SAVE SET, USE SET.

LOAD SET

	

99

Syntax

	

LOAD VARIABLE (docname,var{ ;*})

Description

	

LOAD VARIABLE reads all variables (var) into memory from a file named docname.
You create the file and the list of variables with the SAVE VARIABLE command . If
docname is a null string, 4th Dimension opens the standard file dialog box, so the
user can select the file .
After LOAD VARIABLE, test to make sure that the variables were loaded as in the
example. Trying to work with undefined variables returns an error message .

Example

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM("'MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar:=Request("Enter value of 'MyVar'")
SAVE VARIABLE("MyDoc";MyVar)

End if
Else

ALERT("Value of 'MyVar' is "+MyVar)
End if

References

	

CLEAR VARIABLE, SAVE VARIABLE, Undefined .

LOAD VARIABLE

Locked

Syntax

	

Locked <<(filename)>>

Description

	

Locked works in a multi-user environment . Locked returns TRUE when a particular
record already is in use by someone on the network . See 4th Dimension Utilities and
Developer's Notes for details on this and other multi-user commands .

Log

Syntax

	

Log (numexpr)

Description

	

Log returns the natural (Napierian) log of numexpr. Log is the inverse function of
Exp . A natural log has a base of 2 .71828182845904524 (e) and a common log has a
base of 10 .
To convert to common log (log10), multiply the log by 0 .434294481903251828 .
To convert a common log to a natural log, multiply the common log by
2.30258509279404568. The example assigns the natural log of 2
(0.693147180559945309) to LogE and then converts this number
to the common log of 2 (0 .301029995663981 195) .

Example

	

LogE :=Log(2)
Log 10:=LogE*0.434294481903251828

References

	

Arctan, Cos, Exp, Sin, Tan .

Lowercase

Syntax

	

Lowercase (strexpr)

Description

	

Lowercase returns strexpr in which all alphabetic characters are in lowercase. The
example capitalizes the first letter, and puts the rest of the string characters in
lowercase .

Example

	

'Function Capitalize
'Puts first letter in upper case and rest in lowercase
$0 :=Uppercase(Substring($1 ;1 ;1))+Lowercase(Substring($1 ;2 ;Length($1)-1))

References

	

Ascii, Char, Length, Position, Substring, Uppercase .

Lowercase

	

1 01

Syntax 1

	

Max (fieldname)

Description 1

	

Max returns the maximum value for fieidname in the current selection . Max works
only in In footer and In break in an output layout procedure when printing with
PRINT SELECTION . To find a maximum number, 4th Dimension must work with each
record in the selection. At print time, 4th Dimension brings each record into
memory and finds the maximum figure .

Max

Max has two syntaxes. The first applies to finding the maximum value of a particular
field in the current selection. It only works in a footer or break at print time . The
second applies to finding the maximum value of a particular subfield in a specified
subselection . In both cases, the field type must be numeric .

Important
Max does not clear after a break . Rather, it calculates a record-by-record
maximum value for the entire selection . Max is only meaningful when printed in
break level 0 .

Example 1

	

If(In footer & End selection([Income]))
vMax:=Max([Income]Sales)

End if

References 1

	

Average, In break, In footer, Min, Squares sum, Std deviation, Sum, Variance .

Syntax 2

	

Max (subfieldname)

Description 2 Max returns the maximum value of subfieldname in the current subselection of the
subfile .

Example 2

	

vMax :=Max([Invoice]Ordered'ItemTotal)

References 2 Average, Min, Squares sum, Std deviation, Sum, Variance .

MENU BAR

Syntax

	

MENU BAR (posintexpi)

Description

	

MENU BAR sets the current menu bar to the bar identified by posintexpr. The Menu
editor assigns a number to each menu as you create it . This assigned number is
posintexpr. MENU BAR also changes all menu titles to their default state (either
enabled or disabled). All menu items are displayed without check marks .

Example

	

MENU BAR(2)

References

	

CHECK ITEM, DISABLE ITEM, ENABLE ITEM, Menu selected .

Menu selected

Syntax

	

Menu selected

Description

	

Menu selected returns a long integer (a four-byte integer) . The low integer number
contains the menu item number and the high integer number contains the menu ID
number. Menu selected returns 0 if no menu item was selected . Menu selected works
only in the During phase of layout and file procedures .
The Edit and Apple menus are built in and aren't a part of the menu count . The File
menu is menu title number one. The example uses Menu selected to supply the menu
and item aguments to CHECK ITEM.

To find the menu ID, divide Menu selected by 65,536 and convert the result to an
integer. To find the menu item ID, calculate the modulo of Menu selected with the
modulus 65,536 .

Example

	

'MenuCheck: Call only in During
If (Du ring)

If (Menu selected#0)
CHECK ITEM(Int(Menu selected/65536) ;Mod(Menu selected ;65536) ;

Char(18))
End if

End if

References

	

CHECK ITEM, DISABLE ITEM, During, ENABLE ITEM .

Menu selected

	

103

Syntax

	

MESSAGE (strexp~

Description

	

MESSAGE displays strexpr in a message box until another activity modifies the
screen . If you opened a window (OPEN WINDOW), the message text (in Monaco font)
will appear in it without the message box . If strexpr is a variable, your message can be
up to 255 characters .
When you display a message in a window, if your message is wider than the window,
4th Dimension automatically performs wraparound on your text. If you want to
control line breaks, concatenate the carriage return character into your message . If
your message has more lines than the window, 4th Dimension automatically scrolls
the message . If you send successive messages to the window, each message begins at
the character position following the last character of the previous message .

+ Positioning messages: You can use ERASE WINDOW and GO TO XY to position
messages in a window .

Example

	

MESSAGE("Now loading text file .")

References

	

Alert, OPEN WINDOW .

1 04

	

MESSAGE

MESSAGE

MESSAGES OFF

Syntax

	

MESSAGES OFF

Description

	

MESSAGES OFF turns off the standard 4th Dimension progress messages : those
showing the time it takes to perform a task like sorting or printing .

Example

	

MESSAGES OFF
SORT SELECTION([Addresses]ZIP ;> ;[Addresses]Name2 ;>)
MESSAGES ON

Reference

	

MESSAGES ON .

MESSAGES ON

Syntax

	

MESSAGES ON

Description

	

MESSAGES ON returns 4th Dimension to its default state of showing progress
messages .

Example

	

MESSAGES OFF
SORT SELECTION([Addresses]ZIP ;> ;[Addresses]Name2 ;>)
MESSAGES ON

Reference

	

MESSAGES OFF.

MESSAGES ON

	

1 05

Min

Min has two syntaxes. The first applies to finding the minimum value of a particular
field in the current selection . It only works in In break or In footer while you're
printing. The second applies to finding the minimum value of a particular subfield in
a specified subselection . In both cases, the field type must be numeric .

Syntax 1

	

Min (/'ieldname)

Description 1

	

Min returns the minimum value for fleidname in the current selection . This works
only in In footer or In break in an output layout procedure when printing with
PRINT SELECTION . To find a minimum number, 4th Dimension must work with each
record in the selection . At print time, 4th Dimension brings each record into
memory and finds the minimum .

Example 1

	

If(In footer & End selection([Income]))
vMin :=Min([Income]Sales)

End if

Example 2

	

Min([Invoice]Ordered'ItemTotal)

References 2 Average, Max, Squares sum, Std deviation, Sum, Variance .

Important

Min does not clear after a break . Rather, it calculates a record-by-record
minimum value for the entire selection . Min is meaningful only when printed in
break level 0 .

References 1 Average, In break, In footer, Max, Squares sum, Std deviation, Sum, Variance .

Syntax 2

	

Min (subfieldname)

Description 2 Min returns the minimum value of subfieldname in the current subselection of the
subfile .

Mod

Syntax

	

Mod (numexprl;numexpr2)

Description

	

Mod divides numexprl by numexpr2 and returns the remainder, an integer. The
Menu selected function describes how the example works .

Example

	

'MenuCheck : Call only in During
If(During)

If (Menu selected#0)
CHECK ITEM(lnt(Menu selected/65536) ;Mod (Menu selected ;65536) ;

Char(18))
End if

End if

References

	

Dec, Int, Random .

Modified

Syntax

	

Modified (fieldname)

Description

	

Modified returns TRUE if the user has modified feldname during data entry. A field
is considered modified when a user types characters in it and leaves the field by
pressing Tab or by clicking in another field, on a button, or in an area (like a
scrollable or external area) . Use Modified to test a change to a field when you might
want to take an action, like error checking or in the case of the example, changing the
case of the characters . Place Modified only in an input layout procedure .

Example

	

If(Modified([Customers]Name))
[Customers]Name := Uppercase([Customers]Name)

End if

References

	

ADD RECORD, MODIFY RECORD, REJECT .

Modified

	

1 07

Syntax

	

MODIFY RECORD <<(*) I (filename<< ;*»)»

Description

	

MODIFY RECORD summons the default data input form for the current record of
filename. 4th Dimension saves the record if the user clicks an Accept button . You
can check this by reading the OK system variable . If the user validates the entry, OK
returns 1 . Otherwise, it returns 0 . If the user validates a record modification without
having modified any of its fields, 4th Dimension cancels the modification and the
OK variable returns 0 .

4• Saving a canceled record: After a Don't Accept action, the record remains in
memory and can be saved with SAVE RECORD .

MODIFY RECORD calls input layout procedures and executes Before, During, and
After phases (as described in 4th Dimension Programmer's Reference) .
4th Dimension displays the layout in the window with scroll bars and a grow box on
the window. Specifying the optional asterisk argument causes the layout to appear
without scroll bars and a grow box . If you don't specify filename, MODIFY RECORD
uses the default file . If no current record exists, MODIFY RECORD has no effect .

Example

	

DEFAULT FILE([Addresses])
INPUT LAYOUT("Inputl ")
gNo :=Request("Enter customer number")
SEARCH([Addresses]CustNo=Num(gNo))
If (Records in selection=0)

CONFIRM("Record number "+gNo+" doesn't exist . Add it?")
If (OK=1)
ADD RECORD

End if
Else
MODIFY RECORD

End if

References

	

ADD RECORD, MODIFY SELECTION, MODIFY SUBRECORD, SAVE RECORD .

1 08

	

MODIFY RECORD

MODIFY RECORD

MODIFY SELECTION

Syntax

	

MODIFY SELECTION <<(*) I (filename<< ;*»)»

Description

	

MODIFY SELECTION acts much like DISPLAY SELECTION, in that it displays a list. But
if the user double-clicks a record, he or she can modify it through the current input
layout. If you don't specify filename, MODIFY SELECTION uses the default file .
If the selection contains only one record, the record appears in the input layout, if
you do not include the optional asterisk . If you include the asterisk, 4th Dimension
will display a one-record selection in the output layout .
If you do not include a button in your layout, 4th Dimension will supply its own . For
output layouts, the Done button appears in the lower-right corner of the window . For
input layouts, the 4th Dimension button panel appears . When creating an output
layout, place an Accept button in the footer area of the layout .
If the user clicks a button or selects a menu item, the layout procedure for the currently
displayed layout will be activated . You can then test Menu selected or the button and
perform an action such as a sort or search .

The user can scroll through the selection or click on a record to select it . Clicking a
different record deselects the first record and selects the second record . To select a
contiguous group of records, click the first record and Shift-click the last record . To
select noncontiguous records, Command-click each desired record to select .
After MODIFY SELECTION, you can find the records selected by the user by using the
4th Dimension system set, UserSet . If you want to save this set, you should first do a
UNION operation between UserSet and an empty set of the same file, because at the
next MODIFY SELECTION 4th Dimension erases and then recalculates UserSet.
Further, UserSet, as a system set, does not belong to any file .

	.• When MODIFY SELECTION completes, the current record is "undefined ." Use
FIRST RECORD, LAST RECORD, or ALL RECORDS to reselect it .

Example

	

DEFAULT FILE([Accounts])
SEARCH
MODIFY SELECTION(*)

References

	

ALL RECORDS, APPLY TO SELECTION, DISPLAY SELECTION, MODIFY RECORD,
Records in selection, SEARCH SELECTION .

MODIFY SELECTION

	

1 09

MODIFY SUBRECORD

Syntax

	

MODIFY SUBRECORD (subfilename;strexpr « ;*»)

Description

	

MODIFY SUBRECORD summons the layout specified by strexprto allow the user to
modify the current subrecord in subfilename. If no current subrecord exists,
MODIFY SUBRECORD has no effect. Place MODIFY SUBRECORD in a global
procedure only .

During entry, 4th Dimension executes the input layout procedure (as described in 4th
Dimension Programmer's Reference) .
Clicking an Accept button keeps the modified subrecord in memory . Clicking a Don't
accept button removes the modifiication from memory . To actually save the
modified subrecord, you must use SAVE RECORD, because a subrecord is only saved
in terms of the current record to which it belongs .
Because MODIFY SUBRECORD uses the input form, you can't take input through
variables. To modifiy a subrecord through a form containing variables instead of
subfields, choose DIALOG and SAVE RECORD .

If you have a subhle within a subhle, be sure to select the desired higher level
subrecord before modifiying the lower level subrecord . If you don't, you could
modify any subrecord in the higher level subrecords .
4th Dimension displays the layout in the window with scroll bars and a grow box on
the window. Specifying the optional asterisk argument causes the layout to appear
without scroll bars and a grow box .

Example

	

MODIFY SUBRECORD([Customer]Address ;"Sublnputl ")

References

	

ADD SUBRECORD, ALL SUBRECORDS, Records in subselection, SEARCH SUBRECORDS .

Month of

Syntax

	

Month of (date)

Description

	

Month of returns a numeric value equal to the month found in date. The example
would assign 8 to the variable gMo .

Example

	

gMo :=Month of(!08/14/90!)

References

	

Current date, Date, Day number, Day of, Year of .

110

	

Month of

NEXT RECORD

Syntax NEXT RECORD <<(filename)>>

Description

	

NEXT RECORD moves the record pointer to the next record in the current selection of
filename and loads the record into memory. If no next record exists, End selection
returns TRUE, and there is no current record . If the current selection is empty or
Before selection is TRUE, NEXT RECORD has no effect. Use FIRST RECORD or
LAST RECORD to move the pointer back into the current selection . If you don't
specify filename, NEXT RECORD uses the default file .
In the example, each NEXT RECORD brings up a record for display. When NEXT
RECORD tries to push the record pointer past the last record, End selection goes
TRUE, causing the loop to terminate .

Example

	

'Forward : Display each record
DEFAULT FILE([Addresses])
ALL RECORDS
While (Not(End selection))
DISPLAY RECORD
NEXT RECORD

End while

References

	

Before selection, End selection, FIRST RECORD, LAST RECORD, PREVIOUS RECORD .

NEXT RECORD

	

1 1 1

1 1 2

	

NEXT SUBRECORD

NEXT SUBRECORD

Syntax

	

NEXT SUBRECORD(subfilename)

Description

	

NEXT SUBRECORD moves the subrecord pointer to the next subrecord in the current
subselection of subfilename. If no next subrecord exists, End subselection returns
TRUE, and there is no current subrecord. If the current subselection is empty or
Before subselection is TRUE, NEXT SUBRECORD has no effect. Use FIRST
SUBRECORD or LAST SUBRECORD to move the pointer back into the curent
subselection.

The example shows a piece of a procedure that writes file data, including subrecord
data to a text file, using SEND PACKET.

Example

While (Not(End subselection([I .Card]Phone))) 'Write subfile items
SEND PACKET([I.Card]Phone'PhNum+Char(13))
SEND PACKET([I .Card]Phone'Comment+Char(13))
NEXT SUBRECORD([I .Card]Phone)

End while

References

	

Before subselection, End subselection, FIRST SUBRECORD, LAST SUBRECORD,
PREVIOUS SUBRECORD .

Not

Syntax

	

Not (boolexpr)

Description

	

The Not function returns the negation of boolexpr, changing a TRUE to FALSE or
a FALSE to TRUE. In the example, it keeps the While loop going until NEXT
RECORD tries to push the record pointer past the last record .

Example

	

'Forward : Display each record
DEFAULT FILE([Addresses])
ALL RECORDS
FIRST RECORD
While (Not(End selection))
DISPLAY RECORD
NEXT RECORD

End while

References

	

False, True .

NO TRACE

Syntax

	

NO TRACE

Description

	

NO TRACE turns off the debugger, engaged by TRACE, by an error, or by the user .
Using NO TRACE has the same effect as clicking the NO TRACE button in the
debugger.

Example

	

NO TRACE

Reference

	

TRACE .

NO TRACE

	

1 1 3

Syntax 1

	

Num (strejn)

Num

The Num function has two syntaxes . The first transforms a numeric string into a true
numeric value . The second uses a Boolean expression to return 0 or 1 .

Description 1

	

Num converts a numeric string (strexpr) into a numeric value. If the string consists
only of one or more alphabetic characters Num returns a zero . If the string includes
alphabetic characters mixed in with numeric characters, 4th Dimension ignores the
alphabetic characters . Thus, Num transforms the string a1 b2c3 into the number
123.

Example 1

	

x :=Num("123XYZ45") 'x gets 12345

Reference 1

	

String .

Syntax 2

	

N u m (boolexpr)

Description 2 When you give a boolexprargument to Num, Num returns 0 when a condition is
FALSE and 1 when it is TRUE . In the example, Num of the customer debits returns
either 0 or 1 . The customer comment is then printed either once or not at all, because
the asterisk (*) is used as a string repetition operator .

Example 2

	

'If client owes less than 1000, a good risk .
'If client owes more than 1000, a bad risk .

[Client]Risk:=($Good"*Num([Client}Debt<1000))+("Bad" *Num([Client]Debt>=1000))

References 2 False, Not, True .

Old

Syntax

	

Old (fleldname)

Description

	

Old returns the value offieldname for the current record before fieldname was
modified. In other words, the value of the record on disk . When 4th Dimension loads
a record, it loads two copies . When you modify a record either through MODIFY
RECORD or by modifying directly in the User environment, 4th Dimension changes
the second copy while storing the first copy in its original form until the record is
saved to disk or another record is loaded . Old returns field values of the stored
original . Old may be applied to all field types, except fields of type subfile .

Important
Adding or creating a record is not modification . Modification takes place only
through the MODIFY RECORD command and through the User environment
Modify Record menu item .

Example

	

[Catalog]OnHand :_ [Catalog]OnHand + OId(Quantity)

References

	

LOAD OLD LINKED RECORD, MODIFY RECORD, SAVE OLD LINKED RECORD .

ONE RECORD SELECT

Syntax

	

ONE RECORD SELECT «(filename)»

Description

	

ONE RECORD SELECT reduces the current selection to the current record . You must
use ONE RECORD SELECT after pulling a record from the record stack with POP
RECORD, because a popped record is not a part of the current selection . If no current
record exists, ONE RECORD SELECT has no effect .

Example

	

DEFAULT FILE ([MyFile])
POP RECORD
ONE RECORD SELECT

References

	

POP RECORD, PUSH RECORD .

ONE RECORD SELECT

	

1 1 5

ON ERR CALL

Syntax

	

ON ERR CALL (strexpr

Description

	

ON ERR CALL installs the procedure named by strexpr as the interrupt procedure for
managing errors. Giving a null string argument passes error handling back to 4th
Dimension . After installation, 4th Dimension automatically calls the procedure
named by strexpr when an error occurs.
Normally, place one ON ERR CALL at the beginning of a procedure to identify where
the procedure should go if an error occurs during execution and a second ON ERR
CALL with a null string argument at the end of the procedure
You can identify errors by reading the ERROR system variable and present your own
error messages. Choose the ABORT procedure to terminate an installed error
procedure. In the example, the called routine, Oops, concludes with an ABORT .
If you don't call ABORT in the installed procedure, 4th Dimension returns to the
interrupted procedure .

	.• 4th Dimension error handling: If you have installed a procedure with ON ERR
CALL, 4th Dimension will not present its error window until you call ON ERR CALL
with a null string. There is one exception . If your installed procedure causes an
error, 4th Dimension will automatically take over error handling . The reason is
that the installed procedure is not reentrant .

Example

	

ON ERR CALL("Oops")
kaboom `The error : looks like a var
ON ERR CALL(") 'Pass err handling to 4th Dimension

'Oops; called by ON ERR CALL
'Error handling routine

CONFIRM("Error "+String(Error)+" Do you want to stop?")
If (OK=1)
ABORT 'End procedure, return to menus

End if

References

	

ABORT, ON EVENT CALL, ON SERIAL PORT CALL .

1 1 6

	

ON ERR CALL

ON EVENT CALL

Syntax

	

ON EVENT CALL (strexp?)

Description

	

ON EVENT CALL installs the procedure named by strexpr as the interrupt procedure
for managing events . Giving a null string argument passes event handling back to 4th
Dimension. After installation, 4th Dimension automatically calls the procedure
named by strexpr when an event occurs : either a mouse click or a keystroke . A
procedure must be executing for the event to be recognized and the installed
procedure executed. This means that between execution phases of a layout
procedure, the installed procedure will not be called . Rather 4th Dimension will
handle events . In the procedure, you can read three system variables-MouseDown,
KeyCode, and Modifiers . MouseDown returns 1 if the event is the user clicking the
mouse button and 0 if not. KeyCode returns the ASCII code for a keystroke . Appendix
E describes Modifiers and its use in writing external routines .

Important
MouseDown, KeyCode, and Modifiers contain significant values only within a
routine called by an ON EVENT CALL procedure .

You normally write two ON EVENT CALL statements . Place the first one at the
beginning of a procedure to identify what procedure to call if an event occurs during
execution. Place the second ON EVENT CALL with a null string argument at the end of
the calling procedure to turn off event handling . 4th Dimension returns to the
interrupted procedure at the end of the installed procedure .
In the example, the TestEvent program calls the EventCity routine to trap events .
Note that TestEvent initializes the system variable OK at the beginning of the
program. Without this, the program won't work . Also, the program clears its ON
EVENT CALL reference . Without clearing, the installed procedure will continue to be
activated by events .

ON EVENT CALL

	

117

Example

	

'TestEvent
OK:=1 'Init OK system variable
ON EVENT CALL("EventCity")

'Give program something to do : write numbers
_1

References

	

Ascii, Char, ON ERR CALL, ON SERIAL PORT CALL .

118

	

ON EVENT CALL

While ((i<1000)&(OK=1))
MESSAGE(String(i)+Char(13))

i :=i+1
End while
ON EVENT CALL("') 'Turn off event call

i

'EventCity What to do in case of an event . . .
'Test the mouse

If (MouseDown=1)
CONFIRM("You clicked the mouse . Click cancel to quit .")
'Clicking cancel sets OK to 0 .

End if
'Test the keyboard

if (KeyCode#0)
CONFIRM("You pressed the "+Char(KeyCode)+" key .")
'Clicking cancel sets OK to 0 .

End if

ON SERIAL PORT CALL

Syntax

	

ON SERIAL PORT CALL (strexp?)

Description

	

ON SERIAL PORT CALL installs the procedure named by strexpr as the interrupt
procedure for managing serial port events . The procedure named by strexpr is
automatically called by 4th Dimension when one character enters the serial port
buffer. Giving a null string turns off serial port event handling .
4th Dimension suspends the operation you're working on when port activity occurs,
and does not return to it until it has executed the installed procedure . A procedure
must be executing for the serial port event to be recognized and the installed
procedure executed .
4th Dimension automatically calls the installed procedure when the serial port buffer
contains one or more characters . If you decide to do nothing with the buffer contents,
don't forget to clear the buffer contents by calling RECEIVE BUFFER . If you don't, 4th
Dimension will call your installed procedure again .

Example

	

ON SERIAL PORT CALL ("DoBuffer")

References

	

ON ERR CALL, ON EVENT CALL, RECEIVE BUFFER, RECEIVE PACKET,
RECEIVE RECORD .

ON SERIAL PORT CALL

	

1 1 9

OPEN WINDOW

Syntax

	

OPEN WINDOW (posexprl;posexpr2;posexpr3;posexpr4<<;posexpr5<< ;strexpn>»)

Description

	

OPEN WINDOW draws a window with dimensions given by the first four posexpr:

Iii posexprl is the distance in pixels from the left edge of the screen to the left edge of

the window.

•

	

posexpr2 is the distance in pixels from the top of the screen to the top edge of the

window. The top of the menu bar is the top pixel .

•

	

posexpr3 is the distance in pixels from the left edge of the screen to the right edge

of the window.

•

	

posexpr4 is the distance in pixels from the top of the screen to the bottom edge of

the window.

posexpr5 is optional. It represents the type of window you want to draw and

corresponds to the six standard windows available through the Macintosh window

manager (see Table II-4) .

Table II-4

Six standard Macintosh windows

120

	

OPEN WINDOW

The sixth argument, strexpr, is the window's title .

If you omit the two last arguments, 4th Dimension automatically draws the dBoxProc

window. Things you create, like dialog boxes and input layouts, will automatically

appear inside a created window . In the example, text that would normally appear in a

MESSAGE box appears in the window and will scroll when it reaches the bottom edge

of the window, making the window behave like a terminal . Message text always appears

in the Monaco font, a font in which all characters are the same size . When a window is

open and 4th Dimension encounters commands like ADD RECORD and DISPLAY

SELECTION, the layout will appear in the window .

Window name Number

	

Description

documentProc

dBoxProc

plainDBox

altDBox

noGrowDocProc

0

	

Standard

1

	

Alert

2

	

Plain

3

	

Plain

4

	

Document

document window

box or modal dialog box

box

box with drop shadow

window without size box

rDocProc

8

	

Document window

16

	

Rounded-corner

with

window

zoom box

+ One window: 4th Dimension allows only one custom window at a time over the 4th

Dimension window. Therefore, OPEN WINDOW has no effect if another custom

window is already on the screen .

To make your windows independent of display size, you can use Screen height and

Screen width to calculate the upper left and lower right corners of the window. The

example does this .

Example

	

'Created a centered window on the screen
.

OK :=1

While (OK=1)

Box height:=Num(Request("Height (click cancel if done)?"))

If (OK=1)

Box width :=Num(Request("Width?"))

CLOSE WINDOW 'Close any open window

H1 :=Screen height/2+10 'Add 10 to allow for the menubar

W1 :=Screen width/2

H2 :=Box height/2

W2:=Box width/2

OPEN WINDOW(W1-W2 ;H1-H2 ;W1+W2 ;H1+H2)

End if

End while

References

	

ADD RECORD, CLOSE WINDOW, DIALOG, DISPLAY SELECTION, ERASE WINDOW,

GO TO XY, MESSAGE, MODIFY RECORD, MODIFY SELECTION, Screen height,

Screen width, SET WINDOW TITLE .

OPEN WINDOW

	

121

Syntax

	

OUTPUT LAYOUT (<<filename,»strexp~

Description

	

OUTPUT LAYOUT specifies which layout (named by strexpr) 4th Dimension should
use to output data from filename. Whether printing to the screen or a printer, or
exporting data, 4th Dimension automatically uses the specified layout. The layout
must belong to filename . If you don't specify filename, OUTPUT LAYOUT applies to
the default file .
When exporting data, the output layout serves as an organizer and channel between
the 4th Dimension database file and a document or serial port . If you do not specify
an output layout for activities like EXPORT TEXT, PRINT SELECTION, and screen
display, 4th Dimension uses the current output layout .
OUTPUT LAYOUT leaves the specified layout as the current output layout until you
respecify it . Don't use OUTPUT LAYOUT within an output layout .

Example

	

'Mail List db, Addresses file
DEFAULT FILE([Addresses])
ALL RECORDS
OUTPUT LAYOUT("OneWide")
PRINT LABEL
OUTPUT LAYOUT("Outputl ") 'restore default

References

	

DISPLAY SELECTION, EXPORT DIF, EXPORT SYLK, EXPORT TEXT, INPUT LAYOUT,
MODIFY SELECTION, PRINT LABEL, PRINT SELECTION .

1 22

	

OUTPUT LAYOUT

OUTPUT LAYOUT

POP RECORD

Syntax

	

POP RECORD <<(filename)>>

Description

	

POP RECORD pops a record (and its subrecords, if any) belonging to filename from
the filename record stack and makes it the current record . However, it may not be a
part of the current selection . Therefore, it's up to you to call ONE RECORD SELECT
after you pop a record to reduce the current selection to the current (popped) record .
If you push a record, change the selection so as not to include the pushed record, and
then pop the record, the current record will not be in the current selection . If you
want to designate the popped record as the current selection, use ONE RECORD
SELECT. If you use any commands that move the record pointer before saving the
record, you will lose the copy in memory .

You place records on the stack with PUSH RECORD . Each file has its own record
stack. Stack capacity is limited by memory . POP RECORD is useful when working with
recursive procedures on records and recursive links .
4th Dimension clears the stack of any unpopped records when you return to the menu
at the end of the execution of your procedure .

Example

	

POP RECORD ([Customers])

References ONE RECORD SELECT, PUSH RECORD .

Position

Syntax

	

Position (strexprl;strexpr2)

Description

	

Position returns the position of the first occurrence of strexprl in strexpr2 . If Position
fails to find the string, it returns a zero . If Position finds an occurence, it returns the
postion of the first character of strexprl . If you ask for the position of a null string
within a null string, Position returns a 1 .

Example

	

Where ;=Position("ta" ;"database")'Where is assigned 3 .

References

	

Ascii, Char, GET HIGHLIGHTED TEXT, HIGHLIGHT TEXT, Length, Lowercase, Num, String,
Substring, Uppercase .

Position

	

123

Syntax

	

PREVIOUS RECORD <<(filename)>>

Description

	

PREVIOUS RECORD moves the record pointer to the previous record in the current
selection offilename, makes it the current record, and loads it into memory. If you
don't specify filename, PREVIOUS RECORD uses the default file . If no previous
record exists, Before selection returns TRUE, and there is no current record . If the
current selection is empty, PREVIOUS RECORD has no effect.
Use FIRST RECORD or LAST RECORD to move the pointer back into the current
selection. The example sets the record pointer on the last record and then moves the
pointer toward the beginning of the selection, displaying each record as it goes .

Example

	

'Backward : Show Last Record & Before selection
DEFAULT FILE([Addresses])
ALL RECORDS
LAST RECORD
While (Not(Before selection))
DISPLAY RECORD
PREVIOUS RECORD

End while

References

	

Before selection, End selection, FIRST RECORD, LAST RECORD, NEXT RECORD .

1 24

	

PREVIOUS RECORD

PREVIOUS RECORD

Syntax

	

PREVIOUS SUBRECORD (subfilename)

Description

	

PREVIOUS SUBRECORD moves the subrecord pointer to the previous subrecord in
the current subselection of subfilename and makes it the current subrecord . If no
previous subrecord exists, Before subselection returns TRUE, and there is no
current subrecord . If the current subselection is empty or End subselection is TRUE,
PREVIOUS SUBRECORD has no effect. Use FIRST SUBRECORD or LAST
SUBRECORD to move the pointer back into the current subselection .

Example

PREVIOUS SUBRECORD

LAST SUBRECORD([Stats]Sales)
While (Not(Before subselection([Stats]Sales)))

vReport:=vReport+String([Stats]Sales'Bucks)+Char(13)
PREVIOUS SUBRECORD([Stats]Sales)

End while

References

	

Before subselection, End subselection, FIRST SUBRECORD, LAST SUBRECORD,
NEXT SUBRECORD.

PREVIOUS SUBRECORD

	

1 25

PRINT LABEL

Syntax

	

PRINT LABEL «(filename « ;*»)»

Description

	

PRINT LABEL prints labels through the current output layout of filename for the

current selection of filename. If you don't specify filename, PRINT LABEL uses the

default file. You cannot print subfiles in a label . To print addresses from subfiles,

choose PRINT SELECTION . If you follow filename with the optional asterisk

argument, 4th Dimension suppresses the printer dialog boxes .

In the layout, you can use fields and/or variables . To prepare for printing labels, do

these things :

1 . Set the header line of the layout to zero .

2 . Measure the distance between the top of one label and the top of the next label .

3 . Set the break and the footer lines to the measured distance .

4a. For a single column of labels, move the label width line to the page width line

(the right margin) .

4b . For multi-columns of labels, measure the distance between the left edge of a label

and the left edge of the next label. Set the label width line to that distance (from

the left margin) .

5 . Create a label variable or place fields so that they will fit in the label area .

4. For details. See 4th Dimension User's Guide for details on creating labels .

To eliminate blank lines in a label, you can concatenate field data into a label

variable. The procedure in the example does this, suppressing any blank third line

that might appear . See "Printing Labels From Subfiles" in Appendix A .

126

	

PRINT LABEL

Example

	

'LabelOne
'Mail List db, Addresses file

gCR:=Char(13)
DEFAULT FILE([Addresses])
ALL RECORDS
OUTPUT LAYOUT("L.Address")
PRINT LABEL
OUTPUT LAYOUT("Outputl ") 'restore default

'L.Address layout procedure for printing labels
If (Before)

vLabel:=Name1+" "+Name2+gCR+Addrl+gCR
'If line not blank, concatenate
If (Add r2#"")

vLabel :=vLabe l+Add r2+gCR
End if
vLabel:=vLabel+City+", "+St+" "+ZipCode

End if

References

	

OUTPUT LAYOUT, PRINT LAYOUT, PRINT SELECTION, PRINT SETTINGS .

PRINT LABEL

	

127

1 28

	

PRINT LAYOUT

PRINT LAYOUT

Syntax

	

PRINT LAYOUT (<<filename;»strexpr~

Description

	

PRINT LAYOUT prints the layout specified by strexpr that belongs to filename with the

current values of fields and variables. If you omit filename, this command uses the

default file. PRINT LAYOUT executes only the instructions found in the Before and

During portion of the layout procedure .

PRINT LAYOUT doesn't issue a form feed after printing the layout . Therefore, you can

print more than one layout on a page . In fact, you can print records from different

files on the same page . This makes PRINT LAYOUT perfect for complex printing

tasks, involving different files and different layouts .

You can force a form feed between layouts with the FORM FEED command . If you

want the the printer dialog boxes to appear, you must include the PRINT SETTINGS

command before any PRINT LAYOUT command.

.• Differences: PRINT LAYOUT is different from the other 4th Dimension printing

commands, in that it begins to fill a page in memory. Printing cannot begin until

the page in memory is full. Therefore, to ensure the printing of the last page after

any use of PRINT LAYOUT, you must conclude with the FORM FEED command to

force the printing. Otherwise, the last page will stay in memory and not be printed .

Keep these three things in mind :

1 . PRINT LAYOUT works only with record-level, not subfile-level layouts .

2 . PRINT LAYOUT only prints between the header and detail lines .

3 . You need to plan for your form feeds .

Example

	

PRINT LAYOUT([Customers] ;"Credit Report")

References

	

FORM FEED, PRINT LABEL, PRINT SELECTION, PRINT SETTINGS, REPORT .

PRINT SELECTION

Syntax

	

PRINT SELECTION < (*)I(filename<< ;*»)»

Description

	

PRINT SELECTION prints all records in the current selection of filename through the

current output layout. If you follow filename with the optional asterisk argument, 4th

Dimension suppresses the printer dialog boxes and uses the settings you defined when

creating the layout. If you don't specify filename, PRINT SELECTION uses the default

file . During printing, 4th Dimension executes the output layout procedure :the

Header phase when printing a header, Before and During phase when printing each

record, Break phase when printing the Break area and Footer phase when printing a

footer.

To print a sorted selection with subtotals, using PRINT SELECTION, you must first sort

the selection (with SORT SELECTION) and include the Subtotal function in the

layout procedure. In this case, you can also use the Level function in the Break phase

to detect which level of break 4th Dimension is currently printing .

You can check if 4th Dimension is printing the first header by testing Before selection

in the Header phase . You can also check for the last footer by testing End selection in

the Footer phase .

When you print a selection with PRINT SELECTION, you can also use statistical and

arithmetic functions like Sum and Average in the Break phase or the Footer phase

to assign values to variables in the Footer and/or Break area .

You can number pages either in the Header or Footer phases . You can also force

form feeds during printing by placing FORM FEED in the layout procedure .

After PRINT SELECTION, you can see if the printing is completed by testing the OK

system variable . When completed, OK returns 1 . If the user has interrupted the

printing process, OK returns 0 .

PRINT SELECTION

	

1 29

You can print labels from subrecords with PRINT SELECTION . To do this, follow
these steps :
1 . Create a layout for the subfile .
2 . Create a layout for the file .
3 . Include a subfile area in the file layout, and choose the Fixed Frame (Multiple

records) option .

4 . To print, use PRINT SELECTION or the Print command in the File menu in User
environment.

See 4th Dimension User's Guide for details on subfile layouts . This method prints
labels one column wide only .

Example

	

DEFAULT FILE([Accounts])
ALL RECORDS
DISPLAY SELECTION
USE SET("UserSet")
PRINT SELECTION

References

	

Before, Before selection, During, End selection, In break, In footer, In header, PRINT LABEL,
PRINT LAYOUT, PRINT SETTINGS, REPORT.

1 30

	

PRINT SETTINGS

PRINT SETTINGS

Syntax

	

PRINT SETTINGS

Description

	

PRINT SETTINGS displays the two standard printer dialog boxes on screen . If the user
clicks OK on both OK buttons or presses Enter, the system variable OK is set to 1 .
Otherwise, OK is set to 0 . You should include this before any group of the PRINT
LAYOUT commands .

Example

	

PRINT SETTINGS

References

	

PRINT LABEL, PRINT LAYOUT, PRINT SELECTION, REPORT .

Syntax

	

PUSH RECORD <<(filename)>>

Description

	

PUSH RECORD pushes the current record (and its subrecords, if any) onto the record
stack . Each file has its own record stack . Stack capacity is limited by memory. PUSH
RECORD is useful when working with recursive procedures on records and recursive
links . You pop records off the stack with POP RECORD .

POP RECORD and PUSH RECORD are also useful when you want to examine records
in the same file during data entry . To do this, you push a record (the current entry) on
the stack. Then, you search and examine records in the file (copy values in variables,
for example). Finally, you pop the record to restore the current entry .
4th Dimension clears the stack of any unpopped records when you return to the menu
at the end of the execution of your procedure .

Example

	

PUSH RECORD ([Customers])

References ADD RECORD, CREATE RECORD, MODIFY RECORD, ONE RECORD SELECT,
POP RECORD .

Random

Syntax

	

Random

PUSH RECORD

Description

	

Random returns a random integer value between 0 and 32,767 (inclusive) . To define a
range of integers, you can use the formula :

Mod(Random ;(End-Start+l))+Start

Start is the first number in the range and End the last . The example would assign a
random integer between 10 and 30 :

Example

	

v := Mod(Random ;21)+10

References

	

Dec, Int, Mod .

READ ONLY

Syntax

	

READ ONLY <<(filename)>>

Description

	

READ ONLY is useful only in multi-user applications . It assigns a file read-only status
to all records in filename . See 4th Dimension Utilities and Developer's Notes for
details on this and other multi-user commands .

READ WRITE

Syntax READ WRITE <<(filename)>>

Description

	

READ WRITE is useful only in multi-user applications . It assigns a file read-write status
to all records in filename. See 4th Dimension Utilities and Developer's Notes for
details on this and other multi-user commands .

RECEIVE BUFFER

Syntax

	

RECEIVE BUFFER (strvar)

Description

	

RECEIVE BUFFER takes the contents of the serial port buffer assigned by SET
CHANNEL and assigns it to strvar and clears the buffer . You can work with RECEIVE
BUFFER without having to stop execution while you wait for data to enter the buffer .
RECEIVE BUFFER is useful in a procedure installed by ON SERIAL PORT CALL .

RECEIVE BUFFER takes whatever is in the buffer . RECEIVE PACKET, on the other
hand, waits until either it finds a specific character or until a certain number of
characters are in the buffer . If RECEIVE PACKET cannot meet its goal, it waits until
the specified character or the correct number of characters arrive in the buffer .
RECEIVE BUFFER can only take characters from a serial port, whereas RECEIVE
PACKET can take characters from a serial port and from documents .

Example

	

RECEIVE BUFFER(CatchMe)

References

	

ON SERIAL PORT CALL, RECEIVE PACKET, RECEIVE RECORD, RECEIVE VARIABLE,
SEND PACKET, SET CHANNEL.

132

	

RECEIVE BUFFER

RECEIVE PACKET

RECEIVE PACKET has two syntaxes . The first syntax specifies the number of
characters you want to receive. The second specifies a character at which 4th
Dimension should stop transferring characters. You must specify a serial port or a
document with SET CHANNEL before giving this command . You can use SEND
PACKET and RECEIVE PACKET to write and read data from desktop documents .
If you receive characters from the serial port, the sending device can be a Macintosh
running 4th Dimension, sending characters with SEND PACKET . It can also be any
other computer that can send ASCII characters or any RS-232 device . If you receive
characters from a Macintosh document, 4th Dimension reads them from the
document.

To read an ASCII document with 4th Dimension, you call SET CHANNEL to open the
document. If you use RECEIVE PACKET, 4th Dimension begins reading at the
beginning of the document, using the specified syntax . The reading of each
subsequent packet begins at the character following the last character read .
The user can interrupt a RECEIVE PACKET operation by pressing Option-Space . You
can check this by testing the OK system variable . If the packet is successfully
received, OK returns 1 . Otherwise, OK returns 0. OK is set to 0 if the user cancels
with Option-Space or if an error occurs . Because attempting to read past the end of
file marker is an error, you can test for end of file status by testing OK equal to zero .
SEND PACKET is the counterpart of RECEIVE PACKET . You must have set a channel
to a document or a serial port with SET CHANNEL before using either .
SEND PACKET and RECEIVE PACKET are commonly used to write data back and
forth between 4th Dimension subfiles and desktop documents .

Syntax 1

	

RECEIVE PACKET (strvar;posintexpr)

Description 1

	

RECEIVE PACKET transfers the number of characters specified by posintexpr into
strvar. This syntax works only in a global procedure . The example would transfer 20
characters from the serial port or from a document into the variable GetTwenty .

Example 1

	

RECEIVE PACKET(GetTwenty ;20)

References 1 ON SERIAL PORT CALL, RECEIVE BUFFER, SEND PACKET, SET CHANNEL,
USE ASCII MAP .

RECEIVE PACKET

	

133

Syntax 2

	

RECEIVE PACKET (strvar;strexpr)

Description 2

	

RECEIVE PACKET transfers characters into styvaruntil it encounters the first
character of strexpr. With this syntax, when you work with a serial port, 4th
Dimension doesn't place the strexpr delimiter in strvar. When you work with a
document, 4th Dimension also doesn't place the delimiter in strvar. When 4th
Dimension reads the next packet, it skips the delimiter and begins with the character
following the delimiter. The example uses a carriage return as the delimiter .

Example 2

	

RECEIVE PACKET(gField ;Char(13))

References 2 ON SERIAL PORT CALL, RECEIVE BUFFER, SEND PACKET, SET CHANNEL,
USE ASCII MAP .

134

	

RECEIVE PACKET

RECEIVE RECORD

Syntax

	

RECEIVE RECORD <<(filename)>>

Description

	

RECEIVE RECORD receives all the values of a record through the serial port or from a
document opened by SET CHANNEL and places them in the current record of
filename. If you don't specify filename, RECEIVE RECORD uses the default file. If
you receive the values into a record that already has values in it, you delete the values
and replace them with the received values . If you want to create a new record to
receive values, you must write a CREATE RECORD statement before using RECEIVE
RECORD. In either case, you must call SAVE RECORD, if you want to save the
modified or new record.

Important
When sending and receiving records between databases, the file that sends the
record and the file that receives the record must have the same number of
fields, type of fields, and order of fields .

If you receive the record from a serial port, the sending device must be a Macintosh
running 4th Dimension, which sends the record with SEND RECORD . If you receive
the record from a document, the record is read from the document. In either case,
4th Dimension receives the full record (along with any subrecords it might contain) in
an internal data format that can only be correctly created with SEND RECORD . During
the RECEIVE RECORD operation, the user can interrupt by pressing Option-Space .
To check for interrupts, you can test the OK system variable . OK returns 1 if the
record was received. Otherwise, OK returns 0 .

Example

	

SET CHANNEL(10 ;"MyFile.Text")
OK:=1
While (OK=1) 'OK=O when no more records to read

CREATE RECORD([MyFile])
RECEIVE RECORD([MyFile])
SAVE RECORD([MyFiIe])

End while
SET CHANNEL(11)

References

	

RECEIVE PACKET, RECEIVE VARIABLE, SEND RECORD, SET CHANNEL.

RECEIVE RECORD

	

135

RECEIVE VARIABLE

Syntax

	

RECEIVE VARIABLE (var)

Description

	

RECEIVE VARIABLE receives a variable (var) through the serial port or from a
document opened by SET CHANNEL. If you receive the variable from a serial port,
the sending device must be a Macintosh running 4th Dimension, which sends the
variable with SEND VARIABLE . If you receive the variable from a document, the
variable is read from the document . In either case, 4th Dimension receives the
variable in an internal data format that can only be correctly created with SEND
VARIABLE . During the RECEIVE VARIABLE operation, the user can interrupt by
pressing Option-Space . To check for interrupts, you can test the OK system
variable . OK returns 1 if the variable was received . Otherwise, OK returns 0 .

Example

	

RECEIVE VARIABLE(AcctNo)

References

	

CLEAR VARIABLE, LOAD VARIABLE, RECEIVE PACKET, RECEIVE RECORD,
SAVE VARIABLE, SEND VARIABLE, SET CHANNEL .

1 36

	

Records in file

Records in file

Syntax

	

Records in file <<(filename)>>

Description

	

Records in file returns the total number of records in filename. If you don't specify
filename, Records in file uses the default file .

:• Comparison: Records in selection returns the number of records in the current
selection only .

Example

	

TotRecs :=Records in fiie([Customers])

References

	

ALL RECORDS, Records in selection, Records in set, Records in subselection .

Syntax Records in selection <<(filename)>>

Description

	

Records in selection returns the number of records in the current selection of
filename . If you don't specify filename, Records in selection uses the default file .
When working with subrecords, use Records in subselection .

	3 Comparison: Records in file returns the total number of records in the file .

Example

	

DEFAULT FILE ([ADDRESSES])
SEARCH([ADDRESSES]State="NY")
ALERT("You have "+String(Records in selection)+" customers in New York")

References

	

ALL RECORDS, Records in file, Records in set, Records in subselection, SEARCH,
SEARCH BY INDEX, SEARCH SELECTION .

Syntax

Description

Example

Records in selection

Records in set

Records in set (strexpr)

Records in set returns the number of records in the set named by strexpr .

DEFAULT FILE([Addresses])
DISPLAY SELECTION
ALERT("You selected "+String(Records in set("UserSet"))+" records .")

References

	

ADD TO SET, CREATE EMPTY SET, CREATE SET, DIFFERENCE, INTERSECTION,
LOAD SET, UNION, USE SET .

Records in set

	

1 37

Syntax

	

Records in subselection (subfilename)

Description

	

Records in subselection returns the number of subrecords in the current subselection
of subfilename . Records in subselection applies only to subrecords in the current
record. It is the subrecord equivalent of Records in selection .

Example

	

SEARCH([Inventory] ;[Inventory]Part No="A531 ")
SEARCH SUBRECORDS([Inventory]Sales ;Year of([Inventory]Sales'Date)=1990)
ALERT ("Sales during 1990 . "+String(Records in subselection([Inventory]Sales)))

References

	

ALL SUBRECORDS, Records in selection, SEARCH SUBRECORDS .

1 38

	

Records in subselection

Records in subselection

REDRAW

REDRAW has three syntaxes: one for subhle (Syntax 1), one for variable lists

(Syntax 2), and one for files displayed in an included layout (Syntax 3) . REDRAW is

useful only when you want to force a screen display update .

Syntax 1

	

REDRAW (subjilename)

Description 1 During an entry, if you change the current subselection, 4th Dimension automatically

redraws the subhle if the subhle is present in the layout. You must call REDRAW for a

subhle only when you change the order of subrecords with SORT SUBSELECTION .

Example 1

	

REDRAW([Invoice]Detail)

Reference 1

	

SORT SUBSELECTION .

Syntax 2

	

REDRAW (vat

Description 2 You must call REDRAW for a variable list if you change the contents without using the

assignment operator. For example, when you get a variable with LOAD VARIABLE. For

a scrollable area, 4th Dimension automatically redraws the area when you add a value

to or delete a value from the list. You must call REDRAW for a scrollable area only

when you modify a value in the list .

Example 2

	

REDRAW(vltemList)

Reference 2 None .

Syntax 3

	

REDRAW (filename)

Description 3 You must call REDRAW for an included file when you change anything in the file .

This includes changing the selection, the order of the records, or a value in a record .

Example 3

	

REDRAW([Invoice])

References 3 SEARCH, SEARCH BY INDEX, SEARCH SELECTION, SORT BY INDEX, SORT SELECTION .

REDRAW

	

139

REJECT
REJECT has two syntaxes: one to reject a held entry and one to reject a record entry .

Syntax 1

	

REJECT (fieldname)

Description 1

	

Use REJECT to force the user to reenter an incorrect value . REJECT only has an
effect if you call it during the During phase of an input layout procedure . REJECT in
the After phase is too late and has no effect. REJECT subfleldname within a parent
layout has no effect . Iffieldname has just been modified during data entry, then
REJECT leaves the cursor in fieldname on the layout . Use HIGHLIGHT TEXT to select
fieldname . REJECT can be used in input layout procedures only .

Example 1

	

If (During)
If (Modified(Salary)&Not(bCancel))

'Field changed and record not cancelled
If(Salary<10000)

ALERT ("Salary cannot exceed $10,000")
REJECT(Salary)

End if
End if

End if

References 1 ADD RECORD, ADD SUBRECORD, During, GO TO FIELD, HIGHLIGHT TEXT, Modrfied,
MODIFY RECORD, MODIFY SUBRECORD .

Syntax 2

	

REJECT

Description 2 REJECT rejects the entire entry. If the user tries to validate the entry, REJECT
cancels the validation and continues data entry . The user must either correct a field or
cancel . REJECT only has an effect if you call it during the During phase of an input
layout procedure . The example comes from a doctor's patient file :

Example 2

	

If(During)
If((Gender="Male") & (Pregnant="Yes"))
ALERT("Are you sure????")
REJECT
GO TO FIELD (Pregnant)

End if
End if

References 2 ADD RECORD, ADD SUBRECORD, During, GO TO FIELD, Modified, MODIFY RECORD,
MODIFY SUBRECORD.

140

	

REJECT

REPORT

Syntax

	

REPORT («filename;» strexpr)

Description

	

REPORT prints the report specified by strexpr for the current selection of filename . If

you specify a null string for strexpr, 4th Dimension automatically brings up the

standard file dialog box, and the user can choose the report . In this case, if the user

clicks the Cancel button of the dialog, 4th Dimension brings up the standard Quick

report window as in the User environment. In this case, the user can create or modify

any report for filename. If you omit filename, REPORT uses the default file .

Example

	

If(DoReport)

REPORT([Invoices] ; ")

End if

References

	

PRINT LABEL, PRINT LAYOUT, PRINT SELECTION, PRINT SETTINGS .

Request

Syntax

	

Request (strexprl «;strexpr2»)

Description

	

Request creates a dialog box with a prompt, strexprl, a text input area with an

optional default value specified by strexpr2, and two buttons (OK and Cancel) . The

OK button is the default button. The user can either click it or press Enter to enter a

response. The function returns the string entered by the user. If the user clicks OK, the

OK system variable returns 1 . Otherwise OK returns 0 .

Request and CONFIRM are two different ways of handling the user interface . With

CONFIRM, you ask the user to confirm an action. With Request, you ask the user for a

value. If you ask the user for a numeric or a date value, be sure to convert the string

value returned by Request to the proper type, with the Num or Date functions .

4th Dimension truncates any prompt message that is too long for its display area .

:• By the way: If you need to get several pieces of information from a user, design a

dialog box, rather than presenting a succession of Request dialogs .

Example

	

DEFAULT FILE([Invoice History])

ALL RECORDS

vDate :=Request("Enter invoice date :" ; String(Current date))

If (OK =1)

SEARCH BY INDEX([InvoiceHistory]InvoiceDate=Date(vDate))

DISPLAY SELECTION

End if

References

	

Alert, Confirm, Date, DIALOG, Num, String .

Round

Syntax

	

Round (numexpr;intexpr)

Description

	

Round returns numexpr rounded to the number of decimal places given by intexpr. If
intexpr is positive, the number is rounded to the intexpr decimal place . If intexpr is
negative, the number is rounded to the intexpr+l digit to the left of the decimal point .
If the digit following intexpr is 5 though 9, Round rounds toward positive infinity for a
positive number and negative infinity for a negative number. If the digit following
intexpr is 0 through 4, Round rounds toward zero .

Examples

	

Tot:=Round(16.857 ;2)

	

'Tot gets 16 .86

RoundOff:=Round(32345 .67 ;-3)

	

'RoundOff gets 32000

s :=Round(29.8725 ;3)

	

's gets 29.872

vTot :=Round(-1 .5 ;0)

	

'vTot gets-2

References

	

Abs, Dec, Int, Mod, Random, Trunc .

SAVE LINKED RECORD

Syntax

	

SAVE LINKED RECORD (fieldname)

Description

	

SAVE LINKED RECORD saves the record pointed to byfieldname. You must write a
SAVE LINKED RECORD statement to save any record created with CREATE LINKED
RECORD or when you want to save modifications to a record loaded with LOAD
LINKED RECORD. SAVE LINKED RECORD does not apply to subfiles because saving
the parent record automatically saves the subrecords . For other discussions on links,
see 4th Dimension User's Guide and 4th Dimension Programmer's Reference .

Example

	

Case of
:(During)

LOAD LINKED RECORD(PartNo)

:(After)
SAVE LINKED RECORD(PartNo)

End case

References

	

ACTIVATE LINK, CREATE LINKED RECORD, LOAD LINKED RECORD,
LOAD OLD LINKED RECORD, Old, SAVE OLD LINKED RECORD .

1 44

	

SAVE LINKED RECORD

Syntax

	

SAVE OLD LINKED RECORD eldname)

Description

	

SAVE OLD LINKED RECORD operates the same as SAVE LINKED RECORD, but uses the
old link to the fieidname, to save the old linked record . You must have previously
loaded the record with LOAD OLD LINKED RECORD . Use SAVE OLD LINKED RECORD
when you want to save modifications to a record loaded with LOAD OLD LINKED
RECORD. For other discussions on links, see 4th Dimension User's Guide and 4th
Dimension Programmer's Reference.

Example

	

Case of

:(After)
'After validation, save the new data in linked record
'Subtract order quantity from catalog

[Catalog]OnHand :=[Catalog]OnHand -Quantity
SAVE LINKED RECORD(PartNo)

'Be sure to update the old linked record,
'Re-instate old Quantity

LOAD OLD LINKED RECORD(PartNo)
[Catalog]OnHand :=[Catalog]OnHand+Old(Quantity)
SAVE OLD LINKED RECORD(PartNo)

End Case

References

	

ACTIVATE LINK, CREATE LINKED RECORD, LOAD LINKED RECORD,
LOAD OLD LINKED RECORD, Old, SAVE LINKED RECORD .

SAVE OLD LINKED RECORD

SAVE OLD LINKED RECORD 1 45

SAVE RECORD

Syntax

	

SAVE RECORD <<(filename)>>

Description

	

SAVE RECORD saves the current record and all its subrecords, if any, to filename . If

you don't specify filename, SAVE RECORD saves the current record of the default

file .

SAVE RECORD becomes important in several instances :

•

	

to save data entered after a CREATE RECORD statement

•

	

to save data from RECEIVE RECORD

•

	

to save a record modified by a procedure

•

	

to save new or modified subrecord data following an ADD SUBRECORD, CREATE

SUBRECORD, or MODIFY SUBRECORD statement

Example

	

CREATE RECORD([Customers])

RECEIVE RECORD([Customers])

If(OK=1)

SAVE RECORD([Customers])

End if

References ADD RECORD, ADD SUBRECORD, CREATE RECORD, CREATE SUBRECORD,

MODIFY RECORD, MODIFY SUBRECORD, RECEIVE RECORD .

1 46

	

SAVE RECORD

SAVE SET

Syntax

	

SAVE SET (strexpr;docname)

Description

	

SAVE SET saves the set named by strexpr to a document on disk named docname. If
you supply a null string for docname, the standard file dialog box appears, so the user
can choose the name of the file . You can bring a saved set back into memory with the
LOAD SET command. If the SAVE SET operation is successful, the OK system
variable returns 1 . Otherwise, OK returns 0, for example, if the user clicks Cancel in
the standard file dialog box .

:• Saved sets : Sets are not saved in sorted order . Sets are not valid after a utility
repairs a database . A saved set may or may not reflect changes to a database .

Example

	

'GetPA; Mail List db
'Creates & saves a set of all Palo Alto customers

DEFAULT FILE([Addresses])
ALL RECORDS
SEARCH([Addresses]City="Palo Alto")
CREATE SET("Palo Alto") 'Makes current selection a set
MESSAGE("Now saving Palo Alto set .")
SAVE SET("Palo Alto" ;"Palo Alto Set")
CLEAR SET("Palo Alto")

References

	

ADD TO SET, CLEAR SET, CREATE EMPTY SET, CREATE SET, DIFFERENCE,
INTERSECTION, LOAD SET, Records in set, UNION, USE SET.

Syntax

	

SAVE VARIABLE (docname, var<< ;*»)

Description

	

SAVE VARIABLE writes each var to the file named by docname . If docname is a null
string, 4th Dimension presents the standard file dialog, so the user can create the
variable document . If the SAVE VARIABLE operation is successful, the OK system
variable returns 1 . Otherwise, OK returns 0 . If the user clicks Cancel in the standard
file dialog box, OK returns 0 .
You can retrieve these variables with the LOAD VARIABLE procedure .

+ Internal format used. When you write variables to documents with SAVE
VARIABLE, 4th Dimension uses an internal data format . Therefore, you can only
retrieve the true values of these variables with the LOAD VARIABLE command . For
example, don't use RECEIVE VARIABLE or RECEIVE PACKET to read a
document created by SAVE VARIABLE .

This example clears the variable MyVar, because, if it didn't, the test wouldn't work . It
then opens a document (MyDoc) and loads the desired variable (MyVar), if the
variable exists . If the document and/or variable don't exist Undefined will return
TRUE. Thus, the example tests for the existence of the document. If it does not exist, it
gives the user the opportunity to create a variable and save it in a document .

Examples

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM("'MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar:=Request("Enter value of 'MyVar'")
SAVE VARIABLE("MyDoc" ;MyVar)

End If
Else

ALERT("Value of 'MyVar' is "+MyVar)
End If

SAVE VARIABLE("Arrayl " ;X ;XO;X1 ;X2;X3 ;X4) 'Save Array

References

	

LOAD VARIABLE, SEND VARIABLE .

1 48

	

SAVE VARIABLE

SAVE VARIABLE

Screen height

Syntax

	

Screen height

Description

	

Screen height returns the height of the screen from the top of the menu bar to the

bottom of the screen in pixels . Together with Screen width, you can create windows

that will always retain the same screen position, regardless of changes in Macintosh

screen size .

Example

	

'Created a centered window on the screen
.

OK:=1

While (OK=1)

Box height :=Num(Request("Height (click cancel if done)?"))

If (OK=1)

Box width :=Num(Request("Width?"))

CLOSE WINDOW 'Close any open window

Hi :=Screen height/2+10 'Add 10 to allow for the menubar

W1 :=Screen width/2

H2 :=Box height/2

W2:=Box width/2

OPEN WINDOW(W1-W2 ;H1-H2 ;W1+W2 ;H1+H2)

End if

End while

References

	

OPEN WINDOW, Screen width .

Screen height

	

1 49

Syntax

	

Screen width

Description

	

Screen width returns the width of the screen in pixels . Together with Screen height,
you can create windows that will always retain the same screen position, regardless of
changes in Macintosh screen size .

Example

	

'Created a centered window on the screen .
OK:=1
While (OK=1)

Box height :=Num(Request("Height (click cancel if done)?"))
If (OK=1)

Box width :=Num(Request("Width?"))
CLOSE WINDOW 'Close any open window
Hi :=Screen height/2+10 'Add 10 to allow for the menubar
W1 :=Screen width/2
H2 :=Box height/2
W2 :=Box width/2
OPEN WINDOW(W1-W2 ;H1-H2 ;W1+W2 ;H1+H2)

End if
End while

References

	

OPEN WINDOW, Screen height .

1 50

	

Screen width

Screen width

SEARCH

Syntax

	

SEARCH « (boolexpr) I (filename<< ;boolexpn>)>>

Description

	

SEARCH creates a new selection for filename. SEARCH applies boolexpr to each
record in the file . If boolexpr evaluates as TRUE, the record is added to the new
selection. It works on all records in the file, not just those in the current selection . (If
you need to search within the current selection, choose SEARCH SELECTION .)
SEARCH starts with the first record and performs a sequential search, going through
all records in filename. Each time boolexpr is TRUE, it places a pointer to the current
record in the current selection table. When the search is complete, SEARCH loads
the first record of the new selection and makes it the current record . If you don't
specify filename, SEARCH uses the default file .
Typically, boolexpr tests a field or subfield against a variable or a constant, using a
relational operator, boolexpr can contain multiple tests that are joined by AND (&)
relational and/or OR (I) relational operations . boolexpr can also be or contain the
name of a developer-written function .
You can use wildcards in a search formula when working with Alpha fields or text .

Important
Be sure to guard the precedence in Boolean expressions . If you have multiple
conditions, enclose each condition in its own set of parentheses . For example ;
((B>1) & (0<0)) . A second example is B>(3*5) .

SEARCH is significantly slower than SEARCH BY INDEX (used on indexed fields) .
The processing time is proportional to the number of records in the file .

	 • User environment: SEARCH corresponds to the Search and Search by Formula
menu items in the User environment .

If you omit boolexpr, 4th Dimension will display the standard search window. In this
case, the user can create, save, and load formulas .
During the search process, 4th Dimension displays the standard progress window,
unless you have previously called MESSAGES OFF . The user can click either the Stop
button in the standard progress window or the Cancel button in the standard search
window. After a search, you can test the OK system variable to see if the search was
completed. OK returns 1 if it was, and 0 if it wasn't . If you want to view records found
by a search command, use DISPLAY SELECTION or MODIFY SELECTION .

The following examples show a number of ways in which you can use SEARCH and
different search formulas .

Examples

	

SEARCH([Customers] ;[Customers]Name="Smith")

This search returns a selection of all records with Smith in the Name field .

SEARCH(([Employees]Salary>=10000)&([Employees]Salary<=50000))

This search returns a selection of all records where salary is between $10,000 and
$50,000, when the Employees file is the default file .

SEARCH

Here, the search is perfomed on the default file, and the standard Search window is
displayed on the screen . The user specifies the search fields and formulas in that
window.

SEARCH([Invoices])

This is the same example as the above except that the statement specifies the file .

SEARCH([Customers] ;([Customers]ZipCode="94@")I([Customers]ZipCode="90@"))

This search returns a selection of all customers living in the San Francisco or Los
Angeles areas (ZIP codes beginning with 94 or 90) .

SEARCH([Laws] ;[Laws]Text=Var)

This statement can return several results :
1 . If Var equals "Copyright@", the file selection contains all laws with texts beginning

with "Copyright" .

2 . If Var equals "@Copyright@", the file selection contains all laws with texts
containing at least one occurence of "Copyright" .

3 . If Var equals "@Copyright", the file selection contains all laws with texts ending
with "Copyright" .

SEARCH([Documents] ;[Documents]Keyword'Word="Macintosh")

The file selection consists of all documents with at least one subrecord whose Word
subfield equals "Macintosh" .

SEARCH([Invoice] ;MyFunc)

MyFunc is a global function and contains these instructions :

LOAD LINKED RECORD([Invoice]CustomerlD)
$0 ;_ (Substring([Customer]ZipCode ;1 ;2)="94")

The invoice file selection will consist of all invoices made out to customers in the San
Francisco area (when ZIP codes begin with 94) .
SEARCH([filename] ;[filename]fieldname="")

This statement searches an empty alphanumeric field by searching for a null string .

References

	

Records in file, Records in selection, SEARCH BY INDEX, SEARCH SELECTION, SEARCH
SUBRECORDS .

SEARCH BY INDEX

Syntax

	

SEARCH BY INDEX «(fieldname{= I ±}expr<<{ ; *}»)»

Description

	

SEARCH BY INDEX works only on indexed fields and selects all records in the file (not
just the current selection) that match the search formula, thus creating a new current
selection for the file offieldnamerexpr must be of the same type as fieldname. When
the search is complete, SEARCH BY INDEX loads the first record of the new current
selection and makes it the current record.
SEARCH BY INDEX recognizes only two operators : The equal operator (_) and the
between operator (±), also known as the "plus minus" operator . The equal operator
(_) tests alphanumeric, numeric, or date equality . The between operator (±) tests for
alphabetic, numeric, or date values that equal or fall between its parameters . (Shift-
Option-+ displays "+" .)

Important
You can only use the between operator once and that is as the last test .

You can write multiple conditions, separating each condition with a semicolon. 4th
Dimension automatically performs an AND operation on these conditions . If you do
not give an argument, SEARCH BY INDEX displays the same dialog box as Search and
Modify in the User environment, allowing the user to specify the search arguments . In
this case, you can test the OK system variable . OK returns 1 if the user clicked the
OK button, and 0 if the user clicked the Cancel button .
The wildcard character (©) only works with alphanumeric expressions . You can place
the wildcard character at the end of an alphanumeric expression only .
Often, you can significantly speed up a complex search operation by combining
SEARCH BY INDEX, set operations, and SEARCH SELECTION, instead of using
SEARCH .

You can index a field in a subfile. In certain cases, like a search for a keyword in a
document (the keyword being stored in an indexed subfield), you can do a document
search in only a few seconds by doing a SEARCH BY INDEX on a subfield instead of
doing a string search through each document in the file .
SEARCH BY INDEX does not display its findings . If you want to see the results of the
search, follow the search with a command like DISPLAY SELECTION or MODIFY
SELECTION .

SEARCH BY INDEX

	

153

Examples

	

SEARCH BY INDEX([Catalog]ItemNo=5001)

This line would select any record, bearing the item number 5001 .

SEARCH BY INDEX([Catalog]ItemNo±5003 ;5009)

In this case, the new selection contains all records whose item number falls between
5003 (included) and 5009 (included) .

SEARCH BY INDEX([Customers]Date of sale±!11111990! ;Current date)

In this case, the new selection contains all records whose date of sale falls between
January 1, 1990 (included) and the current date (included) .

SEARCH BY INDEX([Catalog]Customer name±"A" ;"M@")

In this case, the new selection contains all records whose customer name falls between
"A" (included) and all names beginning with "M" .

The following example searches for all people alive at a given date (d) .

DEFAULT FILE([Persons])
'Create a set of all people born before a date

SEARCH BY INDEX([Persons]Date of birth ± ! 0010010000! ; d)
CREATE SET("Born before")

'Create a set of all people who died after a date
SEARCH BY INDEX([Persons]Date of death ± d ;!12131132000!)
CREATE SET("Dead after")

'Create a set of all living people
SEARCH BY INDEX([Persons]Date of death = ! 0010010000!)
CREATE SET("Not dead")

'Combine last 2 sets
UNION("Dead after" ; "Not dead" ;"Alive at this date")

'Make sure they weren't born too late
INTERSECTION("Alive at this date" ; "Born before" ; "Alive at this date")

'Change the current selection
USE SET("Alive at this date")

'Clean up.
CLEAR SET("Born before")
CLEAR SET("Not dead")
CLEAR SET("Dead after")
DISPLAY SELECTION

This procedure takes only a few seconds even if you have a file of 5000 persons . To
obtain the same results with SEARCH could take several minutes .

References

	

CREATE SET, DIFFERENCE, INTERSECTION, Records in file, Records in selection,
SEARCH, SEARCH SELECTION, UNION, USE SET .

154

	

SEARCH BY INDEX

SEARCH SELECTION

Syntax

	

SEARCH SELECTION («filename,,» boolexpr)

Description

	

Like SEARCH, SEARCH SELECTION performs a sequential search, but only in the
current selection . SEARCH SELECTION applies boolexpr to each record in the
current selection . If boolexpr evaluates as TRUE, the record is added to the new
current selection . When the search is complete, SEARCH SELECTION loads the first
record of the new current selection and makes it the current record . If you don't
specify filename, SEARCH SELECTION uses the default file . You can significantly
speed up a search by using SEARCH SELECTION after SEARCH BY INDEX or
SEARCH to further define the selection . If the current selection is empty, SEARCH
SELECTION has no effect . MESSAGES OFF turns off the standard 4th Dimension
progress thermometer for this command .
Typically, boolexpr tests a field or subfield against a variable or a constant, using a
relational operator, boolexpr can contain multiple tests that are joined by AND (&)
and/or OR (I) operations . boolexpr can also be or contain the name of developer-
written function .

Important
Be sure to guard the precedence in Boolean expressions, If you have multiple
conditions, enclose each condition in its own set of parentheses . For example ;
((B>1) & (0<0)) . A second example is B>(3*5) .

The example includes a file named Invoices with an indexed Date field and a field
for unpaid invoices named Outstanding . To search for all the unpaid invoices in a
given time period (with the variables vBegin and vEnd defining the time period)
you write the following procedure :

Examples

	

SEARCH BY INDEX([Invoices]Date±vBegin ;vEnd)
SEARCH SELECTION([Invoices]Outstanding#0)
DISPLAY SELECTION

This would usually be faster than using the SEARCH command :
SEARCH([Invoices] ;([Invoices]Date>=vBegin)&([Invoices]Date<=vEnd)&

([Invoices]Outstanding#0))

SEARCH SELECTION(([Customer]State="CA")&([Customer]Sales>1000))

References

	

Records in file, Records in selection, SEARCH, SEARCH BY INDEX .

SEARCH SELECTION

	

155

Syntax

	

SEARCH SUBRECORDS (subfilename;boolexpi)

Description

	

SEARCH SUBRECORDS creates a new subselection for subfilename . SEARCH
SUBRECORDS applies boolexpr to each subrecord in the subfile . If boolexpr
evaluates as TRUE, the subrecord is added to the new subselection . When the search
is complete, SEARCH SUBRECORDS makes the first subrecord the current subrecord
of the current subselection. The wildcard character (@) works in string arguments .
Typically, boolexpr tests a subfield against a variable or a constant, using a relational
operator. boolexpr can contain multiple tests that are joined by AND (&) and/or OR
(I) operations . boolexpr can also be or contain the name of developer-written
function .

+ Using filenames and field names: In either a global or a layout procedure, you
must prefix the field name with the name of the file that contains it and each
subfield name with the filename and the field name that contains it .

If neither a current record nor a higher level subrecord exists, SEARCH
SUBRECORDS has no effect.

Example

	

SEARCH SUBRECORDS([Addresses]PhoneNos ;[Addresses]PhoneNos'Area="408")

References

	

Records in subselection, SEARCH .

Syntax

	

Semaphore (strexpr)

Description

	

Semaphore is a multi-user function that returns TRUE if strexprexists . If it does not
exist, Semaphore returns FALSE and creates it . See 4th Dimension Utilities and
Developer's Notes for details on this and other multi-user commands .

156

	

Semaphore

SEARCH SUBRECORDS

Important
Be sure to guard the precedence In Boolean expressions . If you have multiple
conditions, enclose each condition in its own set of parentheses . For example :
((B>1) & (0<0)) . A second example is B>(3*5) .

Semaphore

SEND PACKET
Syntax

	

SEND PACKET (strexpr)

Description

	

SEND PACKET sends strexpr to the serial port or document opened by the SET
CHANNEL command . SEND PACKET writes data in ASCII format. If you send the
alphanumeric expression to the serial port, the receiving device can be a Macintosh
executing 4th Dimension which can receive characters with RECEIVE PACKET . It can
also be any other computer which can receive ASCII or any device with an RS-232
interface .

One way to export data from subfiles to files used by other applications, is to write
them out with SEND PACKET . If you need to send ASCII characters directly to a serial
device, you can also use SEND PACKET.

Important
Be careful; Macintosh characters are coded on 8 bits and ImageWriter
characters are coded on 7 bits . If you use this method, be sure to create an
ASCII map and execute USE ASCII MAP before SEND PACKET .

To write an ASCII document with 4th Dimension, first use SET CHANNEL to open the
document. SEND PACKET begins writing at the beginning of the document . The
writing of each subsequent packet begins immediately after the last character written .
The example uses SEND PACKET to write data from a file including subfiles to a text
file .

Example

	

'Writes a file, including subf lies to disk
SET CHANNEL(10 ;"SubFile .Txt")
DEFAULT FILE([I .Card])
ALL RECORDS
While (Not(End selection))
SEND PACKET([I .Card]Name+Char(13))
FIRST SUBRECORD([I .Card]Phone)
While (Not(End subselection([I .Card]Phone)))
SEND PACKET([I .Card]Phone'PhNum+Char(13))
SEND PACKET([I .Card]Phone'Comment+Char(13))
NEXT SUBRECORD([I.Card]Phone)

End while
SEND PACKET("*****"+Char(13)) 'End of record marker
NEXT RECORD

End while
SEND PACKET("%%%%") 'End of file marker
SET CHANNEL(11) 'Close file

References

	

EXPORT TEXT, RECEIVE PACKET, SET CHANNEL, USE ASCII MAP .

SEND PACKET

	

157

Example

	

DEFAULT FILE([My File])

SET CHANNEL(10 ;"MyFile.Text")

While(Not(End selection))

SEND RECORD

NEXT RECORD

End while

SET CHANNEL(11)

References

	

ON SERIAL PORT CALL, RECEIVE RECORD, RECEIVE VARIABLE, SEND VARIABLE,

SET CHANNEL.

1 58

	

SEND RECORD

SEND RECORD

Syntax

	

SEND RECORD <<(filename)>>

Description

	

SEND RECORD sends the current record of filename to the serial port or document

opened by the SET CHANNEL command. If you don't specify filename, SEND

RECORD uses the default file. If no current record exists, SEND RECORD has no

effect.

Important

When sending and receiving records between databases, the file that sends the

record and the file that receives the record must have the same number of

fields, type of fields, and order of fields .

If you send the record to a serial port, the receiving device must be a Macintosh

running 4th Dimension, which can receive the record with RECEIVE RECORD . If you

send the record to a document, the record is written into the document. In either

case, 4th Dimension sends the complete record (along with any subrecords it might

contain) in an internal data format, which can only be received with RECEIVE

RECORD. SEND RECORD and RECEIVE RECORD are useful for archiving records in

a separate document, before deleting records . See the archiving example in

Appendix A.

If you want to send and receive data in ASCII format, choose SEND PACKET and

RECEIVE PACKET or EXPORT TEXT and IMPORT TEXT .

SEND VARIABLE

Syntax

	

SEND VARIABLE (var)

Description

	

SEND VARIABLE sends a variable (var) to the serial port or document opened by the

SET CHANNEL command. If you send the variable to a serial port, the receiving

device must be a Macintosh running 4th Dimension, which can receive the variable

with RECEIVE VARIABLE. If you send the variable to a document, the variable is

written into the document. In either case, 4th Dimension sends the complete variable

(including its type and value) in an internal data format, which can only be received

with RECEIVE VARIABLE. Don't confuse SEND VARIABLE with SAVE VARIABLE .

Example

	

SEND VARIABLE(AcctNo)

References

	

RECEIVE VARIABLE, SAVE VARIABLE, SEND PACKET, SEND RECORD,

SET CHANNEL.

SEND VARIABLE

	

1 59

Syntax i

	

SET CHANNEL (posintexprl;posintexpr2)

Description 1

	

SET CHANNEL sets the serial port number (posintexpri) . You set the speed, number
of data bits, number of stop bits, and parity by adding the numeric codes for these
arguments to form posintexpr2. SET CHANNEL selects a serial port as the current
serial port. The current serial port is the default serial port for ON SERIAL PORT CALL
and all subsequent data receiving operations . The example sets a channel to print
through the printer port to an Imagewriter II (to send data with SEND PACKET) .

Example 1

	

SET CHANNEL(0 ;10+3072+16384+8192) 'Printer port, ImageWriter

References 1 ON SERIAL PORT CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD,
RECEIVE VARIABLE, SEND PACKET, SEND RECORD, SEND VARIABLE .

Syntax 2

	

SET CHANNEL (posintexpr<< ;docname>>)

Description 2 SET CHANNEL can create, open, and close files . The posintexpr argument specifies
whether to open (10,12, and 13) or close (11) a file . Files created with SET CHANNEL
are Text files .

160

	

SET CHANNEL

SET CHANNEL

SET CHANNEL has two syntaxes . The first identifies a serial port, protocol, and other
serial port information for setting a communications port . The second syntax
identifies and acts on a document . In either case, serial port or document, you send
data by using SEND PACKET, SEND RECORD, or SEND VARIABLE and you receive
data with RECEIVE BUFFER (only for serial port), RECEIVE PACKET, RECEIVE
RECORD, or RECEIVE VARIABLE . The numeric codes for both syntaxes are in
Appendix F, "4th Dimension and Macintosh Codes ."

	:• Documents and the serial port . SET CHANNEL on a document doesn't affect the
current serial port, but you can only send and receive data from the document and
not to and from the serial port until you close the document .

Here are the values for posintexpr and docname .

Create a document
•

	

SET CHANNEL(12 ;"") : With this syntax, SET CHANNEL displays the standard Create
document dialog. If the user creates (and consequently opens) a document, OK
returns 1 and the Document variable returns the name of the opened document .
Otherwise, OK returns 0 . If you pass 12 as posintexpr, you must pass an empty
string as the second argument .

Open a document
a SET CHANNEL(10 ;docname) : With this syntax, SET CHANNEL tries to open a

Macintosh document specified by docname. If the document exists, SET CHANNEL
opens it. If not, SET CHANNEL creates a new document and opens it . With this
syntax, the OK and Document variables return no significant values .

a SET CHANNEL(10 ;"") : With this syntax, SET CHANNEL displays the standard Open
document dialog . If the user opens a document OK returns 1 and the Document
variable returns the name of the opened document . Otherwise, OK returns 0 .

•

	

SET CHANNEL(13 ;") : With this syntax, SET CHANNEL displays the standard Open
document dialog. If the user opens a document, OK returns 1 and the Document
variable returns the name of the opened document . Otherwise, OK returns 0 . If
you pass 13 as posintexpr, you must pass an empty string as the second argument .

	.• File types: SET CHANNEL(10 ;") and SET CHANNEL(13 ;") are different. With value
10, you can open any type of file, while with value 13, only the text type files are
displayed in the standard window .

Close a document
•

	

SET CHANNEL(11) : If you pass 11 to posintexpr, you must not pass a second
argument. With this syntax, SET CHANNEL closes the document you previously
opened .

Warning
You must ALWAYS close a document (you previously opened) with SET
CHANNEL(11) : if you don't, your new document won't be saved and the
document you modified may have its contents damaged .

	:• HFS and MFS The contents of the Document variable depend on the file system
you're using. Suppose you access a file named Sales Table contained in a folder
named Sales Folder, nested in a folder named Business saved on a disk named
Office .

If you work on an MFS volume, the Document variable returns Off ice :SalesTable
since the MFS does not work with hierarchical folders . On the other hand, if you
work on an HFS volume, the Document variable returns Office :Business :Sales
Folder:Sales Table, because with HFS every folder represents a level in the volume
directory .

SET CHANNEL

	

161

Example 2

	

'Writes a file, including subfiles to disk
i . -1
SET CHANNEL(10 ;"SubFile .Txt")
DEFAULT FILE([I .Card])
ALL RECORDS
While (Not(End selection))

SEND PACKET([LCard]Name+Char(13))
FIRST SUBRECORD([I .Card]Phone)
While (Not(End subselection([I .Card]Phone)))
SEND PACKET([I .Card]Phone'PhNum+Char(13))
SEND PACKET([I .Card]Phone'Comment+Char(13))
NEXT SUBRECORD([I .Card]Phone)

End while
SEND PACKET("*****"+Char(13)) 'End of record marker
NEXT RECORD
MESSAGE("Record "+String(i)+" saved to text file .")

i :=i+1
End while
SEND PACKET("%%%%") 'End of file marker
SET CHANNEL(11)

References 2 ON SERIAL PORT CALL, RECEIVE BUFFER, RECEIVE PACKET, RECEIVE RECORD,
RECEIVE VARIABLE, SEND PACKET, SEND RECORD, SEND VARIABLE .

162

	

SET CHANNEL

SET WINDOW TITLE

Syntax

	

SET WINDOW TITLE (strexp)

Description

	

SET WINDOW TITLE changes the title of the current window to that specified by
strexpr. The current window may be the 4th Dimension window or the custom window,
opened with OPEN WINDOW. If you work in custom menu, 4th Dimension gives the
menu window the default title "Custom Menus ." You can change this to the title of
your choice with SET WINDOW TITLE . Your custom title will remain until you change it
with another SET WINDOW TITLE command. If you create a custom window with a
title bar, you specify the title in the OPEN WINDOW command . You can also change
it with SET WINDOW TITLE.

	:• Titles in the User environment : You can also use SET WINDOW TITLE in the User
environment, but remember that 4th Dimension automatically changes the title of
its window when you select User environment commands . For example, when you
select a command like New Record in the Entry menu, 4th Dimension sets the title
to "Entry for filename" .

Example

	

SET WINDOW TITLE("My First Application")

Reference

	

OPEN WINDOW .

Sin

Syntax

	

Sin (numexpr)

Description

	

Sin returns the sine of numexpr, where numexpr is given in radians . (One degree
equals 0 .0174532925199432958 radians .) The example returns the sine of 45°,
0.70710678118654725 .

Example

	

vSine:=Sin(45*0.0174532925199432958)

References

	

Arctan, Cos, Exp, Log, Tan .

SORT BY INDEX

Syntax

	

SORT BY INDEX (fieldname;> I <)

Description

	

SORT BY INDEX sorts the current selection of the file containing fieldname into
ascending or descending order . f eldname must be an indexed field.

Example

	

SORT BY INDEX([Addresses]ZIP ;>)

Reference

	

SORT SELECTION .

1 64

	

SORT BY INDEX

Important
SORT BY INDEX can sort only one level .

You indicate ascending order with the "greater than" sign (>) and a descending sort
selection with the "less than" sign (<) . Once the sort is completed, 4th Dimension
loads the first record in the sorted selection and makes it the current record . SORT BY
INDEX is useful when you want to sort a big selection on only one level, because
SORT BY INDEX is much faster than SORT SELECTION .

During a sort operation, 4th Dimension displays the standard progress window unless
you have previously called MESSAGES OFF . After a sort operation, you can test to see
if the operation was completed by checking the OK system variable . OK returns 1 if
the operation was completed and 0 if the user has clicked the Stop button .

SORT SELECTION

Syntax 1

	

SORT SELECTION (fieldname,> I <{;*})

Syntax 2

	

SORT SELECTION <<(filename)>>

Description

	

SORT SELECTION sorts the current selection of the file containing fieldname into
ascending or descending order . You can sort on multiple fields within one statement .
You indicate ascending order with the "greater than" sign (>) and a descending sort
selection with the "less than" sign (<) . Once the sort is completed, 4th Dimension
loads the first record of the sorted selection and makes it the current record .
Syntax 1 requires that you explicitly state all arguments . The sort will take place exactly
as you demand.

Important
With SORT SELECTION, you must prefix every use of fieldname with the filename
of the file to which the field belongs . This is true whether the procedure is global
or layout.

Syntax 2 opens a dialog box. When you give filename as an argument, 4th Dimension
brings up the standard sort window for filename . If you omit filename, the default file
is used .
During a sort operation, 4th Dimension displays the standard progress window,
unless you have previously called MESSAGES OFF . After a sort operation, you can
test to see if the operation was completed by checking the OK system variable . OK
returns 1 if the operation was completed and 0 if it wasn't . The user clicking the Cancel
button in the standard sort window or the Stop button in the standard progress window
causes OK to return a 0 .
When sorting for report breaks, remember that you must sort on one extra field .
Breaks are generated for all but the last sorted field . This gives you the ability to have
the last field in a desired order without that order generating a break . If you want to
break on the last sorted field, sort it twice .

Example 1

	

SORT SELECTION([Addresses]ZIP ;> ;[Addresses]Name2 ;>)

Example 2

	

SORT SELECTION([Addresses])

References

	

In break, Level, SORT BY INDEX, Subtotal .

SORT SELECTION

	

1 65

1 66

	

SORT SUBSELECTION

SORT SUBSELECTION

Syntax

	

SORT SUBSELECTION (subfilename;subfieldname;> I <{ ;*})

Description

	

SORT SUBSELECTION sorts the current subselection of a subfile specified by

subfilename within the current record on specified subfleldname(s) into ascending

or descending order. You indicate ascending order with the "greater than" sign (>)

and a descending sort selection with the "less than" sign (<) . Once the sort is

completed, 4th Dimension makes the first subrecord of the sorted subselection the

current subrecord. Sorting subrecords is a dynamic process . Subrecords are never

saved in their sorted order. If neither a current record nor a higher level subrecord

exists, SORT SUBSELECTION has no effect .

In either a global or a layout procedure, you must prefix the field name with the name

of the file that contains it and each subfield name with the filename and the field name

that contains it.

If you do a SORT SUBSELECTION in the Before phase of a layout procedure, the

subselection appears sorted. If you do the same thing in the During phase of a layout

procedure for a screen display, you must call REDRAW to show the new order.

Example

	

SORT SUBSELECTION([Stats]Sales ;[Stats]Sales'Bucks ;>)

Reference

	

None .

Squares sum

Squares sum has two syntaxes . The first applies to finding the squares sum of a
particular field in the current selection . It only works in a footer or break in an output
layout procedure with PRINT SELECTION . The second applies to finding the squares
sum of a particular subfield in a specified subfile . In both cases, the field type must be
numeric .

Syntax 1

	

Squares sum (fieldname)

Description 1

	

Squares sum returns the sum of squares for fleldname in the current selection . This
works only in a footer or break when printing with PRINT SELECTION, because to
compute a squares sum figure, 4th Dimension must work with each record in the
selection. At print time, 4th Dimension brings each record into memory and builds
the sum of squares figure .

Important
Squares sum does not clear after a break. Rather, it calculates a record-by-
record sum of squares value for the entire selection . Squares sum is only
meaningful when printed in break level 0 .

Example 1

	

If(In footer&End selection([Income]))
vSgSum :=Squares sum([Income]Sales)

End if

References 1 Average, In break, In footer, Max, Min, PRINT SELECTION, Std deviation, Subtotal, Sum,
Variance .

Syntax 2

	

Squares sum (subfieldname)

Description 2 Squares sum returns the sum of squares of subfieldname of the current subselection
of the current record .

Example 2

	

vSgSum :=Squares sum([Invoice]Ordered'ItemTotal)

References 2 Average, Max, Min, Std deviation, Sum, Variance .

Squares sum

	

167

Std deviation

Std deviation has two syntaxes . The first applies to finding the standard deviation of a
particular field in the current selection . It only works in a footer or break in an output
layout with PRINT SELECTION. The second applies to finding the standard deviation
of a particular subfield . In both cases, the field type must be numeric .

Syntax 1

	

Std deviation (fieldname)

Description 1

	

Std deviation returns the standard deviation for fieldname in the current selection .
This works only in a footer or break when printing, because to compute a standard
deviation figure, 4th Dimension must work with each record in the selection . At print
time, 4th Dimension brings each record into memory and builds the figure .

Important
Std deviation does not clear after a break. Rather, it calculates a record-by-
record standard deviation value for the entire selection . Std deviation is only
meaningful when printed in break level 0 .

Example 1

	

If(In footer & End selection([Income]))
vStdDev:=Std deviation([Income]Sales)

End if

References 1 Average, In break, In footer, Max, Min, PRINT SELECTION, Squares sum, Subtotal, Sum,
Variance .

Syntax 2

	

Std deviation (subfieldname)

Description 2

	

Std deviation returns the standard deviation of subfieldname of the current
subselection of the current record .

Example 2

	

vStdDev :=Std deviation([Invoice]Ordered'ItemTotal)

References 2 Average, Max, Min, Squares sum, Sum, Variance .

1 68

	

Std deviation

String

String has two syntaxes .

Syntax 1

	

String (numexpr<< ;strexpn>)

Description 1

	

String returns a string, the numeric value specified by numexpr. The format can be
set by the optional strexpr. Choose this format when you want to display the result in a
specific format . The second example would return the appropriate string, depending
on the number tested .

Example 1

	

ALERT("You now have "+String(Records in file)+" records in this file .")

v:=String(vNum ;"Positive ;Negative ;Zero")

References 1

	

Ascii, Char, Length, Num, Position, Substring .

Syntax 2

	

String (date)

Description 2

	

String returns in an alphanumeric form, the date value specified by date in the format
MM/DD/YY .

Example 2

	

ALERT ("Most recent sale for "+gRep+" was on "+ String([Sales]SalesDate))

References 2 Current date, Date string, Position, Substring .

String

	

1 69

Description

	

Subst ring returns the portion of strexpr defined by posintexprl and posintexprl.
posintexprl points to the nth character in strexpr, posintexprl gives the number of
characters to be returned from and including the nth character .

	:• Note: If the sum of posintexprl and posintexprl exceeds 32,766, the results are
undefined .

If posintexprl plus posintexprl is greater than the number of characters in the strexpr,
Substring returns the last character(s) in the string, starting with the character
specified by posintexprl . If posintexprl is greater than the number of characters in
the string, Substring returns a null string (") .

Example

	

Daycode :=Substring("05126187" ;4 ;2)

References

	

GET HIGHLIGHTED TEXT, HIGHLIGHT TEXT, Length, Position, String .

1 70

	

Substring

Substring

Syntax

	

Substring (strexpr;posintexprl ;posintexprl)

Subtotal

Syntax

	

Subtotal (fieldname<< ;posintexpn>)

Description

	

Subtotal works only when printing a sorted selection with PRINT SELECTION . It

creates subtotals by sort level for fieldname. You must call Subtotal in the Break

phase of the output layout procedure . The fieldname argument must be of type Real,

Integer, or Long Integer. To display subtotals while printing, assign the result of the

Subtotal function to a variable placed in the Break area of the print layout .

The second optional argument is used to cause page breaks during printing . If

posintexpris 0, Subtotal will not issue a page break . If posintexprequals 1, Subtotal

issues a page break for each level 1 break . If posintexprequals 2, Subtotal issues a

page break for each level 1 and level 2 break, and so on .

	:• Sum or Subtotal: The figure returned by Subtotal totals figures only for the current

break. 4th Dimension clears the Subtotal figure after each break . Sum, on the

other hand, computes a total for the entire selection being printed. This makes

Sum ideal for generating running totals. Sum does not issue breaks .

If you want to have breaks on n sort levels, you must sort the current selection

on n + 1 levels. This feature lets you sort on a last held, so that it doesn't create

unwanted breaks. If you want the last sort field to generate a break, sort it twice .

Subtotal must be present in the output layout procedure and sorting must be done for

any breaks other than level zero to be generated by PRINT SELECTION . Subtotal in a

global procedure called by the output layout procedure does not trigger breaks .

	:• Provoking page breaks. You can use Subtotal to provoke a page break without

printing a subtotal results . To do this, you can call Subtotal anywhere in the output

layout procedure and do not assign the result to an ouput layout variable .

Example

	

If (Before)

gQuarter:=[Income]Quarter

vStr1 :="

vStr2:="

End if

If (In break)

Case of

(Level=l)

vStr1 :="Subtotal for Quarter "+String(gQuarter)+" : $"+String(Subtotal(Sale))

(Level=0)

vStrl :="Final figures to date

	

Maximum : $"+String(Max([Income]Sale))

vStr2:="

	

Total : $"+String(Sum(Sale))

End case

End if

References

	

In break, In footer, Level, SORT SELECTION, Sum .

Subtotal

	

1 71

Sum

Syntax 1

	

Sum (fieldname)

Sum has two syntaxes. The first applies to finding the sum of a particular field in the
current selection . It only works in a footer or break at print time with PRINT
SELECTION. The second applies to finding the sum of a particular subfield for the
current subselection in a specified subfile . In both cases, the field type must be
numeric .

Description 1

	

Sum returns the sum for fieldname in the current selection . This works only in a
footer or break of an output layout procedure when printing with PRINT SELECTION,
because to compute a sum, 4th Dimension must work with each record in the
selection. At print time, 4th Dimension brings each record into memory and builds
the sum figure .
+ Sum or Subtotal : The figure returned by Subtotal totals figures only for the

current break. 4th Dimension clears the Subtotal figure after each break. Sum, on
the other hand, computes a total for the entire selection being printed . This makes
Sum ideal for generating running totals .

Important
Sum does not clear after a break . Rather, it calculates a record-by-record total
for the entire selection . Sum is only meaningful when printed in break level 0 .

Example 1

	

If(In footer&End selection([Income]))
vSum :=Sum([Income]Sales)

End if

References 1

	

Average, In break, In footer, Max, Min, Squares sum, Std deviation, Subtotal, Variance .

Syntax 2

	

Sum (subfieldname)

Description 2 Sum returns the sum of subfieldname for the current subselection of the current
record .

Example 2

	

vSum :=Sum([Invoice]Ordered'ItemTotal)

References 2 Average, Max, Min, Squares sum, Std deviation, Variance .

172

	

Sum

Tan

Syntax

	

Tan (numexpr)

Description

	

Tan returns the tangent of numexpr, where numexpr is given in radians . (One degree

equals 0.0 174532925199432958 radians .) The example returns the tangent of 45°,

1 .00 .

Example

	

vTan:=Tan(45*0.0174532925199432958)

References

	

Arctan, Cos, Exp, Log, Sin .

Time

Syntax

	

Time (strexp)

Description

	

Time returns a numeric value equal to the number of seconds between midnight and

the time specified by strexpr. strexpr must follow the HH:MM:SS format . strexpr must

be in 24-hour time. The example displays an Alert box with the message "The time at

1 :00PM is 46800 seconds ."

Example

	

ALERT("The time at 1 :00PM is "+String(Time("13:00 :00"))+" seconds .")

References

	

Current time, Time string .

Syntax

	

Time string (posintexpr)

Description

	

Time string returns a string value that expresses the time in the HH :MM:SS format for
posintexpr, where posintexpr is a positive integer representing the number of seconds
since midnight.
If you go beyond the number of seconds in a day (86,400), Time string continues to
add hours, minutes, and seconds . For example, Time string(86401) yields 24 :00 :01 .

Example

	

'Convert 24 hour time to AM/PM

References

	

Current time, Time .

1 74

	

Time string

Time string

'First, is it AM or PM
If($1 <43200)

End Time :=" AM"
Else

End Time :=" PM"
$1 :=$1-43200 'Subtract 12 hours for PM

End if
If ($1 <3600) 'If the time is less than 1 :00 add 12 hours

$1 :=$1 +43200
End if
If ($1<36000)

'If the time is before 10 :00 strip the leading zero
$0 :=Substring(Time string($1) ;2;4)+End Time

Else
$0 :=Substring(Time string($1) ;1 ;5)+End Time

End if

TRACE

Syntax

	

TRACE

Description

	

After calling TRACE, 4th Dimension automatically displays the Trace window every
time a statement is executed . This state ends either when you click the No Trace button
in the Trace window or when 4th Dimension executes a NO TRACE command in a
subsequent statement. The TRACE facility has a global scope . It remains in effect for
all procedures executed : global procedures and layout procedures for data entry,
printing, and importing and exporting data .
	.• Option-Click. You can invoke the TRACE facility by pressing Option and clicking

during the execution of any procedure . This brings up the standard error window .
To invoke TRACE, click the Trace button . If the database is password protected,
you can use the Option-click method only if you hold the master password . Also
see Appendix B, "Using TRACE ."

Example

	

TRACE

Reference

	

NO TRACE .

True

Syntax

	

True

Description

	

True returns the Boolean value TRUE .

Example

	

'True demo
MyVar := True
If(MyVar)

str :="I'm true ."
Else

str :="I'm false ."
End if
ALE RT(str)

References

	

False, Not .

True

	

1 75

Syntax

	

Trunc (numexpr,intexpr}

Description

	

Trunc returns numexpr with its decimal part truncated by the number of decimals
specified by intexpr. Trunc always truncates toward negative infinity . Like any other
numeric operation, Trunc affects the value in memory and not the display format .

Examples

	

vTot :=Trunc(216.897;1) 'vTot gets 216 .8

vTot:=Trunc(216 .897 ;-1) 'vTot gets 210

vTot:=Trunc(-216.897 ;1) 'vTot gets -216 .9

vTot:=Trunc(-216 .897;-1) 'vTot gets -220

References

	

Abs, Dec, Int, Mod, Random, Round .

Trunc

Undefined

Syntax

	

Undefined (va7)

Description

	

Undefined returns TRUE if no value has been assigned to varor if you used CLEAR
VARIABLE on var. As shown in the example, Undefined comes in handy for checking
whether documents read by LOAD VARIABLE exist and whether variables have been
assigned . If you try to assign an undefined variable to a field or to another variable or
if you try to compare it with an expression or value, you may get an error message .

Another use is to determine if a parameter has been passed to a subroutine :

If (Undefined($3))
$3:="None"

End if

	.• OK undefined: The system variable OK is not always defined. See Appendix E for
a discussion of OK and other system variables .

Important
Always define variables .

Example

	

'Creates a document for variables if none exists
CLEAR VARIABLE("MyVar")
LOAD VARIABLE("MyDoc" ;MyVar)
If (Undefined(MyVar))

CONFIRM("MyDoc' doesn't exist . Create it?")
If (OK=1)

MyVar:=Request("Enter value of 'MyVar")
SAVE VARIABLE("MyDoc" ;MyVar)

End if
Else

ALERT("Value of 'My Var' is "+MyVar)
End if

References

	

CLEAR VARIABLE, LOAD VARIABLE, SAVE VARIABLE .

Undefined

	

1 77

UNION

Syntax

	

UNION (strexprl ;strexpr2;strexpr3)

Description

	

UNION creates a set from the union of two sets : setl (specified by strexprl) and set2
(specified by strexpr2) . strexpr3 names the resulting set, seta . UNION includes all
elements of both sets . Set3 needn't exist prior to issuing this command . In fact, if it
does exist, 4th Dimension will replace the old set after computing the new set .
Further, Set3 can be either setl or set2 .

Because SEARCH BY INDEX does not let you perform an OR operation on search
conditions, you can do indexed searches, assigning the results of each search to a set
and then perform an OR operation on the sets with UNION . When you have
completed the UNION operations, call USE SET to make your current selection
reflect the contents of the new set .

Example

	

'Find all customers in California and New York
SEARCH BY INDEX([Customer]State="CA")
CREATE SET("CA")
SEARCH BY INDEX([Customer]State="NY")
CREATE SET("NY")
UNION("CA" ;"NY" ;"CA AND NY")
USE SET("CA AND NY")
CLEAR SET("CA")
CLEAR SET("NY")
CLEAR SET("CA AND NY")

References

	

CLEAR SET, DIFFERENCE, INTERSECTION, SAVE SET, USE SET .

1 78

	

UNLOAD RECORD

UNLOAD RECORD

Syntax

	

UNLOAD RECORD <<(filename)>>

Description

	

UNLOAD RECORD is used in multi-user applications . You must call UNLOAD RECORD
when you want to unlock the current record offilename. See 4th Dimension Utilities
and Developer's Notes for details on this and other multi-user commands .

Uppercase

Syntax

	

Uppercase (strexp)

Description

	

Uppercase returns a string in which all the characters of strexpr are in uppercase . The
example is a function which capitalizes the argument .

Example

	

'Function Capitalize : Puts first letter in upper case and rest in lowercase
$O :=Uppercase(Substring($1 ;1 ;1))+Lowercase(Substring($1 ;2 ;(Length($1)-1)))

References

	

Ascii, Char, Length, Lowercase, Position, Substring .

USE ASCII MAP

Syntax

	

USE ASCII MAP (docname *)

Description

	

USE ASCII MAP loads into memory the ASCII map docname and makes it the current
ASCII map. This document must have been previously created with the ASCII map
dialog in the User environment . Once an ASCII map is loaded, 4th Dimension uses it
during transfer of data between the database and a document or a serial port. This
includes the import and export of text (ASCII), DIF, and SYLK files . It also works on
data transferred through SEND PACKET, RECEIVE PACKET, and RECEIVE BUFFER . It
has no effect on transfers of data done with SEND RECORD, SEND VARIABLE,
RECEIVE RECORD, and RECEIVE VARIABLE .

If you give a null string for docname, 4th Dimension displays the standard open file
dialog so the user can specify an ASCII map. Whenever you execute USE ASCII MAP,
OK returns 1 if the map is successfully loaded, and 0 if not .

If you give the alternative asterisk argument instead of docname, 4th Dimension will
restore the default Macintosh ASCII map. Normally, you should give this instruction
after your map-oriented activities are finished . Otherwise, you will run under the map
you invoked .

xample

	

USE ASCII MAP("MyChars")
EXPORT TEXT([MyFile] ;"MyText")
USE ASCII MAP(*)

eferences

	

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT,
RECEIVE BUFFER, RECEIVE PACKET, SEND PACKET.

USE ACSII MAP

	

1 79

Syntax

	

USE SET (stre' pr)

Description

	

USE SET makes the records in the set named strexpr the current selection for the file
to which the set belongs. You create the set named by strexpr with commands like
UNION, DIFFERENCE, INTERSECTION, and ADD TO SET. This is useful for managing
groups of records with set operations, and from these operations creating a selection
that reflect these groupings . CREATE SET is the counterpart of USE SET ; it creates a
set whose records are the same as those in the current selection .

Example

	

'Saves a text file of all Palo Alto customers
DEFAULT FILE([Addresses])
LOAD SET([Addresses] ;"Palo Alto" ;"Palo Alto Set")
USE SET("Palo Alto")
OUTPUT LAYOUT("Exporter")
EXPORT TEXT("Palo Alto Addresses")
CLEAR SET("Palo Alto")
OUTPUT LAYOUT("Outputl ")

References

	

ADD TO SET, CLEAR SET, CREATE EMPTY SET, CREATE SET, DIFFERENCE,
INTERSECTION, LOAD SET, Records in set, SAVE SET, UNION .

USE SET

	:• Sets and the current record: When you create a set, the position of the currrent
record is kept in the set . USE SET retrieves the position of this record and makes it
the new current record . If you delete this record before you execute USE SET, 4th
Dimension selects the first record in the set as the current record . Also, if you form
a set that does not contain the position of the current record, USE SET selects the
first record in the set as the current record .

Warning
If the data file has changed (additions and deletions), LOAD SET and USE SET
may select records that were not, in the original set .

Variance

Variance has two syntaxes . The first applies to finding the variance of values of a

particular field in the current selection . It only works in a footer or break at print time

with PRINT SELECTION . The second applies to finding the variance of values of a

particular subfield. In both cases, the field type must be numeric .

Syntax 1

	

Variance (/'ieldname)

Description 1

	

Variance returns the variance for f eldname in the current selection. This works only

in In footer or In break in an output layout procedure and when printing with PRINT

SELECTION, because to compute a variance, 4th Dimension must work with each

record in the selection. At print time, 4th Dimension brings each record into

memory and builds the variance figure .

Important

Variance does not clear after a break . Rather, it calculates a record-by-record

variance for the entire selection . Variance is meaningful only when printed in

break level 0 .

Example 1

	

If(In footer & End selection([Income]))

vVariance:=Variance([Income]Sales)

End if

References 1 Average, In break, In footer, Max, Min, Squares sum, Std deviation, Sum .

Syntax 2

	

Variance(subfieldname)

Description 2 Variance returns the variance of subf eldname for the current subselection of the

current record .

Example 2

	

vVar:=Variance([Invoice]Ordered'ItemTotal)

References 2 Average, Max, Min, Squares sum, Std deviation, Sum .

Variance

	

1 81

Syntax While (boolexpr)

<<statement(s)»

End while

Description

	

While . . .End while loops as long as boolexprevaluates to TRUE and executes the

statement(s) .

Example

	

bOK:=1

DEFAULT FILE([CUSTOMERS])

INPUT LAYOUT("AddRecs")

While(bOK=1)

ADD RECORD

End while

References

	

Case of . . .Else . . .End case, If. . .Else . . .End if .

1 82

	

While . . . End while

While . . .End while

Important

Be sure to guard the precedence in Boolean expressions . If you have multiple

conditions, enclose each condition in its own set of parentheses . For example :

((B>1) & (0<0)) . A second example is B>(3*5) .

You can nest While statements within While statements, as long as the close of an

inner While statement does not appear after the close of an outer While statement .

Year of

Syntax

	

Year of (date)

Description

	

Year of returns the numeric value for year from date. The example searches for all
records in where [Invoice History]Invoice Date (a field of type Date) shows the year
1990. Then, upon the user's permission, it displays this selection .

Example

	

'Display 1990 Invoices
DEFAULT FILE([Invoice History])
ALL RECORDS
SEARCH(Year of([Invoice History]invoice Date)=1990)
CONFIRM("You have "+String(Records in selection)+" invoices . Display them?")
If (OK=1)
DISPLAY SELECTION

End if

References

	

Current date, Date, Day number, Day of, Month of .

oo;

Species

ecies

Print

Figure A-1
Output layout

Origin

Origin

J (Print Selection 1

Appendix A

Example Programs

Appendix A gives examples that you can use as models in building your own 4th
Dimension applications .

Searching, sorting, and printing
This example shows you how to set up a layout and a procedure through which the user
can search, sort, and print selected records . The example uses an animal database
with one file, Families, containing four fields, Species, Origin, Friend, and
Population . The demo layout is shown in Figure A-1 .

Ldyou : demo	
Friend

IFriend

Population

Poula#ion

Quit

100

I

1 85

The three buttons are Accept buttons : Print is named bPrint, Print Selection is named
bRecords, and Quit is named bQuit . Typically, you would attach the following global
procedure to a menu item :

'Allows the user to search, sort and make selections to be printed .
DEFAULT FILE([Families])
OUTPUT LAYOUT("Demo")
'Display on the screen the standard Search window .

SEARCH
If ((OK=1)&(Records in selection>=1))

'If the user validates the search, display the standard Sort window .
SORT SELECTION
If (OK=1)

'If the user validates the sort :
bQuit :=0
While (bQuit=O)

'While the user doesn't click the Quit button, display the selection .
DISPLAY SELECTION
If (bPrint=l)

•

	

If the user clicks the Print button, print the selection .
PRINT SELECTION

End if
If (bRecords=l)

•

	

If the user clicks the Print Selection button,
save the current selection in the set named "Selection" .

CREATE SET("Selection")
•

	

Build the new selection with the "UserSet" set that the user selected .
USE SET("UserSet")
'Print that selection .
PRINT SELECTION
'Restore the original selection (Unsorted!) .

USE SET("Selection")
'Delete the "Selection" set which is no longer useful .

CLEAR SET("Selection")
End if

End while 'Until Quit button is pressed
End if 'Sort is OK

End if 'Search is OK

186

	

Appendix A: Example Programs

Figure A-2 shows the list as it appears on the screen .

Figure A-2
List displayed on the screen

Sets and the current selection
To delete the current record while keeping the same current selection :

'Deletes the current record in [INTL CONVENTION] file while maintaining the rest of the
'current selection .

'Create a set containing the current selection :
CREATE SET([INTL CON VENTION] ;"Selection")
'Delete the current record .

DELETE RECORD([INTL CONVENTION])
'Create a new current selection using the set named "Selection" . This will cause all
'undeleted records to be used as the current selection . Note : The current record gets
reset to the first record of the selection .

USE SET("Selection")
CLEAR SET("Selection")

Sets and the current selection

	

187

Families : 17 of 56 J
Species Origin Friend Population

Panda i:hina No 1

Mouse America 'r'es n

Monkey Europe i'es 1

Tiger Asia No 1

Rooster - Europe Yes 1

Fox Europe No 1

Elephant India Yes 1

Print

	

I I. Print Selection J I .

	

Quit

	

j

Printing
This example will print the current selection and show subtotals for the annual
turnover and outstanding debts for every city of the file shown in Figure A-3 .

~_hent_
Company Name
Adr1
Adr2
City
State
Postal Code
Telephone
Turnover
Outstanding

R
R

Figure A-3
File for Printing example

Create the layout named Printing shown in Figure A-4 .

oo¢

Leyou : Printing	

r-~
L-J

Com any Name

s

iliIiii
I

200

E

	

'

	

50

	

1+~0

	

150

	

200

	

250

	

300

	

350

	

40(

0

hi' liii

'''I'll'

Client List

Company Name Postal Code and City

IPCCi u

- Client List -

Turnover

Turnover

(item	 lThiit~ I 1

M

Figure A-4
Output layout named Printing

188

	

Appendix A: Example Programs

k

I

'150

'250

4

Note the location of the H, D, B, and F markers indicating the position of the layout
Header, Detail, Break, and Footer .

In the Header area, specify the page number in the vPage variable. (The variable is
placed in the right part of the layout and is not shown on the screen above .)

In the Detail area, place the Company Name field, the PCCity variable in which the
Postal Code and City are concatenated, and the Turnover and Outstanding fields
(the latter does not appear in the screen above) .

In the Break area, insert the Item, TotaITurn and TotalOut variables . In the Item
variable, you specify whether total is a subtotal or a grand total . Place in the TotaITurn
and TotalOut variables the subtotals of the Turnover and Outstanding fields .

All these values are assigned through layout procedures (see below) .

Here is the Customer List procedure :

'Sorts and prints a user selected part of the Customer List .
'Uses the layout Printing, and its layout procedure

DEFAULT FILE([Clients])
SEARCH 'Let user select the record(s) to be printed any way he/she wants to .
'Only do it if a) The OK button was pressed and b) There is at least one record to print .

If ((OK=1)&(Records in selection>0))
SORT SELECTION([Clients]City ;> ;[Clients]Company Name ;>)
OUTPUT LAYOUT("Printing")
PRINT SELECTION

End if

Here is the output layout procedure for the Printing layout :

'Used to print client report sorted by city and client .

If (In header) 'About to print the page header?
If (Before selection([Clients]) 'Only happened once, at the very beginning
n :=0 'Start page number .

End if
n :=n+1 'Increment page number once for each page .
vPage :="Page : "+String(n)

End if 'In header
If (During) 'Assign City and Zip code to layout variable once for each record .
PCCity :=City+" "+String(Postal Code ;"00000")

End if

Printing

	

1 89

If (In break) 'About to print a break line?
'Place the subtotal of the Turnover field in TotaITurn

TotalTurn :=Subtotal(Tumover))
'Place the subtotal of the Outstanding field in TotalOut

TotalOut:=Subtotal(Outstanding)
Case of

(Level=0) 'Level zero is at report end, Grand total .
Item :="Grand Total :"

: . (Level=l) 'Level one is when the City changes .
'(See the sort done in the global calling routine .)

Item :="Subtotal for "+[Clients]City
End case 'Level

End if 'In break

Figure A-5 shows what the resulting printed page should look like .

Client List

Figure A-5
Printed output from Printing layout

190

	

Appendix A: Example Programs

Page : 1
Company Name Postal Code and City Turnover Outstanding

Farnsburn Fabricator

Non-Stop Air

Los Angeles 93144

Los Angeles 90066

76

1 289

24,998 .00

13 .58

Subtotal for Los Angeles

	

1365

	

25,011 .58

American River Trips Sacramento 93556 24 1,232 .00

Subtotal for Sacramento

	

24

	

1,232 .00

Head In the Hole Prd Salinas 93901 654 254 .00

Subtotal for Salinas

	

654

	

254 .00

A-123 Fixit

Dragon's Breath

San Bruno 94066

San Bruno 94066

12

1 254

98 .00

632 .00

Subtotal for San Bruno

	

1266

	

730.00

Ostrich Enterprises

Quality Incorporated

San Jose 95132

San Jose 95125

5568

123

362 .00

658 .32

456 123 .00Toys and Things San Jose 95127

Subtotal for San Jose

	

6147

	

1,143 .32

Selective Memory Saratoga 95070 45 65 .70

Subtotal for Saratoga

	

45

	

65.70

Paint it Blue So . San Francisco 94080 732 459 .00

Subtotal for So . San Francisco

	

732

	

459.00

Grand Total :

	

10234

	

28,895 .60

Printing labels from subf lies
Unlike PRINT SELECTION, PRINT LABEL does not work with subfile . To print labels
with addresses saved in a subfile, use the PRINT SELECTION command. Figure A-6
shows a typical file structure with subfile addresses .

Custorners
Company Name A
Turnover R
Outstanding R
Addresses

	a
Addresses

Adr1

	

A
Adr2

	

A
City

	

A
State

	

A
Postal Code

	

I
Telephone

Figure A-6
File with address data in a subfile

Create a Multi-line layout for the subfile to print labels using the [Customers]Addresses
subfile field, as shown in Figure A-7 .

ooh

Luyou : Labels

Pos#al Co

Figure A-7
Multi-line layout for printing address data

100

Printing labels from subfiles

	

191

Create a layout for the Customers file in which you specify the Addresses subfile
field in an included subfile area . See Figure A-8 .

layout : labels	

Figure A-8
Mailing label layout with included subfile area

Draw a subfile area slightly taller (by one or two points) than the detail area . To do
so, draw a box in the subfile layout window over the subfile fields which covers up
exactly that area . Cut the box you drew and paste it in the record layout . Now, you just
need to draw a subfile area having the same size as the box you pasted to make sure that
it is the same size as the subfile layout. Eventually, increase the height of that area by
one or two points . Be sure to specify the area as Fixed frame (multiple recor ds) .

192

	

Appendix A; Example Programs

DBF

Figure A-9 shows the Format for an included layout dialog box .

i4\
dA

	

qqy
~h~tih4hh~dd~'d,'dJd~hhhhh4h4h444hhh~ddd,hhhhhh'rhhhhhh4hhh4~dihh'Pi444hh44hh44hhh4h44h4hhhh~J,hh4hh44hhhhhh4hhh4h4hhhhhhhhhhhh4hhhhh4hq .,1 . .,1 . .,1 .

\hgh4h ,,4h4hhhhh4h44h'ddihhhhhhhhh'dihhhh4ghhh4hhh4hh44hhg4hh44hh44hh44 , , , , , , , ,h , , , , , , , , , , , ihh4hq , , , , ,, , , , , , p, I ..I . hhhhhhhh4hhhh444h4
1

	

1

	

1

	

1

	

1

	

I

	

11

	

1

	

1

	

1

	

I

	

1

	

1

	

I

	

1

	

I

	

1

	

1

	

1

	

1

	

1

	

1

	

1 .L
.
. L .

	

. . 1 . . 1 . . 1 . . L . L . L . L . L . 1

Figure A-9
Format for an included layout dialog box

To print labels, call the PRINT SELECTION command . In the User environment,
choose the Print command from the File menu instead of the Print Labels command .
When 4th Dimension prints that layout, it will print one subrecord in the area, because
the number of subrecords that can be printed in that area is limited to one .
Nevertheless, each record will be printed as many time as it contains addresses,
because you selected the Fixed frame (multiple records) . That way all the labels you
need will be printed . The disadvantage, when printing subrecor ds as labels, is that you
cannot have more than one column of labels per page .

Format for an included layout . . .

Addresses

Q

S ix

® Full Page
® Multi-line

Cancel

v	
OK	J

R

Print using . . .
O Variable frame

Fined frame (truncation)
® Fiued frame (multiple records)

Printing labels from subfiles

	

193

Printing with PRINT LAYOUT
Figure A-10 shows a Products file with a subfile [Products]Sales that keeps the
quantity sold of each item by month and year of sale .

Froducts
Reference
Des cripkinri
I_Iriit Frice
Tax Rate
Sales

A
A
R
R

.

Sales
Month
tear

Figure A-10
Products file with Sales subfile

Figure A-11 shows a record with its included subfile area .

Products

Reference IBOR001

Description [Red Bonbons

Unit Price

Tax Rate

12 .36

0 .065

Figure A-11
Products file record

194

	

Appendix A ; Example Programs

Month Year (Quantity

1

	

89 1,542 .00
2

	

89 1,472 .00

3

	

89 1,854 .00
4

	

89 1,745 .00
5

	

89 1,942 .00
6

	

89 1,742 .00
7

	

89 2,130 .00
8

	

89 2,256 .00
9

	

89 2,241 .00
10

	

89 2,354 .00
11

	

89 4,789 .00
12

	

89 5,412 .C3
1

	

90 4,721 .00
2

	

90 3,215 .00
3

	

90 4,123 .00
4

	

90 3,456 .00
5

	

90 5,621 .00
6

	

90 3,461 .00
7

	

90 3,156 .00
8

	

90 2,541 .00
9

	

90 3,125 .00

To print the record above with a subtotal for the subfile field named
[Products]Sales'Qty, use the PRINT SETTINGS, PRINT LAYOUT, and FORM FEED
commands . Figure A-12 shows you the results .

Products

Reference

	

IBOROOI
Description IRed Bonbons
Unit Price
Tax Rate

12 .36
0 .065

Figure A-12
Output showing quarterly and annual sales

Printing with PRINT LAYOUT

	

195

(Months/Years Quantity

January 89
February 89
March

	

89

1,542 .00
1,472 .00
1,854 .00

Subtotal
1st Quarter 89 4,868 .00

April

	

89
May

	

89
June

	

89

1,745 .00
1,942 .00
1,742 .00

Subtotal
2nd Quarter 89 5,429 .00

July

	

89
August 89
September 89

2,130 .00
2,256 .00
2,241 .00

Subtotal
3rd Quarter 89 6,627 .00

October 89
November 89
December 89

2,354 .00
4,789 .00
5,412 .00

Subtotal
4th Quarter 89 12,555 .00

Subtotal
Year 1989 29,479 .00

January 90
February 90
March

	

90

4,721 .00
3,215 .00
4,123 .00

Subtotal
1st Quarter 90 12,059 .00

April

	

90
May

	

90
June

	

90

3,456 .00
5,621 .00
3,461 .00

Subtotal
2nd Quarter 90 12,538 .00

July

	

90 3,156 .00
August 90 2,541 .00
September 90 3,125 .00

Subtotal
3rd Quarter 90 8,822 .00

Grand total : 62,898 .00

To create an output like that shown in Figure A-12, you must create four layouts (shown
in Figures A-13 through A-16) and print them one under another using PRINT LAYOUT .

To print the record header detail and the subfile header, create the record detail
layout (pl .ProdResult.H) shown in Figure A-13 .

Figure A-13
Record detail layout

To print the detail of every subrecord, create the subrecord detail layout
(pl.ProdRes.Sub) shown in Figure A-14 .

Figure A-14
Subrecord detail layout

196

	

Appendix A; Example Programs

Layou : pl.ProdRes .Sub J
100

. v on v l;,"=

ao_^ v
-_~ v o

11
50

	

1d0

	

150

	

200

	

250

J-Layout : pl .ProdResult .H

`-J Products '
'50

Reference (Referenceoo^
Description (Description I
Unit Price UUnit Price

1
: 100

Tax Rate

	

(Tax Rate
_

.(Months /Years Quantity
__ fiIi1lu1 (v on 'i"= '

	

DBF

'150

dlldd '`
vojl ' 1

- 200

50

	

1 d0

	

150

	

200

	

250

To print subtotals and the grand total, create the subtotal layout (pl.ProdResult .B)
shown in Figure A-15 .

11r - ~0
V
0

J

Layout : pl .ProdResult .B

V o

50

	

1 ~tJ

	

150 200

	

250

	

3f

DBF

-?nn

Figure A-15
Subtotal layout

As mentioned earlier, the PRINT LAYOUT command only prints the layout detail
line. Furthermore, the layout must belong to a file and not to a subfile . The three
layouts above are related to the same file named Products and not to the subfile
named [ProductsjSales . The "absolute" position of the layout detail is not that
important because PRINT LAYOUT only considers the height of the layout detail, i .e .
the interval between the H and D markers . Objects located elsewhere in the layout are
ignored and will not be printed .

:• Note; To align the various layouts consistantly, use the Cut, Copy, and Paste
commands from the Edit menu .

To print the end of the record detail, create the end record layout (pi.ProdResult .F)
shown in Figure A-16 .

1

Rr

Layou : pl .ProdResult .F

J

El

Figure A-16
End record layout

50

	

1 -

	

150

	

200

	

250

50

DBF

4

Printing with PRINT LAYOUT

	

197

Write the following procedure named "Product Results" to print records :

'This procedure prints a report using the PRINT LAYOUT command

DEFAULT FILE([Products])
'Ask the user the reference of the product to be printed .

S :=Request("Specify the product reference :")

' If the user validates the request and supplies a reference . . .
If ((OK=1)&(S#"))

' . . .search the record .
SEARCH([Products]Reference=S)

' If the record is found :
If (Records in selection#O)

'Dislay on the screen the two standard print dialogs .
PRINT SETTINGS
If (OK=1)

'If the user validates, calculate the center of the screen to open the window .
$H :=Screen width/2
$V:=Screen height/2
'Place the Return character in the $vCR variable .

$vCR:=Char(13)
'Place 5 Space characters in the $vSSP variable .

$vSSP :=" "*5
'Display custom window by placing the product name in the title bar .

OPEN WINDOW($H-200 ;$V-100 ;$H+200 ;$V+100 ;O ;"Print : "+[Products]Description+" ")
'Send a message to that window

MESSAGE($vCR+$vCR+$vSSP+"Print record detail"+$vCR)
'Print the header and record detail .

PRINT LAYOUT([Products] ;"pl .Prod Result .H")
'Store the quarterly subtotals in QuarterTot variable and the yearly subtotals in YearTot variable .

QuarterTot :=O
YearTot:=o

'Select all the Sales subrecords of the product record .
ALL SUBRECORDS([Products]Sales)
'Sort the subrecords by year and month .

SORT SUBSELECTION([Products]Sales ;[Products]Sales'Year ;> ;[Products]Sales'Month ;>)

'Count the subrecords with the i variable . Initialize i variable to 1
.=1
'Count the quarters with the q variable . Initialize q variable to 1 .

i

198

	

Appendix A : Example Programs

While (Not(End subselection([Products]Sales)))
'While we are wThin the subrecord selection .
'Calculate the vMonth variable in the "pl .ProdResult.D" layout

vMonth :=Month name ([Products]Sales'Month)+" "+String([Products]Sales'Year)
'The global user procedure "Month name" returns the name of the month based on the month number.

MESSAGE($v5SP+"Print month --->"+vMonth+$vCR)
'Calculate the vQty variable in the Subrec . Detail layout

vQty :=[Products]Sales'Qty
'Print the subrecord .

PRINT LAYOUT([Products] ;"pl .ProdRes .Sub")
'Add the subrecord quantity to QuarterTot and YearTot .

QuarterTot :=QuarterTot+[Products]Sales'Qty
YearTot :=YearTot+[Products]Sales'Qty
If (Mod(i ;3)=0) 'Quarterly total?

'If "i" can be divided by 3, we are dealing with a quarter, so we print the quarterly total .
Case of
:(q=1)
vQ:"1 st"

:(q=2)
vQ:="2nd"
(q=3)
vQ:="3rd"
(q=4)
vQ:="4th"
End case

'Calculate the vitem variable contained in the "SubTot" layout .
vltem :="Subtotal"+$vCR+vQ+" Quarter "+String([Products]Sales'Year)

'Assign vTot the month accumulated total from QuarterTot
vTot:=QuarterTot

'Inform the user.
MESSAGE("Print subtotal quarter : "+vQ+$vCR)

'Print the subtotal .
PRINT LAYOUT([Products] ;"pl .ProdResult .B")

'Increment the quarter count
q:=q+1
If (q=5)

'If it's gone beyond 4th Quarter, set the count to 1 .
q :=1

End if
'Reset the quarterly subtotal .

QuarterTot :=O
End if 'Quarterly total
If (Mod(i ;12)=0) 'Yearly total?

'If "i" can be divided by 12, we are dealing with a year end and must then print the yearly subtotal .
'Calculate the vitem variable .

vltem :="Subtotal"+$vCR+"Year 19"+String([Products]Sales'Year)
'Place in vTot the accumulated total of the year in YearTot .

vTot:=YearTot
YearTot:=O 'Reset yeat total

'Inform the user.

Printing with PRINT LAYOUT

	

199

MESSAGE("Print subtotal year : "+String([Products]Sales'Year)+$vCR)
'Print the yearly subtotal .

PRINT LAYOUT([Products] ;"pl.ProdResult .B")
'Reset the yearly subtotal.

vYearTot:=O
End if 'Yearly total

'Increment the subrecord count .
i :=i+1

'Go to the next subrecord .
NEXT SUBRECORD([Products]Sales)

End while 'Subrecords remain

'Calculate the grand totals and print them .
vltem :=$vCR+"Grand total :"
vTot:=Sum([Products]Sales'Qty)
'Print the grand total and footer .

PRINT LAYOUT([Products] ;"pl .ProdResult .B")
PRINT LAYOUT([Products] ;"pl .Prod Result .F")
'Inform the user .

MESSAGE($v5SP+"Start printing . . ."+$vCR)
'Call FORM FEED to print the page
FORM FEED
Close the custom window .

CLOSE WINDOW
End if

End if
End if

To execute the procedure in the User environment, choose Execute Procedure from
the Special menu . While printing the record, the procedure lets you view the various
steps on your screen, as shown in Figure A-17 .

Print:Red Bonbons

Figure A-17
Screen view of report progress

200

	

Appendix A: Example Programs

Print subtr_i+rI quarter : 1st
Pr irit month --->Rpril 8g
Pr i nt month --- :: riay 8g
Print month --->Jurie 8g

Print subtotal
Print month

quarter 2nd
--->July 89

Print month --->Rugust 8g
Print month --->September 8g

Print subtotal
Print month

quarter 3rd
--->October 8g

Print month --->Noyember 8g
Print month --->Oecember 8g

Print subtotal
Print subtotal

Print month

quarter :
year :

4th
8g

--->January 90
Print month --->February gO
Print month --->March g0

Using the FONT STYLE command
The FONT STYLE command is useful for highlighting output . For example, you
might want to use different type styles to emphasize a comment on sales of each
product in your inventory. This example uses the file shown in Figure A-18 and the
output layout shown in Figure A-19 .

Items
Description A
Part No A
Price R
Sales Qty

	

R

Figure A-18
Items file

Figure A-19
Items file output layout

The following layout procedure does the job :

Case of 'Determine quality of sales, based on quantity .
(Sales Qty<1000)
$Style :=2
v:="Disappointing"
((Sales Qty>=1000)&(Sales Qty<5000))
$Style :=1+2
v:="Mediocre"
(Sales Qty>=5000)
$Style :=8
v:="Excellent"

End case
'Change font style to reflect

FONT STYLE(v ;$Style)

The current selection will look like that in Figure A-20 when displayed or printed .

Figure A-20
Selection displayed with FONT STYLE command

Using the FONT STYLE command

	

201

Description Part No Price Sales Qty Result

H .A .H . Traps 47932 $5 .95 5,200 pieces [

	

4
M .M . Watches 153777 $15 .95 4,'200 pieces l' cre
Plastic W .W .B . 95632 $15 .89 700 pieces c,h . ~~,c7 . ,c? T
Plaster Paper Weight 35621 $12 .56 5,420 pieces [

	

I

Description Part No Price Sales Qt'a Result

IDescription

	

I Part No

	

I Price

	

I Sales tqJ I

Subflies
When working on several nested subfiles, using ALL SUBRECORDS selects all the
subrecords of n-level subfile in the current n-l-level subrecord . This example uses
the Factories database shown in Figure A-21 .

Factories
Name A
Address A
Zip Code A
City A
Director A
Telephone A
Activities

Figure A-21
Factories database structure

For every record of the Factories file you may have a set of [Factories]Activities
subrecords. Each subrecord can in turn contain a set of
[Factories]Activites'Production subrecords . Suppose the current Factories file record
contains the data shown in Figure A-22 .

Name

	

Office Supplies
Address

	

43 Mi '',ti ashiri' tar,

Director

	

rir Henry riartir~

	Activities
Product Name
Part No

	

A
Production

Zip Code

	

92 T~

	

City Fresrc', C :

Telephone (.4U8)555-6789

Product Name Blue Lighter

Product Name Ball Fciirit Per

Figure A-22
Current Factories record

202

	

Appendix A ; Example Programs

Production
Month A
Year I
Quantity

Part NoBp :x:oCis

Sub-subrecord #1
Sub-subrecord #2
Sub-subrecord #3

Part No FE'

Sub-subrecord #1
Sub-subrecord #2
Sub-subrecord #3
Sub-subrecord #4

Subrecord #1

L-Subrecord #2

C°loath rear QUari t1t' a

Jariuary 1925 6000

1985FrbruarI4 7500

r~larch 1925 840 i

April 1925 8400

Month iear i;iuaritity

January 1985 1

February 1'?85 1 cooi
P1ar ::h 1985 1 500

This record has two subrecords in the [Factories]Activities subfile . After executing

ALL SUBRECORDS([Factories]Activities)

both subrecords are part of the subselection and the Blue Lighter subrecord becomes
the current [Factories]Activities subrecord . The following statement

ALL SUBRECORDS([Factories]Activities'Production)

applies to the current [Factories]Activities subrecord, Blue Lighter . The three
subrecords January, February and March are then the [Factories]Activities'Production
subselection, while the subrecord for January becomes the current
[Factories]Activities'Production subrecord .

In Figure A-23, the record on the left shows output when no layout procedure is
present . By writing the following layout procedure for the parent layout, you get the
display for the record shown on the right .

If (Before)
ALL SUBRECORDS (Activities)

SORT SUBSELECTION (Activities ;Activities'Part No ; >)
End if

SortedUnsorted

Name
Address
ii Code

Part No Product Name

CH005

	

Blue Charcoal

PN003

	

Green Pens

PE002

	

Pencil - x 1

PEOG1

	

Pencil - *2

ER008

	

White Eraser

GL004

	

Glue, tube

Name
Address
Zi Code

Part No Product Name

CH005

	

Blue Charcoal

EROGB

	

white Eraser

GL004

	

Glue, tube

PEG01

	

Pencil - *2

PE002

	

Pencil - #1

PN003

	

Green Pens

Figure A-23
Records displayed with and without a layout procedure

If invoking the SORT SUBSELECTION command when the record layout is already
displayed, you must explicitly call the REDRAW command to force the subfile area
to display subrecords in the appropriate sort order .

To put all product names in the Activities subselection of the Factories file current
record in uppercase, use the following procedure as the layout procedure for
Factories . Changes will be saved only when the user validates the entry .

If (After)
ALL SUBRECORDS(Activities)
APPLY TO SUBSELECTION(Activities ;

[Factories]Activities'Product Name :=Uppercase([Factories]Activities'Product Name))
End if

Subfiles

	

203

Using the database in Figure A-10, take a look at the output layout for the Products
file shown in Figure A-24 .

.
50	1 ~fl	150	200

(Description Description

Figure A-24
Output layout for Products file

204

	

Appendix A: Example Programs

250

	

300

	

350

	

400

	

450

	

500

B
F

In the upper left corner of the layout, you can see the subfile named Sales . The
vMax, vMin, vAvg, vSum, and vNum variables are located right below it . In these
variables you place the maximum value, minimum value, average value, total value,
and count for all the values contained in the Sales'Qty field for all the subrecords
belonging to the current record . Both graph areas, located in the right part of the
layout, contain a graph drawn on the basis of the values contained in subrecords,
with the Sales'Year field as the x-axis and the Sales'Qty field as the y-axis . The left
graph area (G1) displays bars. The right graph area (G2) displays shaded areas . The
following layout procedure does the graphing :

If(Before)
ALL SUBRECORDS(Sales)
vMax := Max(Sales'Qty)
vMin := Min(Sales'Qty)
vAvg := Average(Sales'Qty)
vSum := Sum(Sales'Qty)
vNum := Records in subselection(Sales'Qty)
GRAPH(G1 ;1 ;Sales'Year ;Sales'Qty)
GRAPH(G2 ;4;Sales'Year ;Sales'Qty)

End if

Month/Year Qty
Soles

Maximum v

	

= I
Minimum
Average
Total
Count

v -~ I

I
I

If the layout is used for printing, each record of the current selection will look like
Figure A-25 .

Figure A-25
Record printout

Description	Chalk

20000

15000

10000

5000

2001 IO

15000

10000

5000

U

Graphs
This section gives additional information on graphs in layouts . You can draw graphs
of field values by using the GRAPH FILE file command. In the same way, you can
draw graphs of subfield values with the GRAPH command. In the first case, 4th
Dimension generates the graph on the screen or on the printer . In the latter case,
you generate the graph by creating a graph area in a layout and writing a layout
procedure for the layout. You can then display or print the graph when displaying or
printing the layout .

The GRAPH command can apply to variables . In this case, here is the proper
syntax :

GRAPH (var;posintexpr;stmarX;numvarY { ;#})

The var argument is a variable indicating the graph area in the layout . The posintexpr
argument is a numeric expression that determines the graph type . The strvarX
argument must be alphanumeric, because it labels the x-axis . The values of this table
are used in the x-axis . You can have as many as eight numvarY arguments . These are
then numeric values plotted against the y-axis .

Month/Year Qty 1
1 /88 15000
10 188 19700
11188 20500
2/88 17500

3/88 14500
4/88 16000
5/88 17800

6/88 19000
7/88 19800
8 l 88 20000
9/88 18400

Maximum 20500
Minimum 14500
Average 18018 .18181
Total 198200
count 11

Figure A-26 shows a file containing data about departments in a business .

Departments
Service Code I
Name A
Manager A
Budget R
Debit

	

R

Figure A-26
Departments file

To draw a graph showing the name of every department in the x-axis and the budget
and debit of every department in the y-axis, you would write the following :

ALL RECORDS([Departments])
GRAPH FILE([Departments] ;1 ;[Departments]Name ;[Departments]Budget;[Departments]Debit)

Now you want to draw a graph showing
•

	

the name of every department prefixed with its code in the x-axis
•

	

the budget and debit of every department
•

	

the difference between these two values in the y-axis

You create a layout like the one shown in Figure A-27 .

11111111

dlldd

layou : Balance Sheet

•

	

Bar 0 Stacked Bar 0 Area 0 Pie

•

	

Stacked 0 Line 0 Points 0 Picture

OK

. .

50

	

1eJ

	

150

	

200

	

250

	

300

	

350

	

40(I)I l I J	I .'I J I J I l I J I .J I J I '.1 '.4'.4)1)4)4)1)I .' I) .

-50

-100

150

-200

cD

Figure A-27
Balance sheet graph layout

206 Appendix A; Example Programs

You must generate the graph using variables calculated from field data . This calls for
the following procedure :

'Balance sheet procedure
DEFAULT FILE ([Departments])

'Select all the records in the [Departments] file
ALL RECORDS

'Create the variable tables .
'The array named vLabel will contain the department codes and department names .
'Array named vBudget will contain the budgets .
'Array named vDebit will contain the debits .
'Array named vDif will contain the difference between budgets and debits .

i -0
While (Not (End selection))

i •- i+1
vLabel{i} := String ([Departments]Dept Code) + " - " + [Departments]Name)
vBudget{i} :_ [Departments]Budget
vDebit{i} :_ [Departments]Debit
vDif{i} :_ [Departments]Budget - [Departments]Debit
NEXT RECORD

End while
'Determine the number of elements for each array .

vLabelO := i
vBudgetO := i
vDebitO := i
vDifO .= i

'Send the "Balance sheet" dialog box to the screen to view the graph :
DIALOG ([Departments] ;"Balance sheet")

'Delete variables from memory .
CLEAR VARIABLE ("v")

The graph is generated with the following layout procedure for the layout in
Figure A-27:

If (Before)
b1 :=1
End if
If (Not(bOK=1)) 'Skip when the user pressed the accept button

'Compute the selected button
$b :=(b1 *1)+(b2*2)+(b3*3)+(b4*4)+(b5*5)+(b6*6)+(b7*7)+(b8*8)
'Graph the function
'MyMy1 is the name of the graph area variable in the layout .

GRAPH(MyMy1 ;$b;vLabel ;vBudget ;vDebit ;VDif)
End if

Figure A-28 shows the resulting graph .

Dialog 7

~;ii Bar

Stacked

208

1 2-C:'ireu:aiciri

Stacked Bar

Line

22-Ni. rk:etlrlq

	

_?-i: or n ierci . 1 44-Pruduc+lure

Area

oints

	OK	

Figure A-28
Graph of fields in Departments file

You can generate graphs by mixing subfields and arrays in the same GRAPH
command. The general GRAPH syntax is

--'~ Pie
icture

Appendix A: Example Programs

E

GRAPH (var;posintexpr;strvarXl subfieldnameX;numvarYl subfieldnameY{ ;*}

Links

This link example, based on the file structure shown in Figure A-29, shows how to use
LOAD OLD LINKED RECORD and SAVE OLD LINKED RECORD when handling
modifications to invoices . They have the effect of decrementing old accounts, so that
the proper figures are maintained .

3
Lines

Description
Unit Price

	

R
Quantity

	

I
Taxes

	

R
Tota1 no tai :

	

R
Total with Ta::

Figure A-29
Invoices database

In mice
Number A
Gate Sold D
Date Entered D
C:ust Code A
Too a1 Nc' Ta :: :: R
Total with Tax R
Lines 	Cu storii ers

Name

	

A
Addressl

	

A
Address

	

A
Cit1a State

	

A
Lip C ':'d€

	

A
Phone

	

A
Customer Code A
Sales TNI

	

A
Sales TI

	

A

Write the following the input layout procedure for the Invoices file :

'Keep totals current (based on subrecords) at all times .
Total No Tax :=Sum(Lines'Total no tax)
Total with Tax:=Sum(Lines'Total with Tax)

'Keep customer current
LOAD LINKED RECORD(Cust Code)

'Update customer file when user validates a new record
If (After)
[Customers]Outstanding :=[Customers]Outstanding+Total with Tax
[Customers]Sales TNI :=[Customers]Sales TNI+Total No Tax
[Customers]Sales TI :=[Customers]Sales TI+Total with Tax
SAVE LINKED RECORD(Cust Code)
LOAD OLD LINKED RECORD(Cust Code)
[Customers]Outstanding :=[Customers]Outstanding-Old(Total with Tax)
[Customers]Sales TNI :=[Customers]Sales TNI-OId(Total No Tax)
[Customers]Sales TI :=[Customers]Sales TI-Old(Total with Tax)
SAVE OLD LINKED RECORD(Cust Code)
End if

User interfacing
While in the Custom environment, you want to create a menu item to search for a
given record within the Employees file of your database, so as to modify its contents .
You write the ModifEmploy procedure and attach it to a menu item .

'Displays dialog box "d .Search" asking user to enter employee names . Searches for a given record and allows
user to modify it if found . Continue asking for employees until [Cancel] buttton is pressed .

DEFAULT FILE([Employees])
$h :=Screen height/2 'Define center of screen .
$w:=Screen width/2

'Select the "i .Entry" layout as the input layout .
INPUT LAYOUT("i .Entry")
'We will stop only if the user selects the [Cancel] button in the dialog box .

Stop :=False
While (Not(Stop))

'Display dialog box and get search info
OPEN WINDOW($w-180 ;$h-70 ;$w+180 ;$h+70 ;1)
DIALOG("d .Search")
CLOSE WINDOW
'Test the OK variable . 1 indicates <Enter> key or [OK] button pressed .

If (OK#1)
Stop:=True
Else
If ((vLastName="")I(vFirstName="))
ALERT("You must provide both first and last names .")

Else
SEARCH BY INDEX([Employees]LastName=vLastName ;[Employees]FirstName=vFirstName)
If (Records in selection#0)

'Modify the record(s) selected
OPEN WINDOW($w-200 ;$h-90 ;$w+200 ;$h+90 ;0 ;"Employee Entry")
MODIFY RECORD
CLOSE WINDOW

Else
ALERT("No record for "+vFirstName+" "+vLastName+" was found .")

End if 'Records in selection#0
End if 'names blank

End if 'OK#1
End while 'not stop

210

	

Appendix A: Example Programs

Figure A-30 shows the Search dialog layout .

Pasted image

a
II

ILiJtiiiii-

	

4]

er ee

Figure A-30
Search dialog layout

Layout text

e names of the empl
ou want to change :

Variable areas

Sending and receiving records and variables
This section contains procedures for sending and receiving records and variables .
These include
o a procedure that adds variables and records to an invoice archive
a a procedure that retrieves variables and records from an invoice archive

Here is the procedure for sending variables and records to an invoice archive :

'This procedure writes selected invoices to the serial port for pick-up by
'"ReadArch" on a different machine .

'Select the [Invoices] file as the default file .
DEFAULT FILE([Invoices])
'Put up a dialog to ask the user the first and last days of the time period .
'The dates are placed in the vBegin and vEnd variables .

vBegin :=100/00/OO!
vEnd :=100/00100!
DIALOG("d .ArchDial")
If (OK=1)

' If the user validates the dialog, check the dates he/she entered .
If (vBegin#!00/00/00!)

'Check whether vBegin is a non-null date .
If (vEnd#!OO/00/o0!)

'Check whether vEnd is a non-null date .
If (vBegin<=vEnd)

'Is the first day of the period less than the last day of the period .
'If all is OK, search by index the corresponding records .

SEARCH BY INDEX([Invoices]Balance=0 ;[Invoices]Invoice date±vBegin ;vEnd)

Sending and receiving records and variables

	

211

If (Records in selection#0)
'If records are found, inform the user and ask whether to continue .

CONFIRM("OK to archive "+String(Records in selection)+" invoices?")
If (OK=1)

'If the user validate, ask for a name for the archival file .
SET CHANNEL(12;")
If (OK=1)

'If OK equals 1, the document has been created. Send a variable which contains the letters IA followed
'by the current date, IA standing for Invoices Archived . These letters will tell exactly what the archival
'file contains the next time the file is read .

v :="IA"+String(Current date)
SEND VARIABLE(v)

'Send dates to save them in the archival file .
SEND VARIABLE(vBegin)
SEND VARIABLE(vEnd)

'For each record in the selection, send the invoice
'number copied to a variable, then the record itself .

While (Not(End selection))
v:=[lnvoices]Number
SEND VARIABLE(v)
SEND RECORD
NEXT RECORD

End while
'Send the zero value, to make sure, that when the
'archival file is read, the end of file will be found .

v:=0
SEND VARIABLE(v)
'Close the document.

SET CHANNEL(11)
'Delete the archived invoices from the file .

MESSAGE("The archived invoices will be deleted")
DELETE SELECTION

End if
End if
'If the invoices cannot be archived, tell the user why .

Else
ALERT("There is no balanced invoice for that period .")

End if
Else
ALERT("The end date for that period is prior to the begin date .")
End if

Else
ALERT("You did not specify the end date for that period .")

End if
Else
ALERT("You did not specify the begin date for that period .")

End if
End if

212

	

Appendix A: Example Programs

Here is the procedure for reading variables and records from an invoice archive :

'Read Archives procedure .
'Ask the user to confirm the request .

CONFIRM("Do you want to read an invoices archival file?")
If (OK=1)

'If the user validates the dialog, ask him/her to select the archival file .
SET CHANNEL(10 ;")
If (OK=1)

'If the user selected a document, read the first variable it contains .
v:=
RECEIVE VARIABLE(v)
'Check whether this is an invoices archival file .

If (Substring(v ;1 ;2)="IA")
If such is the case, retrieve the date on which the file was archived .

vDate :=Date(Substring(v ;3 ;Length(v))
'Read the begin and end dates of the time period wrftten to the document .
RECEIVE VARIABLE(vBegin)
RECEIVE VARIABLE(vEnd)
'Here you can use a dialog to find out whether this is the right file .
'You can also create a custom window to inform the user of the various
'steps in the reading of the document .

v :=1
'With v initialized as 1, use a loop to go through the archival file .
'You know the end of the file is reached when v is equal to zero .

While (v#0)
RECEIVE VARIABLE(v)
If (v#0)

'If v is not 0, there is a record in the document .
'Create a new record . It becomes the current record .
CREATE RECORD([Invoices])
'The following command copies the values to the current record .
RECEIVE RECORD([Invoices])
'Once the values are copied, save the current file record .

SAVE RECORD([Invoices])
End if

End while
Else
ALERT("The "+Document+" document is not an invoices archival file .")

End if
End if
'Close the document .

SET CHANNEL(11)
End if

Sending and receiving records and variables

	

213

Here is a procedure that prepares to receive the sent data .

'The Install Corn procedure is the procedure called from the menu .
'If the variable is undefined, select the modem port as the default serial port
'and set the port interface. Install the Call Detected procedure as a stop
'routine for serial ports .

'Assign a value to the zCom variable so it's no longer undefined and
'place a check mark before the menu item to let the user know he/she will be
'stopped if the serial port receives characters .

menu :=2 'Define the menu and item number that called this procedure
item :=1
If (Undefined(zCom))
SET CHANNEL(1 ;94+3072+1 6384+8192)
ON SERIAL PORT CALL("Call Detected")
zCom-1
CHECK ITEM(Menu ;Item ;Char(18))

Else
'The zCom variable is not undefined : remove the stop routine .
'Clear the zOom variable to make it undefined again and
'remove the check mark from the menu item .

ON SERIAL PORT CALL(")
CLEAR VARIABLE("zCom")
CHECK ITEM(Menu ;Item ;")

End if

Here is the procedure installed by ON SERIAL PORT CALL and used for detecting a
call :

'The Call Detected procedure is the stop routine installed with ON SERIAL PORT CALL
'Ask the user whether to answer the call .

CON FIRM("Somebody is calling, do you want to answer?")
If (OK=1)

'If this is the case, the user must answer using the following routines :
'RECEIVE BUFFER, RECEIVE PACKET and SEND PACKET for an Ascii communication ;
'RECEIVE VARIABLE, SEND VARIABLE, RECEIVE RECORD and SEND RECORD for a
'communication between two 4th Dimension programs .

ReadArch
End if

214

	

Appendix A: Example Programs

Importing and exporting with subfiles
Figure A-31 shows a file Products (and its subfile Sales) and is the basis of this
import and export example .

Products	
Reference

	

A
Description

	

A
Unit Price

	

R
Tax Rate

	

R
Sales

Sales
Month A
Year

	

A
Qty

	

R

Figure A-31
Products file with Sales subfile

You want to exchange data between the Products file and another Macintosh
application. You also want to exchange data contained in the [Products]Sales
subfile. Specifying the subfile in an export layout doesn't solve the problem, because
exporting ignores the subfile . Therefore, you must use variables .

You assume the file is operated on a one year basis and is reset at the end of each
year. You know for sure that the number of subrecords in every record of the Products
file cannot exceed 12 . You create a data export layout in which you place 12
variables, in which you'll place the subrecords values with the help of layout
formulas. Then you create an import data layout in which you place 12 variables
which will receive the data read and from which you'll create subrecords .

Figure A-32 shows the layout named o .Export to be used when exporting data .

=0

0

Use for export only!
Layout : o .[Hport

-QH

- 50

- 100

'150

D

4

F

50

	

1~0

	

150

	

200

	

250

	

300

	

350

Figure A-32
Export layout

Importing and exporting with subfiles

	

215

Description Reference
Price Description
January vi
February v2
March v3
April v4
May v5
June v6
July v7
August v8
September v9
October v10
November vii
December vi 2

You write the following export layout procedure :

If (Before)
'The following code will execute once for every record in [Products]
'before the data is written to the export document .

ALL SUBRECORDS([Products]Sales) 'Select all the subrecords .
SORT SUBSELECTION([Products]Sales ;[Products]Sales'Year ;> ;[Products]Sales'Month ;>)
'Note this command also sets the current subrecord pointer to the first subrecord

'Loop to assign the 12 layout variables :
i :=1 'counter : increment i each time through loop .
While (i<=12) 'for each variable in the layout
If (End subselection([Products]Sales))

'then have reached the end of the subselection, so assign 0 to variable
v{i} :=o
Else

'Have not yet reached the last subrecord .
'Assign the value from [Prod ucts]Sales'Qty into a variable .

v{i} :=Sales'Qty
'Move to current subrecord pointer to the next subrecord .

NEXT SUBRECORD(Sales)
End if 'end subselection(Sales)
'increment counter

i :=i+1
End while 'i<12

End if 'Before

Figure A-33 shows the layout named "Import" to be used when importing data . It
looks just like the layout used for exporting, but it has a very different layout
procedure attached .

Layout : i .lmport	 PII-n
rh ~

I

	

I

	

1

L_ J

dlldd

216

0

~ly~lp

Use For Import only!

50

	

1

	

150	200

	

250
I l	\ {)	} 1..	l

Figure A-33
Import layout

Appendix A: Example Programs

300	350

-50

. 100

- 150

L
[?e:cr i ption Pefere r,r:e
Price [[scrlptior,
January vT- -
February v
rlarch v
April v4
Ma v
JIJne D

July v~
August
September ~~
October vT~- ---
November vTT̀
December vT7

The following is the import layout procedure :

This layout procedure takes the 12 layout variables which were filled in by the import command and creates a
'subrecord for each .

If (After) 'Only "After" phase is generated for import .
'The following code will execute once for every record in [Products]
'before the record is saved .
'Loop to create the 12 subrecords :

$i :=1 'counter: increment $i each time through loop .
While ($i<=12) 'for each variable in the layout
CREATE SUBRECORD([Products]Sales)
[Products]Sales'Qty :=v{$i} 'Assign Quantity
[Products]Sales'Month :=Month Name ($i) 'Assign month name
[Products]Sales'Year :=String(Year of(Current date)) 'Assign Year
'increment counter for next subrecord .
$i :=$i+1

End while '$i<12
End if 'After

Here is the Month Name function called by the procedure :

'Global procedure : Month name
'Given a month number ($1), return a name ($0)

$mnAll :="January "+"February "+"March "+"April "+"May "+"June "+"July
+"September"+"October "+"November "+"December "

$0 :=Substring($mnAll ;($1 *9)-8 ;9) 'Grab one and only 1 month name

Using the EXECUTE command
EXECUTE can dramatically increase the efficiency of your programming efforts .
EXECUTE executes its argument, a string . This section contains a few examples of
what it can do .

A typical example is calling a procedure based on the value contained in a variable .
The variable, var, can contain the values 1, 2, 3, or 4, and depending on the value
you'll call the corresponding Proc1, Proc2, Proc3, or Proc4 procedure . If you don't
use EXECUTE, you have to write something like this :

Case of
:(var =1)
Prod1

:(var = 2)
Proc2

:(var = 3)
Proc3

:(var = 4)
Proc4

End case

"+"August "

Using the EXECUTE command 217

However, if you use EXECUTE, you write the one-line statement

EXECUTE ("Proc" + String (var))

In this case, the argument of EXECUTE concatenates the value of var to Proc. Then
EXECUTE executes the resulting string as a 4th Dimension instruction .

Here is an example in which EXECUTE assigns field values to appropriate variables .
The data base in question contains a file named filename with the following fields :
feldnamel, fieldname2, . . . , fieldname20 . The goal is to copy the values contained
in these fields into the following variables : van, var2, . . . , var20. One solution would
be to write twenty lines that look like this :

vanl :_ [filename]fieldnamel
var2 :_ [filename]fieldname2

var20 :_ [filename]fieldname20

The EXECUTE routine lets you use a loop instead of writing numerous lines :

i -1
While (i <21)

EXECUTE ("var{i} :_ [filename]fieldname" + String (i))
i :=i+1

End while

For example, for i = 15, the following instruction is executed:

var{i} :_ [filename]fieldnamel5 .

You can also use EXECUTE to read buttons in a dialog. For example, when printing
or displaying the current selection of the Personnel file shown in Figure A-34, you
present the user with the custom dialog shown in Figure A-35 instead of the standard
window.

Employees
LastName A
FirstName A
Born D
Salary R
Department A
Grade A
Address A
City A
State A
Zip Code A
Phone

	

A

Figure A-34
Personnel file

218

	

Appendix A: Example Programs

_Sort by :

•

	

last name

•

	

Birth date

•

	

Salary

•

	

Department

•

	

Grade

_Sort order :

•

	

Ascending

•

	

Descending

OK
Cancel J

Figure A-35
Custom Sort dialog box

The programming problem is how to read the button selecting which field to sort on .
You could write a procedure following this pattern:

'Presents a dialog box and sorts the current selection of the employees file as directed .

'Radio buttons rb1, rb2, . . . rb5 are used to select the field to sort by .
•

	

Radio button Otherl indicates ascending
•

	

Radio button Other2 indicates descending

DIALOG([Employees] ;"d .Sort")
If (OK=1)

'Assign n :=1, 2, . . . or 5 .
'At most one radio button can be on at a time .

n :=(1 *rb1)+(2*rb2)+(3*rb3)+(4*rb4)+(5*rb5)
'determine the Order button number that was pressed (if any)

Order:=(1*Orderl)+(2*Order2) '0,1, or 2
'Convert to ">" or "<" string .

Order:=Substring(">><";Order+l ;1) 'Ascending if none selected .
ALERT(order)
If ((n>0)&(n<6))
fieldnamel :="LastName"
field name2 :="Born"
field name3 :="Salary"
fieldname4:="Department"
fieldname5 :="Grade"
EXECUTE("SORT SELECTION([Employees]"+fieldname{n}+" ;"+Order+")")

Else
ALERT("Sort field not specified .")

End if '(n>0)&(n<6)
End if 'OK=1

I

Using the EXECUTE command

	

219

The expression

n :_ (1 *rb1) + (2*rb2) + (3*rb3) + (4*rb4) + (5*rb5)

works because only one of the five radio buttons can return one . The others must
return zero . Thus, zero buttons in the expression return zero and the pressed button
returns its own value times one . When you add the button values together, you'll get
the value of the pressed button only .

220

	

Appendix A: Example Programs

Appendix B

Using Trace

This appendix discusses the 4th Dimension interpreter and debugging techniques .

The 4th Dimension interpreter

The 4th Dimension interpreter is responsible for executing developer-written

procedures (whether written as listings or as flowcharts) . Execution begins in the

Custom environment when the user makes a menu selection. In the User

environment, you initiate execution by choosing Execute from the Special menu and

then selecting a procedure. Procedure execution is also initiated anytime a layout

with an associated procedure is displayed .

Any of these methods launches the 4th Dimension interpreter, which executes

instructions by interpreting them . When a procedure is executed, here's what the

interpreter does :

1 . If the procedure is not already in memory, the interpreter reads the procedure from

disk .

2 . The interpreter then analyzes the instruction contained in the first line (listing) or in

the first step or test (flowchart) . If the syntax is correct, 4th Dimension executes the

instruction. If not, it stops the execution process and displays an error message .

3 . Every time an instruction is correctly executed, the interpreter goes to the next

instruction and repeats the same process until it reaches the end of the procedure .

The word "interpreter" is used because whenever an instruction is correct, 4th

Dimension translates or interprets what you wrote in the 4th Dimension high-level

programming language into equivalent instructions that the Macintosh can execute .

:• Compilers: The other way to execute programs is with a compiler . The programmer

writes a program in a given programming language and then compiles the program

into instructions the computer can understand. These instructions are then

executed without accessing the original text .

22 1

The 4th Dimension interpreter offers the developer several advantages :

•

	

You create a procedure and then execute it directly, without going through

intermediary steps .

•

	

When an error occurs during the execution process, 4th Dimension detects the

faulty instruction and displays where in the procedure it occured .

a You can rapidly correct an error and check the accuracy of your modification by

executing the procedure again .

•

	

4th Dimension enables you to follow the execution cycle step by step using Trace .

4th Dimension default setting for procedure execution is No Trace . However, you

can switch to Trace anytime as explained later on in this appendix . When set on

Trace, 4th Dimension stops after executing every line of the procedure, and displays

a window in which you can

•

	

view the procedure which is being executed, including the line which was executed

last .

•

	

view the contents of variables and fields .

•

	

view the value of any expression .

•

	

set breakpoints, so that the procedure executes normally until the breakpoint is

reached. When 4th Dimension encounters a breakpoint, it stops before executing

the line marked by the breakpoint and turns Trace on .

Working with Trace

When the interpreter detects an error or when you stop the execution with

Option-Click, 4th Dimension displays the dialog box shown in Figure B-1 .

	 :	::::	:	: : . : .
This operation is riot compatible with the two arguments .

.
0 0

f l
Abort

Figure B-1

Error dialog

Trace

222

	

Appendix B ; Using Trace

Continue J

The top text area displays a message indicating the error type, for instance
"Alphanumeric argument expected" or "Procedure stopped by user" if you pressed
Option-Click . The bottom text area displays the faulty instruction, and highlights the
point where the error originated or the execution was interrupted .

:• Password protection : If the database is protected by a main password, you may not
stop the execution of a procedure by pressing Option-Click, unless the database was
opened using the main password .

The Continue button enables you to resume the execution process . If you click the
Abort button, 4th Dimension stops executing the procedure . If you're dealing with a
procedure related to a menu, you go back to the menu bar even if the procedure
which was stopped is not the calling procedure. If you're executing a layout or file
procedure, you remain in the layout but the current execution phase is terminated .

The error window will not be displayed if you installed a routine with ON ERR CALL .
In this case, the event invokes your installed error handling procedure . Should an
error occur or an interruption be forced in your installed routine, a 4th Dimension
error window is displayed. This is because your error handling procedure cannot be
invoked if the error originates in the procedure itself .

The Trace button lets you enter the Trace mode and causes 4th Dimension to display
the Debug window shown in Figure B-2 .

Debug

Rbort No Trace Step View

Figure B-2
Debug window

Working with Trace

	

223

'Example of bad statements .

CLEAR VARIABLE(z)
a :=123

cu

b :="456"
`You cannot add letters and numbers together

c :=a+b

The Debug window is divided into two parts by a thick horizontal line . The top part of

the window displays the instructions being executed . A check mark appears to the left

of the line to be executed next .

+ Flowchart editor. If you have written a procedure in the flowchart editor, the step or

test that is to be executed next is highlighted.

Use the bottom part of the window to type in the names of variables, fields, system

variables and expressions . 4th Dimension will display in that area the values

contained or specified by what you typed. Figure B-3 shows the Debug window with

values displayed.

Debug

VP

Abort No Trace Step View
ci

Figure B-3

Debug window with values displayed

+ Undefined: The z variable is undefined . That is, it does not contain any value and its

type is unknown .

You may modify the size of the bottom part window by pressing the Option key while

clicking inside the box; the horizontal dividing line will be placed on the point where

you clicked .

The Debug window can also be displayed by invoking the TRACE command in a

procedure . Once Trace is activated, 4th Dimension executes each statement step by

step, and for every line, the Debug window is displayed so you can follow the

execution in progress, the change in value for a variable, the calls to procedure, and

so on.

The Abort button acts in the same way as in the error window. The No Trace button

disables the Trace mode : 4th Dimension goes back to executing the procedure in the

normal way. The Step button lets you resume execution while remaining in the Trace

mode. The View button lets you view what happened on the screen . To go back to the

Debug window, click the mouse button .

224

	

Appendix B : Using Trace

'Example of bad statements .

CLEAR VARIABLE(z)
a :=123
b :="456"

'You cannot add letters and numbers together

c :=a+b

Q
a : 123
b

	

456
z

	

Undefined

You may disable Trace by executing NO TRACE in a procedure . Once Trace is
enabled, it can only be disabled by clicking the No Trace button in the Debug window
or by executing a NO TRACE statement .

You can also set breakpoints . To do so, click on the left of a line in the Debug
window: a bullet appears . To delete a breakpoint, click again on the breakpoint .
Figure B-4 shows the Debug window with a breakpoint set .

Debug

f Rbort	J I No Trace J Step View f
cJ

Figure B-4
Debug window with breakpoint set

When a breakpoint is set, 4th Dimension automatically enters the Trace mode
whenever it encounters an instruction marked with a breakpoint, even if you clicked
the No Trace button or invoked the NO TRACE routine in your formulas . The
breakpoint is stored in memory. To delete a breakpoint, you must click on it again .

Use Trace when a procedure does unexpected things . That way you'll locate errors
quickly, especially for undefined variables, loops or tests incorrectly structured,
typing errors, syntax errors, and so on .

Working with Trace

	

225

'Example of bad statements .

CLEAR VARIABLE("")
a :=123
b :="456"

You cannot add letters and numbers together
o :=a+b

This appendix covers four topics of interest to 4th Dimension developers and users .
These include
•

	

Apply Formula and APPLY TO SELECTION

•

	

correcting a database design error
•

	

working with a scrollable area

•

	

updating copies of a database

Applying formulas and APPLY TO SELECTION
The User environment's Apply Formula command and the APPLY TO SELECTION
command are both powerful and flexible . Their power is due to the fact that they act
on an entire selection of records . Their uses include
•

	

modifying data or its presentation
•

	

creating and assigning data
•

	

scanning string lengths
•

	

performing calculations

Modifying data or its presentation
Suppose you have a file, Persons, and realize the user has typed all the names in
lowercase characters . Apply Formula can correct the problem. Select the entire file
and apply the following formula :

[Persons]Name := Uppercase ([Persons]Name}

226

Appendix C

Miscellaneous

Creating and assigning data
In the same way, if you have a file containing a date and need a new field with the
month of that date, create a new field [MyFile]Month to which you apply the following
formula :

[MyFile]Month := Month of ([MyFile]MyDate)

Scanning string lengths
Indexes for Alpha fields use the specified field length when created . If you over-
estimate the number of characters for an indexed Alpha field, you may want to regain
disk space by reducing the field's length . You can find the length of the longest string
in an Alpha field using a procedure with Apply Formula or APPLY TO SELECTION .
The SearchMax procedure does this :

'SearchMax procedure
If (Undefined (vMax))

If the vMax variable is undefined, initialize it .
vMax .= 0

End if
If (Length ([MyFile]MyField) > vMax)

If the length of the value contained in the field is greater than vMax,
'place this length in the vMax variable .

vMax := Length ([MyFile]MyField)
End if

MyField is an indexed alphanumeric field contained in your file . If you apply this
procedure to all the records in the file, vMax will contain the maximum length of the
entries in MyField . Choose Apply Formula from the Entry menu and specify the
SearchMax procedure in the formula editor. To display vMax, execute the procedure

ALERT(String(vMax))

Suppose you have an indexed alphanumeric field with a specified length of 45
characters . The index will take up approximately 61000 bytes (~59 .5K) for 1000
records . After SearchMax has been applied, you realize that the longest entry
contains 33 characters . You go back to the Design environment and change the length
of the field to 35 characters . The index will then take up approximately 51000 bytes
(~50K). The operation freed 9 .5K of disk space .

Applying formulas and APPLY TO SELECTION

	

227

The APPLY TO SELECTION command is equivalent to Apply Formula. Executing the

following two procedures has the same effect. In this case, the SearchLength

procedure calls the SearchMax procedure through the APPLY TO SELECTION

command .

'SearchMax procedure

If (Length ([MyFile]MyField) > vMax)

vMax := Length ([MyFile]MyField)
'place this length in the vMax variable

.

End if

'SearchLength

DEFAULT FILE ([MyFile])

ALL RECORDS

vMax := 0

APPLY TO SELECTION (SearchMax)

ALERT ("The maximum length is " + String (vMax) + "characters .")

You can identify the SearchLength procedure with a custom menu item or execute it

in the User environment by choosing Execute from the Special menu .

Performing calculations

You can create your own arithmetic functions (like Sum and Average) that work on

screen rather than at print-time only (as 4th Dimension's built-in functions do) . To

compute totals without printing the selection, write two procedures-Compute and

Calc. Compute calls Calc from an APPLY TO SELECTION statement .

'Calc procedure

vSum := vSum + [MyFile]MyField

If ([MyFile]MyField > vMax)

vMax :_ [MyFile]MyField

End if

If ([MyFile]MyField < vMin)

vMin :_ [MyFile]MyField

End if

'Compute procedure

DEFAULT FILE ([MyFile])

SEARCH

If (OK =1)

vSum := 0

vMax :_ -1 *(10^99) 'A very small number

vMin :=1*(10^99) 'Avery large number

APPLY TO SELECTION (Calc)

ALERT("Total : "+String(vSum))

ALERT ("Average: "+ String (vSum / Records in selection))

ALERT ("Maximum : " + String (vMax))

ALERT ("Minimum : " + String (vMin))

End if

228

	

Appendix C: Miscellaneous

Correcting a database design error
This section shows you how to change the structure of a 4th Dimension database
without discarding or losing data. As an example, suppose you had originally created
the database shown in Figure C-1 .

orig Customers
Name

	

A
Invoices
Addrl

	

A
Addr2

	

A
City State Zip

	

A

Figure C-1
Original database design

After working with it for awhile, you created a new design (shown in Figure C-2) that
would be more efficient .

new Customers
Name A
Addrl A
Addr2 A
City State Zip A
Cust Code

	

A

Invoices
Lines
Number

	

A
Entry Date D
Due Date

	

D
Total TNI

	

R
Total T I

Invoices
Number

	

A
Entry Date

	

D
Total TNI

	

R
Total T I R
Customer Code A
Lines
Due Date

Figure C-2
Improved database design

	Lines
Descr

	

A
Unit Price R
Quantity

	

1
Tax Rate

	

R
Total TNI

	

R
Total TI

	

R

	Lines
Descr

	

A
Unit Price R
Quantity

	

1
Tax Rate

	

R
Total TNI

	

R
Total T I

	

R

Correcting a database design error

	

229

The following steps show you how to modify the original structure and create a
procedure to generate the improved structure from the old one, without having to
enter the data again :
1 . Back up the database .
2 . Add the files from Figure C-2 . At this point, the database will look like the one

shown in Figure C-3 .

Figure C-3
Database with Invoices file added

3 . Enter the Transfer procedure (given below) which will copy data between the files .
4 . Execute the Transfer procedure .
5 . Make a second backup of the database .
6 . Delete the orig Customers file .
7 . Modify layouts and procedures accordingly .
8 . Make a third backup of the database .

230

	

Appendix C ; Miscellaneous

orig Customers new Customers Invoices

Name A Name A Number

	

A
Invoices Addr1 A Entry Date

	

D
Addr1 A Addr2 A Total TNI

	

R
Addr2 A City State Zip A Total T I

	

R
City State Zip A Invoices Cust Code A Customer Code A

Lines

	

4. Lines
Number

	

A Due Date

	

D
Entry Date D
Due Date

	

D
Total TNI

	

R
Total TI Lines

	

K Lines
DescrDescr

	

A
Unit Price R Unit Price R
Quantity

	

I Quantity

	

I
Tax Rate

	

R Tax Rate

	

R
Total TNI

	

R Total TNI

	

R
Total TI

	

R Total TI

Here is the Transfer procedure :
'This procedure transfers data from a file/subfile/subsubfile structure to a file/subfile and link to other file
'structure .

DEFAULT FILE([orig Customers])
'Select all customers .

ALL RECORDS
'Sort by the customer name .

SORT BY INDEX([orig Customers]Name ;>)
vCode:="XXX" '3 character start of customer code
vNum :=1 'Used for 3 digit number appended to customer code .
While (Not(End selection)) '==Customer==
If (vcode#Substring([orig Customers]Name+"XXX" ;1 ;3))
vCode:=Uppercase(Substring([orig Customers]Name+"XXX" ;1 ;3)
vNum :=1 'Found differing first three letters, start count over .
Else

'Customer name starts with the same 3 letters, so we update
'the three digit number appended to the customer code .

vNum :=vNum+1
End if
CREATE RECORD([new Customers])
[new Customers]Cust Code :=vCode+String(vNum ;"000")
[new Customers]Name :=[orig Customers]Name
[new Customers]Addr1 :=[orig Customers]Addr1
[new Custom ers]Addr2 :=[orig Customers]Addr2
[new Customers]City State Zip:=[orig Customers]City State Zip
SAVE RECORD([new Customers])
'select all (old) customer invoices

ALL SUBRECORDS([orig Customers]Invoices)
While (Not(End subselection([orig Customers]Invoices))) '==Invoice==

'While there is still an invoice create record in the [Invoices] file
CREATE RECORD([Invoices])

'Copy the data to the invoice file :
[Invoices]Number :=[orig Customers]Invoices'Number
[Invoices]Entry Date :=[orig Customers]Invoices'Entry Date
[Invoices]Due Date :=[orig Customers]Invoices'Due Date
[Invoices]Total TNI :=[orig Custom ers]Invoices'Total TNI
[Invoices]Total Tl :=[orig Customers]Invoices'Total TI
[Invoices]Customer Code :=[new Customers]Cust Code

'Select all the invoice line items

Correcting a database design error

	

231

ALL SUBRECORDS([orig Customers]Invoices'Lines)
While (Not(End subselection([orig Customers]Invoices'Lines))) '==Line Item==

'While there still is a line item
'Create a line (subrecord) in the [Invoices] file .

CREATE SUBRECORD([Invoices]Lines)
'Copy the line data

[Invoices]Lines'Descr :=[orig Customers]Invoices'Lines'Descr
[Invoices]Lines'Unit Price :=[orig Customers]Invoices'Lines'Unit Price
[Invoices]Lines'Quantity :=[orig Customers]Invoices'Lines'Quantity
[Invoices]Lines'Tax Rate :=[orig Customers]Invoices'Lines'Tax Rate
[Invoices]Lines'Total TNI :=[orig Customers]Invoices'Lines'Total TNI
[Invoices]Lines'Total Tl :=[orig Customers]Invoices'Lines'Total TI

'go to next line item
NEXT SUBRECORD([orig Customers]Invoices'Lines)

End while '==Line item==
'Activate link going from [Invoices]Customer Code to [new Customers]CustomerCode

ACTIVATE LINK([lnvoices]Customer Code)
'Save the [Invoices] file record .

SAVE RECORD([Invoices])
'Go to the next invoice of this customer

NEXT SUBRECORD([orig Customers]Invoices)
End while '==Invoice==
NEXT RECORD
End while '==Customer==

remove variables from memory .
CLEAR VARIABLE(v

,
)

Working with a scrollable area
Suppose you want to manage documents containing large text fields . That is, you want
to be able to enter and modify data and find information on a given topic . A search of
the type

SEARCH ([Documents]Text = "@Value@")

takes too much time if you're dealing with large texts and if the file contains a lot of
records . A better solution is to have a subfile which contains the keywords related to
each text. Figure C-4 shows a documentation database containing such a subfile .

Documents
Entry Date
Modify Date
Text
Keywords

D
D
T

Keywords
Word

	

A

Figure C-4
Documents database

232

	

Appendix C : Miscellaneous

[Documents]Entry Date contains the date on which the record was created .
[Documents]Modify Date contains the date on which the record was last modified .
[Document]Text contains the entered text . [Documents]Keywords is the subfile and the
[Documents]Keywords'Word subfield lets you save the keywords you create. Figure C-5
shows the input layout for the Documents database .

=0
(EntryDate

ModifyDate

(Text

Entr Date	I
Modif Date I
Text

Add key

Delete Key

OK

CdnCel

C

r-A ~
L_J

0
0

'19qu

b
b

RT

4
0

Figure C-5
Documents input layout

In addition to three fields, the layout also contains : a scrollable area named Keys, a
plain Add button named bAdd, a plain Delete button named bDel, and because
controls have been placed in the layout, an Accept button labeled OK and a Don't
Accept button labeled Cancel .

Here's what the input layout procedure must do :
•

	

If the user clicks the bAdd button, and the user has highlighted some text in the text
field, add the text selection to the list of keywords in the Keys scrollable area .

•

	

If the user selects a value in the keywords list contained in the Keys scrollable area,
enable the bDel button. Otherwise, disable the bDel button

•

	

Every time an action takes place in the keywords list, automatically update the
[Documents]Keywords substructure .

Working with a scrollable area

	

233

And here's the input layout procedure :

If (Before)
'Before the layout is displayed , check if the entry date is equal to the null
'date . That is, is this record being created?

If (Entry Date=!00100100!)
Entry Date :=Current date 'If new, assign Current date to Entry Date .

End if
UpdateRec :=False 'Do not force an update unless a field is modified

or a keywork is added/deleted
Build the keyword scrollable array

'Select all the subrecords in the [Documents]Keywords subfile .
ALL SUBRECORDS(Keywords)

KeysO :=0 'Specify that the Keys list contains no items . . . yet .
'Go through subrecords and copy every keyword to the keys list .

While (Not(End subselection(Keywords)))
KeysO :=KeysO+1
Keys{KeysO} :=Keywords'Word
NEXT SUBRECORD(Keywords)

End while

Keys :=0 'Specify that there is no selected value in the Keys list .
DISABLE BUTTON(bDel) 'Disable the bDel button .

End if 'Before

If (During) 'During data entry :

Case of
(bAdd=1) 'If the user has clicked the bAdd button .

'Put the position of the first and last characters of selected text in v1 and v2
GET HIGHLIGHTED TEXT(Text ;vi ;v2)
If (vl #v2) 'If the selection is not empty .

v :=Substring(Text ;vl ;(v2-vl)) 'Put the resulting selection in v .
KeysO :=KeysO+i 'Specify that the list contains one more value .
Keys{KeysO} :=v 'Place the selection in this new value .

'Create a new subrecord in the [Documents]Keywords subfile .
CREATE SUBRECORD(Keywords)
Keywords'Word :=v 'Place the selection in this new subrecord .
Keys :=0 'Specify that there is no selected value in the Keys list .
Update Rec :=True

End if

234

	

Appendix C: Miscellaneous

(bDel=1) 'If the user clicked the bDel button .
'Search the subrecord corresponding to the selected value in the Keys list .

SEARCH SUBRECORDS([Documents]Keywords ;[Documents]Keywords'Word=Keys{Keys})
'Delete that subrecord from the [Documents]Keywords subfile .

DELETE SUBRECORD([Documents]Keywords)
i :=Keys 'Place in i the number of the value to be deleted from the keys list .
While (i<KeysO) 'While i is less than the number of values in the Keys list .

Keys{i} :=Keys{i+1} 'Copy the contents of the following value to the specified value .
i :=i+1

End while
KeysO :=KeysO-1 'Specify the Keys list contains one value less .
Keys:=0 'Specify there is no selected value in the Keys list .
UpdateRec :=True

End case

If (Keys#0)
ENABLE BUTTON(bDel)
'enable the bDel button .

Else
DISABLE BUTTON(bDel)

End if

End if 'During

If (After)
Modify Date :=Current date

End if 'After

'If a selected value exists in the Keys list

'Else disable the button .

'Assign the Current date to Modify Date .

If (UpdateRec)
UpdateRec:=False 'Just once is enough
Entry Date :=Entry Date 'Modify the parent record to force a record save .

End if

Here is the global procedure for searching texts :

'SearchText procedure
DEFAULT FILE([Documents])
'Ask the user to specify the search keyword .

v:=Request("Specify the search keyword" ;"Macintosh")
If (OK=1)

'If the user validates the request, search by index for records containing at
'least one subrecord with the keyword contained in v .

SEARCH BY INDEX([Documents]Keywords'Word=v)
If (Records in selection#0)
OUTPUT LAYOUT ("Output.Text")
DISPLAY SELECTION(*)

Else
ALERT("There is no text on that topic .")

End if 'Records in selection
End if 'OK=1

To search texts, call this procedure by choosing Execute Procedure from the Special
menu in the User environment ; or, you can set this up as a custom application, adding
other features if you wish .

Working with a scrollable area

	

235

Updating copies of a database
If you make changes to a database, you can update copies of the database without
having to use the Design environment and with no loss of data . Thus, you can easily
add improvements to any copy of the database.

Here is what you can and cannot do .
•

	

You can add, modify, and delete layouts, procedures, indexes, links . (If you
modify the indexes or the links, the user must run the utilities after the update to
recreate them .)

a You can add fields or change attributes of existing fields .
•

	

You cannot delete fields .
•

	

You cannot delete or add files .

Warning
Do not change the name of the database .

Here are the four steps for updating copies of a database :
1 . Make a backup copy of the database .
2 . Replace the files databasename.struct, databasename .res, and databasename.enum

of the user's database with your own .
3 . Leave the following files unchanged : databasename, databasename .data,

databasename.indexl, databasename .index2, and so on .
4 . If you have changed any indexes or links, the user must run the 4th Dimension Tools

and repair the indexes and links .

	:• Note. If the user has changed a Modifiable Standard Choices list, the changes will
be lost, because you're replacing the databasename.enum file. The solution is to
write down all user-entered values and re-enter them once the files have been
replaced .

236

	

Appendix C ; Miscellaneous

Appendix D

External Procedures

You can increase 4th Dimension's power and flexibility by writing external
procedures. Using any high-level language like Pascal or C, or 68000 assembly
language, you can create procedures that can be called from 4th Dimension . Once
compiled and linked, external procedures behave just like built-in 4th Dimension
commands .

You can pass parameters and also get data back from your procedures through
parameters. External functions, however, are not supported . 4th Dimension calls
external procedures, but external procedures cannot call 4th Dimension commands
or the 4th Dimension program. The entire code for an external procedure (compiled
and linked) cannot exceed one segment (32K) .

Parameters
4th Dimension always places the address of the parameters on the stack and calls your
external procedure . For this reason, in your procedure, all parameters must be
variable parameters . In Pascal, in your procedure definition header, each parameter
must have var before it . For example :

Procedure MyExternal war theNum : integer) ;

237

You can pass the parameters listed in Table D-1 to external procedures .

Table D-1
Parameters for external procedures

Parameter

	

Type declaration in MPW Pascal

Integer

	

integer
Long integer

	

longint
Real Number

	

real
String

	

str255
Text

	

type
TERec4D = record

length : integer ;
text: CharsHandle ;

Picture type

end ;

Date type

	

type
Date4D = record

day : integer ;
month : integer ;
year: integer ;

end ;

PicHandle (See note below.)

	:• PicHandle: This is defined the same as the QuickDraw Picture definition, with a
slight change : After the PicSize, PicFrame, and the picture data, there is an offset
point (of type point) specifying the location of the picture on the background and
then the mode used by 4th Dimension to display the picture .

Creating an external procedure
Here is an example of an external procedure written in MPW Pascal . The example
procedure lets you load strings stored in the string list 'STR#' resource .

program Ext4D GetIndString ;

USES {$LOAD Mydumps}
Memtypes, Quickdraw, OSlntf, Toollntf ;
{$LOAD}
{ The LOAD command speeds up the compilation . }

238

	

Appendix D : External Procedures

var
DummyString : str255 ;
Dummylntl, Dummylnt2 : integer ;

procedure GetIndStr (var theStr: str255 ; var ResID, StrNum : integer) ;
{ All parameters must be var parameters . }

begin
GetIndString (theStr, ResID, StrNum) ;
if ResError <> NoErr then theStr := 'Error' ;

end ;

begin
GetIndStr (DummyString, Dummylntl, Dummylnt2) ;

{ Some compilers do not compile procedures that are not invoked . }
end

The next step is to compile and link this program. After this, you need to install the
procedure in 4th Dimension . This is done using the 4D Mover program . (See the 4th
Dimension Utilities and Developer's Notes .)

4D Mover copies the CODE segment 1 from your linked code, and pastes it into a
4DEX resource in 4th Dimension, or in the database .res file . If you have compiled
and linked your program like an application, then the CODE begins with four bytes
for the segment jump table . 4D Mover removes these bytes before pasting the code in
the 4DEX resource . If your programming system allows procedure compilation, or if
you have instructed the linker not to generate the segment offset, then you need to
change they paste conversion of the CODE resource in the 4D Mover. Check the 4D
Mover documentation on how to do this .

After the procedure is installed, the procedure's name appears at the bottom of the list
of routines in the procedure editor . External procedures appear in bold italic . Figure
D-1 shows how these procedures look in the listing window .

Figure D-1
Listing showing external procedures

Creating an external procedure

	

239

Layout Proc . : eut_pic J=
Layout pros Ext .pic

Case of
:(Before)

Keywords 4-

	

i Routines
_
If
Else
End if
Case of

End case
While
End while

J Field 1
Picture
Field3

Q 'xLF4iPir
exf t`FfpPie
exL.& /7P~Qawv
~xt efFJ ea
ex(_CoswfIaaR's
~xJJcauvhrof
exJ~ efC~nlravfT
s'tCn(FV.i b~
ela!<'nff(~~J~oe

sefcntJ9'rAVMax{ { -

To call the procedure, you simply type the name and pass the parameters needed . If
there is a 'STR#' resource with ID =11 containing 24 strings, you can get the third
string in this list by the following 4th Dimension procedure .

Str1 :=""
GetlndStr(Str1 ;11,3)

To create a 4th Dimension function that gets the string :

4th Dimension function Read IndStr
so'-
GetlndStr($0;$1 ;$2)

To use this function, execute the following statement :

vString := Read IndStr(1 1 ;3)

Important details
If the external program has one main procedure and other procedures or functions
that are called by the main procedure, you must structure the program as follows :

program test ;

var dummylnt: integer ;
dummyStr: str255 ;

procedure UseMe (var thelnt : integer); FORWARD ;

procedure Main (var theStr : str255 ; thelnt : integer) ;
var is integer ;

theSt: str255 ;

begin

UseMe (i) ;

end ;

procedure UseMe ;
begin

end ;

begin
Main (dummyStr, dummylnt) ;

end .

240

	

Appendix D: External Procedures

External areas

4th Dimension allows external areas in layouts and dialogs. Using the variables tool in

the Layout window, you can draw an area and select External Area in the list of variable

types . An external area is essentially a part of the window that is not handled by 4th

Dimension. Whenever anything needs to be done in the area (like drawing, updating,

or handling mouse events), 4th Dimension calls the external procedure associated

with the area. 4th Dimension also passes parameters to the external procedure, which

you can use to determine what action to take .

For example, if you create a variable called vNewEmp, assign it the type External

Area, and relate the external procedure HandIeExtNew to the variable (by typing it in

the external procedure name), then the area you have created belongs to the

procedure HandIeExtNew. When an event related to this area occurs, 4th Dimension

calls HandIeExtNew to handle the area . There are five events that 4th Dimension

passes to the external area procedure, defined as the following constants :

•

	

InitEvt =16

•

	

DeInitEvt =17

•

	

CursorEvt =18

Iii MouseDown (predefined in the operating system)

•

	

UpdateEvt (predefined in the operating system)

InitEvt, the layout is about to be displayed or printed . The external area procedure

must create the data structures it needs in memory, initialize variables, etc .

DeInitEvt, the layout is going to be closed, or the printing of the layout is over. Clear

structures created in memory, save documents, etc .

CursorEvt, the user has dragged the mouse over the external area . The procedure

should do what it needs, such as change the cursor .

MouseDown, the user has clicked the mouse over the external area . Do the

appropriate action, such as invert area or check Stilldown to see if the user is holding

the mouse down.

UpdateEvt, the external area needs to be updated . If the external area draws a picture,

then this is the time to actually draw the picture .

External areas

	

241

Every time one of the above event occurs, 4th Dimension calls the external area
procedure with the following parameters:
a the event record
•

	

the external area rectangle
•

	

the name of the external area (variable name)
•

	

a handle related to the area

The external area procedure must always be defined as follows :

procedure MyExtArea (var AreaEvent : EventRecord ; var AreaRect : Rect ; var AreaName : str255 ;
var AreaHndl : MyDataHndl) ;

Important
You must not choose any parameters in 4D Mover for external area procedures .

To interchange data between external procedures and 4th Dimension, use the last
parameter (of type Handle) . The external procedure name is this handle . In the types
declaration, declare the last parameter as a handle to a pointer to any data structure
(integer, real, string, array, a record, or any other structure) . In the InitEvt part,
create the handle using NewHandle (Sizeof (YourDataStructure)) . In the Delnit part,
dispose of this handle using DisposHandie .

Now, as long as the layout is active, that is, in the Before and During phases, you can
pass the handle to your structure by passing the name of the external area to any other
external procedure .

If you had a number thenum in the record to which the handle is pointing, then when
the user clicks, set thenum to 1. You can now, in the During phase, check to see if the
area was clicked by calling an external procedure that takes the handle and integer as
parameters, and assigns to the integer the value of thenum . In the 4th Dimension
procedure, the integer parameter will contain 1 if the external area was clicked .

A graphic example
The following example shows how to use an external area that contains a picture . When
the user clicks on the area, the picture is flipped with another. The pictures are 'PICT'
resources in the database.res file, with resource ID equal to 3900 and 3901 .

242

	

Appendix D : External Procedures

Figure D-2 shows the layout that you need to create to run the example .

Figure D-2
Layout for external procedure

Figure D-3 shows how the layout will look when it is run from either the User or the
Custom environment .

Figure D-3
A result of the external procedure

Figure D-2 shows the layout procedure you must write to call the external procedures .
The example uses three procedures:
•

	

ext_FIipPic, created in the FIipPic program .
•

	

ext SetFIipPic, created in the SetFIipPic program .
•

	

ext GetFIipNum, created in the FIipPicNum program .

A graphic example

	

243

li File Edit Environment Uesign Search

Layout: DemoEvt Layout Proc . : DI
' Layout pros demoext

-5 Case of
_ :(Before)

111101D10111D - e tsptF//Pp . (vstop ;1 ;39e0)
00110111 DUDD ext_ - 'FlrpPrs (vstop ;2)3901)
10101 tI1 D111 -1

_ :(During)

- ext PtF/f WUm (vstop ;num 1)
1_ If (num1=1)

ALERT("Stop")
OK _ End If

k: -

- 2 End case

50 .

	

. 1 f1 ,

	

'150 .

	

'200 ,

	

.250

	

3'

Here is a description of the three procedures .

ext FIipPic is the external area procedure .

ext SetFIipPic (theHandle ; thelnt; theResID) is an external procedure that takes as
parameters the external area handle, the lnt (an integer having values 1 or 2 denoting
the first picture or second) and theResID (the picture resource ID number) . This
procedure is called in the Before phase, once with thelnt =1, to set the picture that will
be displayed first, and again with the lnt = 2, with the picture that will be displayed
when the mouse is down on the external area .

ext GetFIipNum (theHandle ; thelnt) is an external procedure that takes as parameters the
external area handle and thelnt, which will contain 1 if the picture was clicked on,
and 0 if it was not. The procedure resets the value to zero .

The listings for the three programs that create these procedures follow .

FIipPic

Here is the listing for FIipPic.

program FIipPic ;

Uses
{$LOAD HD:MPW:Pexamples:MQOTPLOAD}
Memtypes,Quickdraw,OSIntf,Toollntf,Packlntf ;
{$LOAD}

const
InitEvt =16 ;
DeInitEvt =17 ;
CursorEvt =18 ;

type
MyData = record

theNum : integer ;
thePicl : PicHandle ;
thePicl: PicHandle ;

end ;

MyDataPtr = ^MyData ;
MyDataHndl = ^MyDataPtr ;

{R-}
{D+}

244

	

Appendix D : External Procedures

{ what will be displayed }
{ what will be displayed when mouse down }

var
MyEvent : EventRecord ;
MyRect: Rect;
MyName: str255 ;
MyHndl: MyDataHndl ;

procedure Ext FIipPic (var AreaEvent : EventRecord ; var AreaRect : Rect; var AreaName : str255 ;
var AreaHndl : MyDataHndl) ;

var
is longint ;
Pt : point ;
hPic: PicHandle ;
rec: Rect ;

begin
case AreaEvent.what of

initEvt :
begin

AreaHndl := MyDataHndl (NewHandle (sizeof (MyData))) ;
AreaHndl^" .theNum := 0 ;

end ;

DeInitEvt :
begin

DisposHandle (handle (AreaHndl)) ;
end ;

CursorEvt :
begin

SetCursor (GetCursor (10)^^) ;
end ;

Mousedown :
begin

SetRect (rec, AreaRect .left, AreaRect .top,
AreaHndl^^ .thePic2"" .picframe .right - AreaHndl" .thePic2^^.picframe.left + AreaRect .left,
AreaHndl^" .thePic2"" .picframe.bottom - AreaHndl"^ .thePic2^^.picframe.top + AreaRect .top) ;

DrawPicture (AreaHndl^" .thePic2, rec) ;
AreaHndl^".theNum :=1 ;
while (StilIDown) do { wait for the mouse to be released }
begin
end ;
SetRect (rec, AreaRect .left, AreaRect .top,

AreaHndl^^ .thePlcl "^ .picframe .right - AreaHndl^^ .thePicl ^" .picframe.left + AreaRect .Ieft,
AreaHndl^" .thePicl ^^.picframe.bottom - AreaHndl^^ .thePicl ^" .picframe.top + AreaRect .top) ;

DrawPicture (AreaHndl^^ .thePicl, rec) ;
end ;

A graphic example

	

245

UpdateEvt :
begin

SetRect (rec, AreaRect.Ieft, AreaRect .top,
AreaHndl"^ .thePicl ^".picframe .right - AreaHndl".thePicl ^^.picframe.left + AreaRect .left,
AreaHndl^^ .thePicl ".picframe .bottom - AreaHndl^" .thePicl ^^.picframe .top + AreaRect .top) ;

DrawPicture (AreaHndl" .thePicl, rec) ;
end ;

end ; {case}
end ;

begin
Ext FIipPic (MyEvent, MyRect, MyName, MyHndl) ;

end .

SetFIipPic
Here is the listing for SetFIipPic .

program SetFIipPic ;

Uses
{$LOAD HD :MPW:Pexamples:MQOTPLOAD}
Memtypes,Quickdraw,OSIntf,TooIIntf,Packlntf ;
{$LOAD }

type
MyData = record

theNum : integer ;
thePici : PicHandle ;
thePic2 : PicHandle ;

end ;

MyDataPtr = ^MyData ;
MyDataHndl = "MyDataPtr ;

{R-}
{D+}

var
MyNum : integer ;
MyHndl : MyDataHndl ;

246

	

Appendix D : External Procedures

{ what will be displayed }
{ what will be displayed when mouse down }

procedure ext SetFIipPic (var AreaHndl : MyDataHndl ; var WhichOne : integer ; var PicID : integer) ;
begin

if WhichOne=1 then
AreaHndl".thePicl := PicHandle (GetResource ('PICT',PicID))

else
if WhichOne=2 then

AreaHndl^^ .thePicl := PicHandle (GetResource ('PICT',PicID)) ;
end ;

begin {main}
{ Just to compile }

ext SetFIipPic (MyHndl, MyNum, MyNum ;
end .

FIipPicNum
Here is the listing for FIipPicNum,

program FIipPicNum ;

Uses
{$LOAD HD :MPW:Pexamples:MQOTPLOAD}
Memtypes,Quickdraw,OSIntf,Toollntf,Packlntf ;
{$LOAD }

type
MyData = record

theNum : integer ;
thePicl : PicHandle ;
thePicl : PicHandle ;

end ;

MyDataPtr= "MyData ;
MyDataHndl = ^MyDataptr ;

{R-}
{D+}

var
MyNum : integer ;
MyHndl: MyDataHndl ;

procedure ext FIipPicNum (var AreaHndl : MyDataHndl ; var theVar : integer) ;
begin

theVar := AreaHndl^^ .theNum ;
AreaHndl"^ .theNum := 0 ;

end ;

begin {main}
{ Just to compile }

ext FIipPicNum (MyHndl, MyNum) ;
end .

A graphic example

	

247

External areas and the execution cycle
The following is an overview of the execution cycle for an external area when it is
displayed on the screen or printed .
1 . The external area procedure is called with event .what = InitEvt .

2 . Before is set to true and the layout procedure is called .
3 . The external area procedure is called with event.what = UpdateEvt .

4 . Wait for the next event .
If the next event is a mouse down in the external area, then the external area
procedure is called with event.what = MouseDown .

If the next event is an update event in the external area, then the external area
procedure is called with event.what = UpdateEvt .

Otherwise, if the event is a null event and the mouse is over the external area, then
the external area procedure is called with event.what = CursorEvt .

5 . Normal processing of events is done by 4th Dimension .
6 . If the layout is validated or cancelled, then the external area procedure is called

with event .what = DeInitEvt .

7 . If the layout was an input layout, and the user validated it, then After is set to true
and the layout procedure is called .

248

	

Appendix D : External Procedures

Appendix E

System Variables
and the System Set

This appendix discusses 4th Dimension's system variables and the system
set, UserSet . 4th Dimension stores system variables in memory . These variables
contain information on the execution process and user's actions .

The OK variable
OK is the most commonly used of the system variables . In general, OK contains a 1
when the user clicks an Accept button . It returns a 0 when the user clicks a Don't Accept
button, when the user halts an activity like sorting or searching, and when an error
occurs . OK contains a 2 when the user clicks the Delete button in the standard button
palette . Table E-1 summarizes the affect that various 4th Dimension commands have
on OK.

Table E-1
OK variable values

Command

	

Value of OK variable

ADD RECORD

	

1 if user validates ; otherwise 0 .

ADD SUBRECORD

	

1 if user validates ; otherwise 0 .

APPLY TO SELECTION

	

1 if operation completed ; 0 if user clicks Cancel in progress
window.

CONFIRM

	

1 if user clicks OK button ; otherwise 0 .

DIALOG

	

1 if user validates ; otherwise 0 .

EXPORT DIF

	

1 if operation completed ; 0 if user clicks Cancel in progress
window.

EXPORT SYLK

	

1 if operation completed ; 0 if user clicks Cancel in progress
window.

249

Table E-1 (continued)
OK variable values

Command

EXPORT TEXT

IMPORT DIF

IMPORT SYLK

IMPORT TEXT

MODIFY RECORD

MODIFY SUBRECORD

PRINT DIALOG

PRINT LABEL

PRINT SELECTION

PRINT SETTINGS

REPORT

Request

SEARCH

SEARCH BY INDEX

SEARCH SELECTION

SORT BY INDEX

SORT SELECTION

SET CHANNEL

250

Value of OK variable

1 if operation completed ; 0 if user clicks Cancel in progress
window.

1 if operation completed ; 0 if user clicks Cancel in progress
window.

1 if operation completed ; ,0 if user clicks Cancel in progress
window.

1 if operation completed ; 0 if user clicks Cancel in progress
window.

1 if user validates ; otherwise 0 .

1 if user validates ; otherwise 0 .

1 if printing completed; 0 if user clicks Cancel in either one
of the two standard print dialog boxes or in the printing
progress window .

1 if printing completed; 0 if user clicks Cancel in either one
of the two standard print dialog boxes or in the printing
progress window .

1 if printing completed ; 0 if user clicks Cancel in either one
of the two standard print dialog boxes or in the printing
progress window .

1 if user clicks OK in both standard print dialog boxes ;
otherwise 0 .

1 if printing completed ; 0 if user clicks Cancel in either one
of the two standard print dialog boxes or in the printing
progress window .

1 if user clicks OK button ; otherwise 0 .

1 if operation completed ; otherwise 0 .

(In search window) 1 if user validates search ; otherwise 0 .

1 if operation completed ; otherwise 0 .

1 if sorting completed ; 0 if user clicks Cancel in progress
window .

1 if sorting completed ; 0 if user clicks Cancel in standard sort
window or in progress window.

1 if the user clicks Open or Save ; otherwise 0 .

Appendix E: System Variables and the System Set

The Document variable
The Document variable contains the name of the Macintosh document that was
opened last or created last with one of the following procedures :

EXPORT DIF, EXPORT SYLK, EXPORT TEXT, IMPORT DIF, IMPORT SYLK, IMPORT TEXT,
LOAD SET, LOAD VARIABLE, SAVE SET, SAVE VARIABLE, SET CHANNEL, USE ASCII
MAP .

The FidDelimit variable
The FIdDelimit variable contains the ASCII code of the character which delimits fields .
This character is used when exporting or importing data in Text format . 4th
Dimension default FIdDelimit variable is set to 9, the ASCII code for the TAB
character .

The RcdDelimit variable
The RcdDelimit variable contains the ASCII code of the character which delimits
records . This character is used when exporting or importing data in Text format . 4th
Dimension default RcdDelimit variable is set to 13, the ASCII code for the carriage
return character .

The Error variable
The Error variable works only in the stop procedure installed with ON ERR CALL . This
variable contains the error code . Appendix H lists all 4th Dimension error codes and
SANE NaN codes .

The Flush variable
The Flush variable controls what gets saved to disk and when .

Warning
Do not use this variable . You could cause a loss of data .

The Flush variable

	

251

Event variables

Event variables record the results of keyboard and mouse events . They include

o MouseDown

a KeyCode

o Modifiers

The MouseDown, KeyCode, and Modifiers variables only work in procedures

installed by the ON EVENT CALL command.

The MouseDown variable contains 1 if the mouse button was down when the event

occured. Otherwise it contains 0 .

This KeyCode variable contains the ASCII code of the character that was being typed

if the event was a key stroke .

The Modifiers variable contains value indicating whether one or more of following

keys was down when an event occured: Control, Option, Shift, Caps Lock . Here are

two procedures that return these codes . The first procedure, ModLook, installs the

ON EVENT CALL procedure, Event. Event, in turn, reports which modifier(s) were

down.

+ Note. When running this program, you must press the modifier key and a non-

modifier key .

'ModLook

'Calls ON EVENT CALL to test Modifiers

OK:=1

ON EVENT CALL("Event")

i :=1

While (k200) 'Something to do

MESSAGE(String((Random/32767)-(Random/32767)))

i :=i+1

End while

ON EVENT CALL(")

252

	

Appendix E: System Variables and the System Set

'Event
'Reads Modifiers system variable .
'Doesn't bother with other keycodes .

If (Modifiers#0)
m :=lnt(Modifiers/256)
Case of

(m=1)
s:="Command"
(m=2)
s:="Shift"
(m=3)
s:="Shift-Command"
(m=4)
s:="CapsLock"
(m=8)
s:="Option"

Else
s:="This key combination" 'You can add the rest, through 15

End case
ALERT(s+" has a Modifiers value of "+String(Modifiers))
End if

The system set: UserSet
4th Dimension creates a set named UserSet when a user selects records in the User
environment or when the user selects one or more records under the DISPLAY
SELECTION or MODIFY SELECTION . The 4th Dimension set commands work with
UserSet . Here is an example :

DEFAULT FILE([Accounts])
ALL RECORDS
DISPLAY SELECTION
CREATE EMPTY SET("MyPicks")
UNION("UserSet" ;"MyPicks" ;"MyPicks")
USE SET("MyPicks")
PRINT SELECTION
CLEAR SET("MyPicks")

Use rSet is not available to the CLEAR SET command.

The system set: UserSet

	

253

This appendix contains information on
•

	

serial port codes for SET CHANNEL

•

	

desktop document codes for SET CHANNEL

a Macintosh font codes
a Macintosh style codes
•

	

Macintosh pathnames

Appendix F

4th Dimension
and Macintosh Codes

Serial port codes
These codes apply to the SET CHANNEL procedure in its telecommunications syntax :

SET CHANNEL (posintexprl ;posintexpr2)

Table F-1 describes arguments for posintexprl, and Table F-2 arguments for
posintexpr2,

Table F-1
Serial port first argument settings

254

Object Setting Argument

Port Printer 0
Modem 1

Protocol XON/XOFF printer 20
X01/XOFF modem 21
DTR printer 30
DTR modem 31

Table F-2
Serial port second argument settings

Object

	

Setting

	

Argument

Speed (in baud)

	

300

	

380
600

	

189
1200

	

94
1800

	

62
2400

	

46
3600

	

30
4800

	

22
7200

	

14
9600

	

10
19200

	

4
57000

	

0
Data bits

	

8

	

3072
Stop bits

	

1

	

16384
1 .5

	

-32768
2

	

-16384
Parity

	

No

	

0
Odd

	

4096
Even

	

12288

Desktop document codes
These codes apply to the SET CHANNEL procedure in its document syntax :

SET CHANNEL (posintexpr;strexpr)

Table F-3 describes arguments for the SET CHANNEL procedure in its document
syntax. All commands apply only to text files .

Table F-3
SET CHANNEL document arguments

posintexpr

	

strexpr

	

Result

10 [filename]

	

Opens document named filename. If the file doesn't
exist, these arguments create and open the file . If you
don't include the name, the standard open file dialog
appears .

None

	

Closes the current document.
None

	

Opens a text file .
None

	

Creates a new file . These arguments bring up the
standard open file dialog so you can name the file . After
naming, the file opens .

Desktop document codes

	

255

Macintosh font codes

The codes in this section are arguments for the FONT command .

FONT (var;posintexpr) strexpr)

You must give either posintexpr or strexpr, but not both .

Table F-4

FONT arguments

posintexpr

	

sire xpr

	

posintexpr

0

7

8

systemFont 9

applFont 11

newYork 12

geneva 20

monaco 21

venice 22

London 23

athens 24

sanFran

strexpr

toronto

cairn

losAngeles

times

helvetica

courier

symbol

taliesin

systemFont is Chicago, the font used by the system for drawing menu titles and

commands in menus. app/Font is the application font and the default font. For more

information on fonts and font numbering, see Inside Macintosh .

Macintosh style codes

The codes in this section are arguments for the FONT STYLE command . Its syntax is

FONT STYLE (var;posintexpr)

Macintosh stores its style settings in a low-order byte . The bit(s) set to ON determine

character style . By adding decimal equivalents together, you can create multi-style

combinations, like bold italic. Plain text appears when all bits are off.

Table F-5

FONT STYLE arguments

Its syntax is

Bit on Decimal Style Bit on Decimal Style

0 1 Bold 4 16 Shadow

1 2 Italic 5 32 Condensed

2 4 Underline 6 64 Extended

3 8 Outline

256 Appendix F; 4th Dimension and Macintosh Codes

Macintosh pathnames
Table F-6 gives a brief summary of Macintosh pathnames . For more detailed
discussion, see Inside Macintosh .

Table F-6
Macintosh pathnames

Syntax

	

Example

	

Explanation

strexpr

	

MyFile

	

strexpr with no colon
means a filename in the
current directory .

:strexpr

	

:MyFolder

	

strexpr with a preceding
colon means a folder in
the current directory .

strexprl :strexpr2:strexprn MyDisk :Tasks:ToDo:Today strexprl is a volume
name .
strexpr2: through
strexprn-1 : are folder
names .
strexprn: is a filename .

Macintosh pathnames

	

257

This appendix consists of two tables . Table G-1 presents the standard ASCII codes .
Table G-2 presents the extended Macintosh character set for the Helvetica font .

Table G-1
Standard ASCII codes

258

Appendix G

ASCII Codes

Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex

NUL 0 0 0 sp

	

32 40 20 @ 64 100 40 96 140 60
sox 1 1 1 !

	

33 41 21 A 65 101 41 a 97 141 61
sTx 2 2 2 34 42 22 B 66 102 42 b 98 142 62
ETX 3 3 3 #

	

35 43 23 C 67 103 43 c 99 143 63
EoT 4 4 4 $

	

36 44 24 D 68 104 44 d 100 144 64
ENQ 5 5 5 %

	

37 45 25 E 69 105 45 e 101 145 65
ACK 6 6 6 &

	

38 46 26 F 70 106 46 f 102 146 66
BEL 7 7 7 '

	

39 47 27 G 71 107 47 g 103 147 67
Bs 8 10 8 (

	

40 50 28 H 72 110 48 h 104 150 68
HT 9 11 9)

	

41 51 29 I 73 111 49 i 105 151 69
LF 10 12 A '

	

42 52 2A J 74 112 4A j 106 152 6A
VT 11 13 B +

	

43 53 2B K 75 113 4B k 107 153 6B
FF 12 14 C ,

	

44 54 2C L 76 114 4C 1 108 154 6C
CR 13 15 D 45 55 2D M 77 115 4D m 109 155 6D
so 14 16 E 46 56 2E N 78 116 4E n 110 156 6E
sl 15 17 F /

	

47 57 2F 0 79 117 4F o 111 157 6F
DLE 16 20 10 0

	

48 60 30 P 80 120 50 p 112 160 70
Dcl 17 21 11 1

	

49 61 31 Q 81 121 51 q 113 161 71
DC2 18 22 12 2

	

50 62 32 R 82 122 52 r 114 162 72
DC3 19 23 13 3

	

51 63 33 S 83 123 53 s 115 163 73
DC4 20 24 14 4

	

52 64 34 T 84 124 54 t 116 164 74
NAK 21 25 15 5

	

53 65 35 U 85 125 55 u 117 165 75
sYN 22 26 16 6

	

54 66 36 V 86 126 56 v 118 166 76
ETB 23 27 17 7

	

55 67 37 W 87 127 57 w 119 167 77
CAN 24 30 18 8

	

56 70 38 X 88 130 58 x 120 170 78
EM 25 31 19 9

	

57 71 39 Y 89 131 59 y 121 171 79
SUB 26 32 1A 58 72 3A Z 90 132 5A Z 122 172 7A
Esc 27 33 lB ;

	

59 73 3B f 91 133 SB { 123 173 7B
Fs 28 34 1 C <

	

60 74 3C 1 92 134 5 C I 124 174 7C
Gs 29 35 1D =

	

61 75 3D 1 93 135 SD } 125 175 7D
RS 30 36 1E >

	

62 76 3E A 94 136 5E 126 176 7E
31 37 1F ?

	

63 77 3F _ 95 137 5F del 127 177 7F

Table G-2
Extended Macintosh character set (Helvetica)

Appendix G; ASCII Codes

	

259

Char Dec Oct Hex

	

Char Dec Oct Hex

	

Char Dec Oct Hex Char Dec Oct Hex

A 128 200 80

	

t 160 240 AO 192 300 CO $

	

224 340 E0
A 129 201 81 161 241 A1

	

; 193 301 C1 225 341 El

c 130 202 82 162 242 A2

	

1 194 302 C2 226 342 E2
E 131 203 83

	

£ 163 243 A3 195 303 C3 227 343 E3
N 132 204 84

	

§ 164 244 A4

	

f 196 304 C4 %o 228 344 E4
0 133 205 85

	

e 165 245 A5 197 305 C5 A 229 345 E5
U 134 206 86 ¶ 166 246 A6

	

A 198 306 C6 E 230 346 E6
a 135 207 87 167 247 A7 199 307 C7 A 231 347 E7
a 136 210 88

	

® 168 250 A8 200 310 C8 E 232 350 E8
a 137 211 89

	

© 169 251 A9 201 311 C9 E 233 351 E9
a 138 212 8A

	

TM 170 252 AA 202 312 CA I 234 352 EA
a 139 213 8B 171

0
253 AB

	

A 203 313 CB I 235 353 EB
a 140 214 8C 172 254 AC

	

A 204 314 CC I 236 354 EC
c 141 215 8D

	

173 255 AD

	

O 205 315 CD I 237 355 ED
e 142 216 8E

	

JE 174 256 AE

	

EE 206 316 CE 0A 238 356 EE
e 143 217 8F

	

0 175 257 AF

	

cc 207 317 CF 0 239 357 EF
e 144 220 90

	

00 176 260 BO

	

- 208 320 DO 240 360 FO
e 145 221 91

	

± 177 261 B1 209 321 D1 0 241 361 F1
1 146 222 92

	

< 178 262 B2 210 322 D2 U 242 362 F2
1 147 223 93

	

> 179 263 B3 211 323 D3 U 243 363 F3
1 148 224 94 180 264 B4 212 324 D4 U 244 364 F4
1 149 225 95

	

µ 181 265 B5 213 325 D5 1 245 365 F5
n 150 226 96

	

a 182 266 B6

	

- 214 326 D6 A 246 366 F6
o 151 227 97 183 267 B7

	

0 215 327 D7 247 367 F7
o 152 230 98 II 184 270 B8

	

y 216 330 D8 248 370 F8
o 153 231 99

	

is 185 271 B9

	

Y 217 331 D9 V 249 371 F9
o 154 232 9A 1 186 272 BA

	

/ 218 332 DA 250 372 FA
o 155 233 9B

	

a 187 273 BB

	

o 219 333 DB 251 373 FB
u 156 234 9C

	

4 188 274 BC 220 334 DC 252 374 FC
u 157 235 9D

	

Q 189 275 BD 221 335 DD 253 375 FD
u 158 236 9E

	

ae 190 276 BE

	

fi 222 336 DE 254 376 FE
U 159 237 9F

	

0 191 277 BF

	

fl 223 337 DF v 255 377 FF

4th Dimension error messages

Table H-1

4th Dimension error messages

Error number

	

Message

14

15

260

Appendix H

Error Messages

This appendix contains two tables of error messages . Table H-1 lists 4th Dimension

errors, and Table H-2 lists SANE's NaN errors. Any negative error numbers are

Macintosh system errors . Consult Inside Macintosh, Volume 4 .

"(" expected
.

A field name was expected .

This command may be executed only on a field in a subfile .

Parameters in the list must all be of the same type .

There is no file to apply this command to .

This command may be executed only on a field of type Subfile .

A numeric argument was expected .

An alphanumeric argument was expected .

The result of a conditional test was expected .

This command can't be applied to this field type .

This command can't be applied between two conditional tests .

This command can't be applied between two numeric arguments .

This command can't be applied between two alphanumeric

arguments .

This command can't applied between two date arguments .

This operation is not compatible with the two arguments .

Table H-1 (continued)
4th Dimension error messages

Error number

	

Message

This field has no link .
A filename was expected .
The field types are incompatible .
This field is not indexed .
"_" was expected .
This procedure does not exist .
The fields must belong to the same file or subfile for a sort or graph .
"<" or ">" was expected .
" ;" was expected .
There are too many fields for a sort .
The field type must be Alpha, Date, or Numeric .
The field must be prefixed by its filename .
The field type must be Numeric .
The value must be 1 or 0.
A variable was expected .
There is no menu bar with this number .
A date was expected .
Unimplemented command or function .
Ledger not open .
The sets are from different files .
The file is bad .
" :_" was expected .
The set does not exist .
This is a function, not a procedure .
A variable or field belonging to a subfile was expected .
The record can't be pushed onto the stack .
The function can't be found.
The procedure can't be found .
A field or variable was expected .
A numeric or an alphanumeric argument was expected .
The field type must be Alpha .
Syntax error.
This operator can't be used here .
These operators can't be used together .

4th Dimension error messages

	

261

NaN messages
NaN stands for Not a Number. It is a Standard Apple Numeric Environment (SANE)
representation and appears when an operation produces a result that is beyond
SANE's scope .

Table H-2
SANE NaN messages

NaN code

	

Reason

Invalid square root
Invalid addition
Invalid division
Invalid multiplication
Invalid remainder
Converting an invalid ASCII string
Converting a Comp type number to floating-point
Creating a NaN with a zero code
Invalid argument to a trig function
Invalid argument to an inverse trig function
Invalid argument to a log function
Invalid argument to an xl or xY function
Invalid argument to a financial function
Uninitialized storage

262

	

Appendix H; Error Messages

CREATE LINKED RECORD
command and 42

DISPLAY SELECTION command
and 61

LOAD LINKED RECORD
command and 97

MODIFY RECORD command and
108

REJECT command and 140
Alert box 23, 40, 84, 173

Index

CREATE LINKED RECORD
command and 42

DISPLAY SELECTION command
and 61

During function and 63
In break function and 88
In footer function and 89

In header function and 90
MODIFY RECORD command and

108
SORT SUBSELECTION command
and 166

Before selection function 3, 31,
90, 111, 124, 129

Before subselection function 5, 32,
112, 125

between operator (±) 153
Boolean functions 16
break 88, 95, 171
Button button 58
buttons 40, 64
BUTTON TEXT command 9, 33,

58, 64
button variables 33, 58, 64

C

Cancel button
After function and 22
CONFIRM command and 40
Request function and 142

Caps Lock key 252
Case of . . .Else . . .End case statement

15, 34, 69
Char function 14, 27, 35
Check box 33, 58, 64
CHECK ITEM command 9, 35, 36,

59, 65, 103
CLEAR SEMAPHORE command

12, 36
CLEAR SET command 6, 37
CLEAR VARIABLE command 15,

38, 177
Clipboard 82
CLOSE WINDOW command 10, 39,

68
Command-Period 22

263

Cast of Characters ALERT command 10, 23

& (AND
® (at

_ (equal
- (hyphen)

. (period)
/ (slash)

A
Abort
ABORT

Accept
After

± (between

* (multiplication

Abs function

operations)
sign) 96,

operator)
48

48
48

button
command

button
function

operator)
153

sign)

223,

13, 18

and

151, 155, 156 ALL

ALL

AND

RECORDS command
62, 109
SUBRECORDS command
24, 202, 203
(&) operations 151,

3, 23,

153
153

5,

155, 156

224
16,

22

114 Apple
applications

Apply

APPLY

APPLY

Arctan

menu 36, 59, 63,
programming,

commands and functions
15-16

Formula function
228

TO SELECTION
2, 25, 226-228

TO SUBSELECTION
command 4, 26

function 13, 26

65, 103

for

17, 116

226, 227,

command

functions 13arithmeticDISABLE BUTTON command
codes 35, 117,ASCII 258-259and 58

and Ascii function 14, 27ENABLE BUTTON command
ASCII map 70, 71, 85, 86, 87,64

ACTIVATE LINK command 6, 18 179

Add button 233 at sign (@), as wildcard character
96, 153ADD RECORD command 4, 19,

Average function 13, 28, 129, 22843, 51, 91, 120
ADD SUBRECORD command 5,

20, 45, 146 B
ADD TO SET command 6, 21, 41,

BEEP command 10, 29180
After function 7, 22 Before function 7, 8, 30

ABORT command and 17ABORT command and 17

commands, selection 2. See also
specific command

communications 11-12
compiler 221
CONFIRM command 10, 40, 142
Continue button 223, 224
Control key 252
Cos function 13, 40
CREATE EMPTY SET command

6,41
CREATE LINKED RECORD

command 6, 42, 144
CREATE RECORD command 4,

17, 43, 135, 146
CREATE SET command 6, 44,

180
CREATE SUBRECORD command

5, 20, 45, 146

Dec function 13, 50
DEFAULT FILE command 51
DelnitEvt 241
Delete button 233, 249
DELETE DOCUMENT command

11, 52
DELETE RECORD command 4, 53

264

	

Index

DELETE SELECTION command
2, 21, 53, 54

DELETE SUBRECORD command
5,55

DIALOG command 7, 9, 10, 56
dialog layout procedures 63
dialog layouts, data entry to 7
dialogs 10
DIFFERENCE command 6, 57,

180
DISABLE BUTTON command

58, 64
DISABLE ITEM command 9, 59,

65
DISPLAY RECORD command 8,

47, 60
DISPLAY SELECTION command

8, 61-62

9,

and 166

E
Edit menu 36, 59, 63, 65, 103
ENABLE BUTTON command 9, 64
ENABLE ITEM command 9, 59,

65

End selection function 3, 66
FIRST RECORD command and

74
In footer function and 89
NEXT RECORD command and

111
PREVIOUS RECORD command

and 124
PRINT SELECTION command

and 129
End subselection function 5, 67,

112, 125
Enter key 22, 63, 142
Entry menu 227
equal operator (_) 153
ERASE WINDOW command 10, 68,

80, 104
error dialog 222

ext_GetFlipNum 243-244
ext_SetFlipPic 243-244

F
FALSE 12, 16, 30, 73,
False function 16, 73
fields 72

linked 96

113, 156

Current date function 14, 46 Before function and 30
During function and 63
INPUT LAYOUT command and

error handling 116
error messages 260-261
Error variable 15, 251

Current password function 10, 46
current selection, sets and 187
Current time function 14, 47 91 Error window 17
CursorEvt 241
Custom environment 210

MODIFY SELECTION command event variables 252-253
EXECUTE command 16, 69,and 109

Custom Sort dialog box 219 UserSet and 253 217-220

D

document codes 255
documents, communicating with

execution cycle 15
external areas and 248

Exp function 13, 69, 10111-12
data

creating and assigning 227
Document variable 15, 251 EXPORT DIF command 11, 70

export layouts 215Don't Accept button 20, 58, 64,
modifying 226 108, 110, 233 EXPORT SYLK command 11, 71

databases
design errors in 229-232

During function 7, 8, 63
17

EXPORT TEXT command 11,
72-73, 122, 158ABORT command and

updating 236
data output 8
date, current 14,
Date function 14,
date functions 14

46
48, 142

In break function and
In footer function and
In header function and

88
89
90

external areas 241-242
execution cycle and 248
with pictures 243-247

external procedures 237-248
creating 238-240
parameters for 237-238

Menu selected function and 103
MODIFY RECORD command and

Day number function 14, 49 108
Day of function 14, 49 REJECT command and 140 structure of 240

ext FlipPic 243-244Debug window 223, 224, 225 SORT SUBSELECTION command

File menu, 130, 193
files, selecting 2
FIRST RECORD command 3, 74
FIRST SUBRECORD command 5,

75, 112, 125
Fixed Frame 130
F1dDelimit variable 16, 72, 87, 251
FlipPicNum program 247
F1ipPic program 244-246
Flowchart editor 224
flow statements 69
Flush variable 251
FONT command 8, 9, 76, 256
font numbers 76
FONT SIZE command 8, 9, 77
FONT STYLE command 8, 9, 77,

201, 256
font styles 77
footers 66, 89, 168
FORM FEED command 8, 78, 128,

129, 195
Full Page layout 30, 63
functions 13, 14, 16 . See also

specific function

G
GET HIGHLIGHTED TEXT

command 7, 14, 79
GO TO FIELD command 7, 79
GO TO XY command 10, 68, 80,

104
GRAPH command 8, 9, 81, 205
GRAPH FILE command 8, 82
Graph menu 82
GRAPH ON SELECTION command

205
graphs 81, 205-208

H
headers 90
HIGHLIGHT TEXT command

14, 83, 140
hyphen (-) 48

7,

I, J
If. . .Else . . .End if statement 15, 69,

84
IMPORT DIF command 11, 85
import layouts 85, 86, 216
IMPORT SYLK command 11, 86
IMPORT TEXT command 11, 87,

91, 158
In break function 8, 88, 102, 106,

181
In footer function 89, 102, 106,

129, 181
In header function 8, 90, 129
InitEvt 241
INPUT LAYOUT command 7, 9,

51, 60, 91
input layout procedures 97, 140,

209, 233-234
input layouts

Before function and 30
data entry to 7
DISPLAY RECORD command
and 60

During function and 63
IMPORT DIF command and 85
IMPORT SYLK command and 86
INPUT LAYOUT command and

91
Integer field type 171
interpreter 16, 221-222
interrupts 16
INTERSECTION command 6, 92,

180
Int function 13, 92, 143
INVERT BACKGROUND command

9,93

K

KeyCode variable 16, 35, 117, 252

L
LAST RECORD command 3, 93
LAST SUBRECORD command 5,

94, 112, 125

layout procedures . See dialog layout
procedures ; input layout
procedures ; output layout
procedures

layouts 9 . See also dialog layouts ;
input layouts; output layouts

layout variables 9
Length function 14, 94
Level function 8, 95
links 6, 96-97, 98, 144, 209

recursive 18, 123, 131
LOAD LINKED RECORD command

6, 18, 42, 96-97, 98, 144
LOAD OLD LINKED RECORD

command 6, 98, 145, 209
LOAD RECORD command 12, 99
LOAD SET command 6, 99, 147
LOAD VARIABLE command 11,

15, 100, 139, 148, 177
local variables 38
Locked function 12, 100
Log function 13, 101
Long Integer field type 171
Lowercase function 14, 101

M
Max function 13, 102
menu bar 149
MENU BAR command 9, 36, 59,

65, 103
menu editor 65
menus 9, 65, 82, 103 . See also

specific menu
Menu selected function 9, 61, 103,

107, 109
menu window 163
MESSAGE command 10, 39, 47,

104, 120
messages

error 260-261
NaN 262

MESSAGES OFF command 10, 25,
104, 151, 155, 164, 165

MESSAGES ON command 10, 105
Min function 13, 106
Mod function 107
Modified function 7, 107
Modifiers variable 16, 117, 252

Index

	

265

MODIFY RECORD command 4,
91, 108, 115

MODIFY SELECTION command 2,
6, 8, 109

Before function and 30
DISPLAY SELECTION command
and 61

During function and 63
INPUT LAYOUT command and

91
UserSet and 253

MODIFY SUBRECORD command
5, 110, 146

ModLook procedure 252
Monaco font 80, 120
Month of function 14, 110
MouseDown variable 16, 117, 241,

252
multiplication sign (*) 114

N
NaN messages 262
NEXT RECORD command 3, 66,

74, 111, 113
NEXT SUBRECORD command

67, 112
Not function 16, 113
No Trace button 174, 222, 224,

225
NO TRACE command 16, 113,

175, 225
numeric functions 13
Num function 13, 14, 16, 114,

142

0
OK button 40, 142
OK variable 16, 177, 249-250
Old function 6, 7, 115
ONE RECORD SELECT command

3, 115, 123
ON ERR CALL command 10, 16,

17, 116, 223
ON EVENT CALL command 10,

16, 35, 117-118, 252
ON SERIAL PORT CALL command

11, 16, 119, 132, 160

266

	

Index

5,

OPEN WINDOW command 10,
120-121

CLOSE WINDOW command and
39

ERASE WINDOW command and
68

GO TO XY command and 80
SET WINDOW TITLE command
and 163

operators . See specific operator
Option-click 175, 222, 223
Option key 224, 252
Option-space 133, 135
OR operations 151, 155, 156
OUTPUT LAYOUT command 8, 9,

122
output layout procedures 88, 89,

90, 171
output layouts
example 185, 188, 201, 204
EXPORT DIP command and 70
EXPORT SYLK command and

71
EXPORT TEXT command and

72
OUTPUT LAYOUT command and

122
PRINT LABEL command and

126

p
page breaks 171
password, current 46
pathnames 52, 257
period (.) 48
pictures, external areas with

243-247
Pictures menu 82
pie charts 81
pixels 120, 149, 150
POP RECORD command 3, 115,

123, 131
ports, communicating with 11-12
Position function 14, 123
PREVIOUS RECORD command 3,

31, 66, 124
PREVIOUS SUBRECORD command

5, 32, 94, 125
printer, data output to 8

printing 66, 128, 129, 171,
185-187, 188-190

PRINT LAYOUT command and
194-201

Printing layout 190
PRINT LABEL command 8, 78,

126-127, 191
Print Labels command 193
PRINT LAYOUT command 8, 78,

128, 130, 195
printing with 194-201

PRINT SELECTION command 8,
129-130, 191-193

FORM FEED command and 78
In footer function and 89
In header function and 90
Level function and 95
OUTPUT LAYOUT command and

122
PRINT LABEL command and

126
PRINT SETTINGS command 8,

128, 130, 195
PUSH RECORD command 3, 123,

131

Quick report window 141

R

Radio button 58, 64
Random function 13, 131
READ ONLY command 12, 132
READ WRITE command 12, 132
Real field type 171
RecDelimit variable 16, 72, 87,

251
RECEIVE BUFFER command 11,

119, 132, 160, 179
RECEIVE PACKET command 11,

133-134, 160, 179
RECEIVE RECORD command 11,

135, 158, 160, 179
RECEIVE VARIABLE command

11,

records
manipulating 4
selecting 3
sending and receiving 211-214

Records in file function 2, 136
Records in selection function

S
Save button 233
SAVE LINKED RECORD command

6, 42, 144, 145
SAVE OLD LINKED RECORD

command 6, 98, 145, 209
SAVE RECORD command 4, 146
ADD RECORD command and 19
ADD SUBRECORD command and

20
CREATE RECORD command and
43

CREATE SUBRECORD command
and 45

DELETE SUBRECORD command
and 55

MODIFY RECORD command and
108

MODIFY SUBRECORD command
and 110

RECEIVE RECORD command
and 135

SAVE SET command 6, 37, 147
SAVE VARIABLE command 11,

15, 148, 159
Scrapbook 82
screen, data output to 8
Screen height function 10, 121,

149, 150

Screen width function 10, 121,
149, 150

scrollable areas 232-235
Search and Modify command 153
Search by Formula command 151
SEARCH BY INDEX command

4, 156
SEARCH SUBSELECTION

command 4
Search window 152
selection

current 187
manipulating 2

selection commands 2
Semaphore function 12, 156
SEND PACKET command 11,

157, 160, 179
RECEIVE PACKET command
and 133

SEND RECORD command and
158

SEND RECORD command 12,
158, 160, 179

SEND VARIABLE command 12,
136, 159, 160, 179

serial port codes 254-255
SET CHANNEL command 12,

160-162, 254-255
SetFlipPic program 246-247
sets 6, 92, 99, 147, 178

current selection and 187
SET WINDOW TITLE command

10, 163
Shift key 252
Sin function 13, 163
slash (/) 48
SORT BY INDEX command 2, 164
sorting 129, 185-187

SORT SELECTION command 2,
129, 164, 165

SORT SUBSELECTION command
4, 139, 166, 203

space 48
Special menu 200, 221, 228, 235

importing and exporting with
215-217

printing labels from 191-193
subrecords

manipulating 5
selecting 5

subselections, manipulating 4
Substring function 14, 79, 170
Subtotal function 8, 13, 88, 95,

129, 171, 172
Sum function 13, 129, 171, 172,

228
system variables 15-16, 117,

249-252

T
TAB character 72
Tan function 13, 173
time, current 14, 47
Time function 14, 173
time functions 14
Time string function 14, 47, 174
Trace button 175, 223, 224
TRACE command 16, 113, 175,

224
Trace window 17, 175, 224, 225
transcendental functions 13
TRUE 16, 175

Not function and 113
True function 16, 175
Trunc function 13, 143, 176

Index

	

267

, ,
137, 138

Records in set function 6, 137
Records in subselection function 4,

3, 151, 153-154, 155, 178
Search command 151
SEARCH command 2, 3, 151-152,

Squares sum function 13, 167
statistical functions 13
Std deviation function 13, 168

137, 138 153, 154, 155, 232 Stilldown 241
REDRAW command 7, 9, 139, Search dialog layout 211 Stop button 70, 71, 85, 86, 87,

166, 203 searching 185-187 151
REJECT command 7, 140 SearchLength procedure 228 String function 14, 169
REPORT command 8, 141 SearchMax procedure 227, 228 string functions 14
REQUEST command 10
Request function 40, 142

SEARCH SELECTION command
2, 3, 151, 155

string lengths, scanning 227-228
string repetition operator 114

Round function 13, 143 SEARCH SUBRECORDS command subfiles 202-205

U
Undefined function 15, 148, 177
UNION command 6, 62, 178, 180
UNLOAD RECORD command 12,

178
UpdateEvt 241
Uppercase function 14, 179
USE ASCII MAP command 12, 179
User environment

interpreter and 221
SET WINDOW TITLE command
and 163

user interface 9-10, 142, 210-211
UserSet 6, 62, 109, 253
USE SET command 6, 21, 44, 99,

178, 180

V
variables 40, 100, 136, 148, 159,

177, 205 . See also specific
r ar7able

Variance function 13, 181

w, Ix
While . . .End while statement 15, 69,

113, 182
wildcard character 96, 153
windows 10. See also specific

window
CLOSE WINDOW command and
39

ERASE WINDOW command and
68

GO TO XY command and 80
MESSAGE command and 104
OPEN WINDOW command and

120-121
SET WINDOW TITLE command
and 163

Y, z
Year of function 14, 183

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271
	page 272
	page 273
	page 274
	page 275
	page 276
	page 277
	page 278
	page 279
	page 280
	page 281
	page 282
	page 283
	page 284
	page 285
	page 286
	page 287
	page 288

