% NORTH PLA|NS
SYSTEMS INC.

TeleScope Design Documentation

I-Piece Design and API

Revision 1.5

1-July-1996

Table of Contents

Lo OVEIVIBW ..o bbb bbb sn bbb nneene s 1
[-PIECE FIIS ... s 1

[-PIECE SIGNATUIES ... 1

[-PieCe DIStrIDULIONeiiiiiieieiecec s 1

2. 1-PIBCE FOIMAL.....c.eiuiiiiiiecie et 2
IMIACINEOSI ...t 2
WWVINAOWS ... bbb 2

3. USAGE SUMIMEIY ..ttt sttt et sbe et e et e e bt e sne e e nbeesbneenne e 3
WHO Calls I-PIECES? ...t 3
PIIOTTEY et bbbttt bbb 3

When Are They Called?cooiveiiieceee e 3
STAMTUPD e 3

File ACQUISTEION ...ccuveiiiieciie st 4

VIBWEX DISPIAY ...t e 4

Preferences DISPIAYcoeiiiiriiiiieieee e 4
CopyiNg/MOoVING FIlES ..o 5

SNUE DOWN ... 5

4. TeleScope RUNTIME SUPPOITc.viiiiiiee et 6
GraphiCs SUPPOIT ...ttt re e e 6
KEYWOIT SUPPOIT ...ttt 6

GIobal VariabIes ..o 6
PIEIEIBINCES ...ttt bbbttt bbb 6

THME SNAIING .eeevieieee e e e re et e e e nreeneenee e 7
Resources (MacintoSh)coveiiiiiie e 7

Code Movement (MaCintOSN)ccccveiieiieie i 7

5. Application Programming INTErface..........cccveiiiiiiiiiie i 8
Calling CONVENTIONS.oiiiiiiieiie ettt 8
RETUIN STALUS ... 8
IPINITIAIIZE ... 9
IPSEEPIETS ... s 10
IPACQUITEFIIE <.t 11
IPCIAIMDISPIAY ..ot 12
IPDIaWDISPIAYccvviiiieiiee e e 14
IPDISPIAYEVENT ... 14
IPCIOSEDISPIAY ... 15
L DTS 0] o o =) £SO 16
[P GEPIETS ... s 17
IPMOVEFTIE ... 18
[P CIOSE. ...t 19

6. DALA SLIUCLUIES ...ttt 20
IPFIIEINTO RECOIT ...t 20
IPDisplaylnfo RECOI.........ocveiieieiie e 27
IPMOVEINTO RECOIT......ciiiiiiiceee e 30

Appendix A: Developer SUPPOIT........oouiiiie et 32

TeleScope Design Documentation I-Piece Design and API

1. Overview

TeleScope in designed to be as independent of individual file formats as possible. To
this end, a plug-in architecture known as I-Piece Technology is used within
TeleScope to recognize, parse, and display to the user different file formats. Using
this method, new or proprietary file formats can be supported within TeleScope
simply by plugging in an I-Piece designed for that format.

I1-Piece Files

I-Pieces are distributed in I-Piece Files which contain both the code and resources
required for an I-Piece to function. Since portions of the TeleScope software run on
both the Macintosh and Windows platforms, there are two types of I-Piece Files. On
Macintosh, I-Pieces are code resource files, and on Windows, they are DLL files.

I-Piece Signatures

Each I-Piece is assigned a unique signature number, to distinguish it from other I-
Pieces. North Plains Systems Inc. maintains a registry of these signatures, and third-
party developers of I-Pieces should obtain a unique signature before shipping their
product (see the contact information in Appendix A: Technical Support). The
signature given an I-Piece also indicates its priority relative to other I-Pieces installed
on a user’s system (see the section entitled Priority in this document). In Macintosh
I-Piece files, this signature is contained in the IPpr resource. On Windows, the
I-Piece’s signature is embedded in the DLL’s version information.

I-Piece Distribution

Unlike most plug-in technologies, 1-Pieces must be distributed in a client/server
environment. With a typical plug-in architecture, new plug-ins must be installed by
hand on each computer which has the software installed. Because TeleScope is
designed for large-scale client/server implementation on local or wide-area networks,
such a method for distributing 1-Pieces would be undesirable. Thus, TeleScope uses
an automatic distribution method whereby I-Pieces are installed once, by the System
Administrator, and are stored at the server, in the TeleScope database. When
TeleScope client software (either Engine, QuickDrop, or Viewer) is launched, the
I-Pieces in the database are compared against any current I-Pieces which are resident
on the client computer. Any new or changed I-Pieces are automatically downloaded
from the database and installed in the appropriate system directories on the client
computer. This allows the System Administrator to automatically install new I-
Pieces, or update existing ones, in one step. The TeleScope software itself guarantees
that the new I-Pieces will be propagated to each machine on which it is required.

TeleScope Design Documentation I-Piece Design and API

2. I-Piece Format

Once it has downloaded an I-Piece from the database, the TeleScope software will
store it in a platform-specific format, as defined below:

Macintosh

On the Mac, I-Pieces are stored in the TeleScope preferences folder, at the following

location:

<Vol unme>: Syst em Fol der: Pref erences: Tel eScope f:1-Pi eces:

The I-Piece file name is retrieved from the database, and the file is created with a
creator code of either TeVi or TeEn (depending on the application which
downloaded it) and a file type code of IPRF.

Contained in the resource fork of an I-Piece File, there must be one of each of the
following types of resources:

IPpr

IPcc

IPpc

cicn

Windows

There must be only one ‘IPpr’ resource (with any resource
ID) in the I-Piece file. The ‘IPpr’ resource data is a binary 4-
byte integer (represented in Motorola byte ordering). This
integer is the I-Piece’s unique priority signature, as described
above.

There must be only one ‘IPcc’ resource in the file, with any
resource ID. It is a Macintosh 680x0 code resource, which
will be the main calling point for Macintosh TeleScope
software running on 68k Macintoshes. If the IPcc resource is
not present, then the I-Piece contained in this I-Piece File will
not be usable on a 68k Macintosh computer.

There must be only one ‘IPpc’ resource in the file, with any
resource ID. It is a Macintosh PowerPC code resource, which
will be the main calling point for PowerMac TeleScope
software. If the IPpc resource is not present, then the I-Piece
contained in this I-Piece file will not be usable on a
PowerMac computer.

The ‘cicn’ resource with resource 1D 128 is used in the
TeleScope software to display an icon for the I-Piece. This
icon should be 16 x 16 pixels in size to display correctly.

On Windows, the I-Piece is stored in the Windows system directory where globally-
accessible DLL’s reside. The file name is retrieved from the database.

TeleScope Design Documentation I-Piece Design and API

3. Usage Summary
Who Calls I-Pieces?

I-Pieces are used by all of the TeleScope client modules (Engine, QuickDrop and
Viewer). Unlike other plug-in application technologies (like Quark XTensions,
Photoshop Plugins or HyperCard XCMD’s) where a specific extension is called for a
specialized purpose, in TeleScope, all installed I-Pieces are called, in sequence, for
most operations the TeleScope software performs. Each I-Piece has an opportunity
to respond to the call or pass it on to the next I-Piece for processing. I-Pieces
accomplish this by returning a status value to the TeleScope software, indicating
whether the I-Piece has handled the call, and whether the TeleScope software should
continue down the chain of installed I-Pieces or immediately halt. This process is
covered in detail in the next sections.

Priority

As mentioned previously, each I-Piece has a unique identifying signature, which is
stored in the I-Piece file. This signature is an integer value, which also represents the
I-Piece’s priority within TeleScope. The TeleScope software will call I-Pieces with
lower priority values before those with higher priority values.

North Plains Systems Inc. reserves all the following priority numbers (signatures) for
its own use: 0to 255, 1,073,741,696 to 1,073,741,951, and 2,147,483,392 to
2,147,483,647. This allows North Plains to issue I-Pieces which are guaranteed to
be called first, last, and somewhere in the middle of the calling sequence.

As an example of the prioritized calling of 1-Pieces, consider the Keyword I-Piece,
supplied with the TeleScope software by North Plains Systems Inc. The Keyword I-
Piece has a priority of 2,147,483,647, ensuring that it will be called last. This is
required for this 1-Piece, because it parses the textual data returned by other I-Pieces,
and retrieves keywords from them to store in the keywords table in the database.
Thus, regardless of what type of file is being processed, the Keyword I-Piece will be
able to extract information from its textual data, after it has been processed.

When Are They Called?

I-Pieces are called by the TeleScope Engine and Viewer software at six well-defined
times:

Startup

When the TeleScope software starts up, it loads all the 1-Pieces, and calls an
initialization routine in each of them, which allows the I-Piece a chance to allocate
any working storage that it needs. The TeleScope software calls each I-Piece after it
is loaded, as follows:

IPInitialize to allow the I-Piece to allocate any memory it may need.

TeleScope Design Documentation I-Piece Design and API

IPSetPrefs if the TeleScope software has a preferences record for the I-
Piece, it will pass it. Otherwise (if, for example, the user has
never displayed the preferences dialog for a particular I-Piece)
this call will not be made.

File Acquisition

Whenever a file needs to be processed into the database, whether it is because the
user has dragged a file into the TeleScope Viewer or QuickDrop software to initiate
an import operation, or the TeleScope Engine determines that a new file has been
dropped into one of its monitored folders, the TeleScope software uses the I-Pieces to
help process the file into the database. To do this, the software opens the file,
extracts any file-specific information from the file, and places it into an IPFilelnfo
structure. Each I-Piece’s IPAcquireFile routine is then called in priority order,
passing this structure into the I-Piece, which may modify the data contained in the
structure if appropriate before returning. Upon return from the call, the I-Piece may
indicate that it modified the data in the structure, and additionally control the order
in which the TeleScope software calls other I-Pieces.

Viewex Display

When the user of the TeleScope Viewer software activates the viewex view, the
Viewer loads an IPDisplayInfo structure with the viewex data from the database, and
various internal information. The IPClaimDisplay routine of each I-Piece is then
called in priority order, until one of them indicates that it can handle the viewex
data, and the Viewer stops calling I-Pieces. The I-Piece which responded to the
claim request is said to “own” the viewex view. The owning I-Piece is then called
using the IPDrawDisplay routine, to actually draw the viewex data in the window
which has been created. Additionally while the viewex view is on the screen, the
Viewer software calls the IPDisplayEvent routine of the I-Piece which owns the view
each time the user generates an event (mouse down, or key down, for example) inside
the viewex view. Finally, when the user closes the viewex view, the Viewer software
informs the I-Piece using the IPCloseDisplay call.

Preferences Display

In certain cases, the user may wish to alter the operation of individual 1-Pieces. To
provide for this functionality, the TeleScope software can request an I-Piece to
display a preferences dialog specific to itself, and allow the user to modify internal
settings using this interface. In the Engine, these preference settings will affect
automatic file acquisition to the database. In the Viewer, these settings will affect the
import/display operation of the I-Piece for that Viewer. The TeleScope software calls
the appropriate I-Pieces as follows:

IPGetPrefs when the user selects an I-Piece’s icon in the preferences
window, the TeleScope software asks the selected I-Piece for
its current preferences information using this call.

IPDisplayPrefs the TeleScope software then calls the I-Piece to display its
preferences dialog, passing in the preferences information it

TeleScope Design Documentation I-Piece Design and API

received from the previous call to IPGetPrefs. The I-Piece
should use this preferences block to display in the dialog, and
modify as the user changes values. It is passed back to the
TeleScope software when the dialog is dismissed by the user.

u Important

The I-Piece should not set it’s internal preferences at this
time, because the user may still cancel out of the I-Piece
preferences window in the TeleScope software, at which point
all changes should be discarded u

IPSetPrefs If the user chooses to save preferences changes, the TeleScope
software will call each I1-Piece whose dialog was displayed, and
pass in the changed preferences information, after which it
will save the data to disk. At this point, the I-Piece may
modify its internal preferences to be consistent with the ones
passed in.

Copying/Moving Files

Just before the TeleScope Viewer copies or moves files to a new directory, or just
before the TeleScope Engine moves files into its “eProcessed” directory, the
TeleScope sofware calls the I-Pieces to inform them that the files are about to be
moved. For each file, the software loads the file’s information into an IPMovelnfo
structure, and calls each I-Piece’s IPMoveFile routine. The I-Piece may add, remove
or change files in the IPMovelnfo structure, to instruct the TeleScope software to
copy or move different files.

Shut Down

Before the Engine or Viewer software shuts down, it call the I-Piece one last time,
with the IPClose routine, allowing it to clean up its internal storage.

TeleScope Design Documentation I-Piece Design and API

4. TeleScope Runtime Support
Graphics Support

The TeleScope software contains advanced graphics primitives, which will read and
process graphical data in the following formats: TIFF, PCX, JPEG, Targa, BMP,
WMF, GIF, EPS, WPG, DIB, PICT and DCX. In the File Acquisition case above,
an I-Piece may specify that the TeleScope software should handle the file’s data as
graphics, in which case the graphics primitives will be used to read the file’s
thumbnail and/or Viewex representation. In the Viewex Display case, the I-Piece can
specify that the Viewex data should be treated as image data, and the Viewer software
will decode and display the image in a window.

The Standard Image I-Piece (priority signature 0), which is supplied with the
TeleScope software, simply retrieves any default textual information from the file
(typically not much), and indicates that the TeleScope software should process the
file as image data.

Keyword Support

Also provided with the TeleScope software, is the Keywords I-Piece (priority signature
2,147,483,647). This I-Piece, because of its priority value, is guaranteed to be called
after all others. Its purpose is to scan through the textual information for a file, and
generate keyword values to place into the keywords table in the database. Because it is
called last, it is unimportant what sort of file is being processed - the Keywords I-Piece
will always be able to access the text data and generate keyword values.

Global Variables

On the Macintosh, and to a lesser degree on Windows, there are restrictions on the
use of global variables in stand-alone code like I-Pieces. To alleviate this situation,
the TeleScope software provides a hook whereby I-Pieces can allocate global storage
upon starting up, and the calling TeleScope software will assume responsibility for it,
passing it back into the I-Piece each time it is called. This is accomplished through
the use of the ipStorage parameter described in each of the API calls in the following
sections. This parameter is an untyped pointer, which the I-Piece may allocate when
Piece at each call, giving it in effect a global store for persistent data. It is the I-
Piece’s responsibility to dispose of this storage when it is closed.

Preferences

Each I-Piece may be expected to have preference information, usually set by the user,
which governs the way it performs its tasks. To relieve the I-Piece of the
responsibility for permanently storing its preferences (in a file, for example),
TeleScope maintains a block of storage, whose contents are internal to the I-Piece,
for preferences information. TeleScope software will be responsible for allocating,
disposing, saving and restoring this block. At appropriate times, the TeleScope
software will give the I-Piece its preference block, or ask for it for storage.

TeleScope Design Documentation I-Piece Design and API

Additionally, the I-Piece should display a dialog allowing the user to change these
preferences when requested by the TeleScope software.

u Important

This arrangement requires that the preferences block be entirely in-line in memory
(i.e. no pointers or handles to other structures may be stored in the preferences
block). Doing so will not only leak memory within the TeleScope application, but
will prevent TeleScope from appropriately saving and restoring your I-Piece’s
preferences from file. u

Time Sharing

During the File Acquisition and Viewex Display stages, the task that the I-Piece is
asked to perform could take considerable time, especially for graphics I-Pieces, which
may need to parse large graphics files. During a lengthy operation, the I-Piece can
use a call-back procedure pointer provided by the TeleScope software, to share time
with the TeleScope software. Included in the I-Piece interface files is a macro,
SHARE_TIME, which you can use to automatically call the call-back routine to
share processing time. Using the time sharing call-back procedure also allows the
TeleScope software to display a progress bar.

Resources (Macintosh)

On the Macintosh, the 1-Piece can use resources other than the code resource,
located in its resource file. This is useful for localization and minimization of code
size. To facilitate this, TeleScope software will ensure that the 1-Piece’s resource file
is the current resource file before calling the I-Piece.

Code Movement (Macintosh)

On the Macintosh, I-Piece code is stored in a code resource, which is loaded into
memory in a handle when the calling TeleScope software is started up. In order to
safely allow I-Pieces to call Toolbox routines which move or purge memory, the I-
Piece’s code handle is guaranteed to be loaded and locked before the I-Piece’s entry
point is called. Thus, you may safely use any Toolbox routine, and may store
procedure pointers for the duration of the call.

u Important

After the I-Piece has returned from a call, however, its code resource is unlocked and
allowed to float in memory (to prevent fragmentation of the TeleScope software’s
heap). For this reason, you should not store cross-invocation procedure pointers, as
they are not guaranteed to be valid on the next call to the I-Piece. u

TeleScope Design Documentation I-Piece Design and API

5. Application Programming Interface

The following sections describe the calls which are made to I-Pieces by the TeleScope
software, in what circumstances they are made, and what data is passed in to them.

Calling Conventions

On the Windows platform, I-Piece files are DLLs, and as such can support dynamic
linking and call-by-name routines. Thus, the routine names listed in the sections
following are the actual names developers of I-Pieces should use when writing their
I-Piece DLL.

For the Macintosh, however, all calls to an I-Piece go through the one entry point at
the beginning of the I-Piece’s code resource. Thus, the routine names given below
are for reference only, and calls will be made with a message parameter, to indicate
the desired activity. The definition of the Macintosh code resource entry point is as
follows:

| PStatus I PEntry (short ipMessage,
Ptr i pParant,
Ptr i pParang,
Ptr ipParan8);

Where ipParaml, ipParam2 and ipParam3 are generic pointers that pass information
into and out of the I-Piece, and ipMessage is a parameter that represents the call
which is being made by the TeleScope software, in place of calling a named routine
as in Windows. Thus, for example, if the windows call to IPInitialize is defined as
follows:

| PStatus IPInitialize (void** ipStorage);
The Macintosh code resource entry point would be called like this:
stat = IPEntry(klPInitialize, & pStorage, nil, nil);

The value of the ipMessage parameter indicates which call is being made to the
I-Piece, and the ipParam parameters are used to pass information to the I-Piece. In
the case of IPInitialize, ipParam2 and ipParam3 are unused and therefore passed as
nil. The valid values for ipMessage and the parameter values will be detailed with
each call.

Return Status

Each I-Piece call must return a value, indicating how the TeleScope software should
proceed. All calls to an I-Piece return an IPStatus value, which is defined as follows:

t ypedef 1ong int |PStatus;

With a few exceptions, noted in the descriptions below, most calls to an I-Piece will
return one of the following constants when called:

TeleScope Design Documentation I-Piece Design and API

kStatAbort -3 The I-Piece encountered some fatal error - do not
continue calling other I-Pieces, and do not continue
the process which is occurring.

2 The I-Piece did not handle the call - continue
processing by calling the next priority-order I-Piece.

kStatNotHandled

kStatContinue -1 The I-Piece in some way handled the call - continue
processing by calling the next priority-order I-Piece.

kStatHalt 0 The I-Piece completely handled the call - do not
continue calling other I-Pieces.

u Important

By returning kStatHalt from your I-Piece, you are preventing the TeleScope software
from proceeding with normal processing. For example, if your I-Piece returns
kStatHalt from an IPAcquireFile call, the Keywords I-Piece will not be called, so you
will have to perform your own keyword processing. u

Note that none of the three constants listed above are positive. If an I-Piece returns a
positive number as its function result, the calling software will jump directly to the I-
Piece with a priority signature greater than or equal to the return value, and continue
the calling sequence with that I-Piece. This allows I-Pieces to circumvent the normal
processing order, by “skipping” other I-Pieces in the processing chain.

This feature might be used, for example, to prevent other I-Pieces from handling the
file, but still allow the Keywords I-Piece to perform its processing. To achieve this, an
I-Piece would pass back 2,147,483,647 (the priority signature of the Keywords I-
Piece), causing the TeleScope software to bypass all other I-Pieces and go directly to
the the Keywords I-Piece.

s Note

If the return value is positive, but less than the I-Piece’s own signature value, it is
ignored, as though kStatContinue had been returned. If an I-Piece cannot be found
whose priority signature is greater than or equal to the return value, then I-Piece
processing stops normally. s

u Important

Since an I-Piece developer can never be certain which I-Pieces are installed on a user’s
machine, this feature should be used sparingly. u

IPInitialize
Performs any I-Piece initialization, and allocates the 1-Piece’s global storage, if any.

| PStatus IPInitialize (void** ipStorage);

TeleScope Design Documentation I-Piece Design and API

ipStorage a pointer to a pointer which the I-Piece allocates for its global
storage.

IPInitialize is called once only, as soon as the calling TeleScope software has loaded it
at startup time. The ipStorage parameter initially points to a NIL pointer, which the
I-Piece may do with what it pleases. This pointer will be passed in unchanged to all
future calls to the I-Piece by the TeleScope software.

On receipt of an IPInitialize call, the I-Piece should allocate any memory it requires
during its regular processing (to hold preferences, or other globals), and set the
ipStorage parameter to point to this memory.

Returns

kStatNotHandled The initialization failed. TeleScope will unload the I-Piece
from memory and never call it again.

kStatContinue The initialization was successful.

Macintosh Call Info

ipMessage KIPInitialize
ipParaml ipStorage (void**)
ipParam?2 nil
ipParam3 nil

IPSetPrefs

Provides the I-Piece with a saved preferences block, to govern it’s behaviour.

| PStatus | PSet Prefs (void* ipStorage,
voi d* i pPreferences
|l ong ipLength);

ipStorage the I-Piece’s global storage block (see IPInitialize).

ipPreferences the 1-Piece’s preferences information, which has been
retrieved from a preference file by the TeleScope software.
The contents of this block are 1-Piece specific.

ipLength the length in bytes of the data pointed to by ipPreferences.

This routine will be called shortly after startup, before any file processing is done by
TeleScope, and after the I-Piece preferences dialog is displayed.

On receipt of an IPSetPrefs call, the I-Piece should set its internal structures based on
the user preference information contained in the block. The contents of the block
are specific to a particular I-Piece, and will have been retrieved from the I-Piece itself

10

TeleScope Design Documentation I-Piece Design and API

at an earlier time. The I-Piece should make a copy of any information stored in this
block, and not store the ipPreferences parameter directly, since it will be disposed by
TeleScope after the IPSetPrefs call.

Returns

kStatNotHandled The I-Piece encountered some difficulty setting the preference
information. TeleScope will display an alert to this effect,

notifying the user, but will continue to use the I-Piece for
further processing.

kStatContinue The 1-Piece successfully incorporated the preference

information.
Macintosh Call Info
ipMessage KIPSetPrefs
ipParaml ipStorage (void*)
ipParam2 ipPreferences (void*)
ipParam3 ipLength (long) - cast from a pointer to a long value

IPAcquireFile
Retrieves textual and graphical information from a specific file.

| PStatus | PAcquireFile (void* ipStorage,
|PFilelnfo* ipFile);

ipStorage the I-Piece’s global storage block (see IPInitialize).

ipFile an IPFilelnfo record describing the file (see elsewhere in this
document for a full description of the IPFilelnfo record).

When a file is about to be imported into the TeleScope database, this routine will be
called for each I-Piece in priority order. The file is open (with read-only priviledge)
when the call is made, so the I-Piece may freely read information from the file to
populate the IPFilelnfo record.

On receipt of an IPAcquireFile call, the I-Piece should use the information in the
ipFile parameter (as described in Section 6) to read information from the file, and fill
in the ipFile record as appropriate. See Section 6 for a complete description of the
IPFilelnfo record’s fields, and how the I-Piece should fill them in. On return from
this call, the IPFileInfo record will be passed into the next I-Piece in priority
sequence, unless the I-Piece indicates otherwise by its return code.

11

TeleScope Design Documentation I-Piece Design and API

Returns

kStatNotHandled

kStatContinue

kStatHalt

kStatAbort

other

Macintosh Call Info
ipMessage
ipParaml
ipParam?2
ipParam3

IPClaimDisplay

The 1-Piece did not handle the file. The TeleScope software
should pass the file to the next I-Piece in priority order.

The I-Piece changed the information in the IPFileInfo record.
The TeleScope software should pass the file to the next I-
Piece in priority order.

The I-Piece changed the information in the IPFilelnfo record.
The TeleScope software should immediately stop passing the
file to other I-Pieces, and process the file into the database.

The 1-Piece determined that the file should not be added to
the database. The TeleScope software should ignore this file.
Use this return code with care, as TeleScope will not
indicate to the user that the file has been ignored.

The 1-Piece changed the information in the IPFilelnfo record.
The TeleScope software should immediately jump to the I-

Piece whose priority signature is greater than or equal to the
return code.

KIPAcquireFile
ipStorage (void*)
ipFile (IPFilelnfo*)

nil

Determines which I-Piece is capable of handling the viewex display in the Viewer’s

user interface.

| PSt at us | PA ai nDi spl ay(voi d* ipStorage,

ipStorage

ipDisplay

| PDi spl ayl nfo* ipDi splay);
the 1-Piece’s global storage block (see IPInitialize).

the IPDisplayInfo record describing the file’s information to
be displayed (see elsewhere in this document for a full
description of the IPDisplayInfo record).

This routine is called when the user initiates the display of the extended view for a
particular file. The TeleScope software loads the extended data from the viewex table
in the database, and calls each I-Piece in priority order, passing in the IPDisplaylnfo

record.

12

TeleScope Design Documentation I-Piece Design and API

On receipt of an IPClaimDisplay call, the 1-Piece should check the ipDisplay
parameter to see if it recognizes the extended data (usually the viewexType field is
used for this purpose, since it was initially set by the I-Piece in the IPAcquireFile
call). If it does not, it should immediately return kStatNotHandled, so TeleScope can
proceed by calling the next I-Piece.

If the 1-Piece does recognize the data, there are several options available to it:

1 If the extended data is graphical data, but not in a format supported by the
TeleScope software, the 1-Piece can read this data into an internal format (usually
sharing time as it does so, so TeleScope can display a progress bar), and pass this
data back to TeleScope via the imageData field in the ipDisplay parameter,
returning kStatContinue from the call. After the IPClaimDisplay call, TeleScope
checks this field and if it is not nil, it will use its standard graphical extended view
to display the image data to the user. TeleScope will not call the 1-Piece further
for this extended view (i.e. the IPDrawDisplay, IPDisplayEvent and
IPCloseDisplay calls are not made).

2 If the extended data is not graphical data, the I-Piece can take control of the
extended view directly. It can set the windRect and windResizable fields of the
ipDisplay parameter to appropriate values for the window which will be
displayed, and return kStatContinue. On return from the call, TeleScope will
resize the window to the value in windRect, and set the window’s resizable
characteristic according to windResizable, and display the window. TeleScope
will set the I-Piece as the “owner” of the extended view window, and will call the
I-Piece as appropriate with IPDrawDisplay and IPDisplayEvent calls. When the
user closes the extended view window, TeleScope will make a final call to the
I-Piece with the IPCloseDisplay call.

3 If the extended data is not a display data type (digital sounds, for example), the
I-Piece can request that TeleScope not open a window at all. It can do any
processing it requires, and set the windRect field of the ipDisplay paramter to an
empty rectangle (for example, {0, 0, 0, 0}), and return kStatContinue. On return
from the call, if the windRect field contains an empty rectangle, TeleScope will
not open a window, but will call the I-Piece’s IPDrawDisplay routine exactly
once, followed immediately by its IPCloseDisplay routine.

If the extended data is passed to every I-Piece and no I-Piece indicates that they can
display the data, TeleScope will attempt to read and display the viewex data as image
data, using its internal graphics primitives. Thus, an I-Piece which stores its viewex
data in the database as a graphics format recognizable by TeleScope’s graphics
primitives, does not need to respond to any of the IPDisplay... calls.

Returns

kStatNotHandled The I-Piece does not recognize this type of Viewex data.
TeleScope will proceed with the next I-Piece in priority order.

kStatContinue The I-Piece has recognized and can display the Viewex data
on the screen. Depending on the values of various fields in

13

TeleScope Design Documentation I-Piece Design and API

the ipDisplay parameter, TeleScope will take different actions
(see above).

kStatHalt The I-Piece recognized the Viewex data, but an error occurred
while processing the data for display. TeleScope will not
display an alert, but will close the Viewex window and not
call the I-Piece again for this extended view.

IPDrawDisplay
Displays the Viewex information from a specific file in the Viewer’s user interface.

| PSt at us | PDrawhi spl ay(voi d* ipStorage,
| PDi spl ayl nf o* i pDi splay);

ipStorage the I-Piece’s global storage block (see IPInitialize).

ipDisplay the IPDisplayInfo record describing the file’s information to
be displayed (see Section 6 for a full description of the
IPDisplaylInfo record).

This routine is called when the Viewex display needs to be drawn (or redrawn) on the
screen. This call will only be made to an I-Piece if it had previously returned
kStatContinue to an IPClaimDisplay call for the same viewex window.

On receipt of an IPDrawDisplay call, the I-Piece should refresh the extended view on
the screen. The viewexWindow parameter points to the window that needs to be
refreshed. TeleScope does not guarantee that this window will be the current
graphics port (on the Macintosh) when the call is made.

Returns
The return code from IPDrawDisplay is ignored by TeleScope.

Macintosh Call Info

ipMessage kIPDrawDisplay
ipParaml ipStorage (void*)
ipParam2 ipDisplay (IPDisplayInfo*)
ipParam3 nil

IPDisplayEvent
Handles a user-generated event in the Viewex view.

| PSt at us | PDi spl ayEvent (voi d* i pStor age,
| PDi spl ayl nf o* ipDisplay);

14

TeleScope Design Documentation I-Piece Design and API

ipStorage

ipDisplay

the I-Piece’s global storage block (see IPInitialize).

the IPDisplayInfo record describing the file’s information to
be displayed (see elsewhere in this document for a full
description of the IPDisplayInfo record).

This routine is called when the user generates an interface event (i.e. mouse or key)
directed to the Viewex view. Information about the event is contained in the
IPDisplayInfo record, and the I-Piece may respond to the event in whatever way is
appropriate for the data displayed in the Viewex view.

Returns

kStatNotHandled

kStatContinue

kStatHalt

Macintosh Call Info
ipMessage
ipParam1
ipParam?2
ipParam3

IPCloseDisplay

The I-Piece did not handle the event. TeleScope will attempt
to process the event itself. TeleScope’s default processing for

events directed at the Viewex view is to do nothing (although
standard interface events, such as closing the viewex window,

are handled by the TeleScope software).

The I-Piece has handled the event, and the Viewex window
should be left on the screen.

The I-Piece has handled the event, and the Viewex window
should immediately be closed.

kIPDisplayEvent
ipStorage (void*)
ipDisplay (IPDisplaylnfo*)

nil

Gives the I-Piece an opportunity to clean up before the Viewex view is closed.

| PSt at us | PA oseDi splay(void* ipStorage,

ipStorage

ipDisplay

| PDi spl ayl nfo* ipD splay);
the 1-Piece’s global storage block (see IPInitialize).

the IPDisplayInfo record describing the file’s information to
be displayed (see elsewhere in this document for a full
description of the IPDisplayInfo record).

This routine is called just before the Viewex view is removed from the screen, and its
window closed, either in response to a user action (such as clicking in the window’s

15

TeleScope Design Documentation I-Piece Design and API

close box), or in response to a result code of kStatHalt from an IPDisplayEvent call.
The 1-Piece may clean up any storage it has allocated for the display.

Returns

Regardless of the return code from IPCloseDisplay, the Viewex view will be
removed from the screen.

Macintosh Call Info

ipMessage KIPCloseDisplay

ipParaml ipStorage (void*)
ipParam2 ipDisplay (IPDisplaylnfo*)
ipParam3 nil

IPDisplayPrefs
Displays the I-Piece’s preferences dialog, and allows the user to change its values.

| PSt at us | PDi spl ayPrefs(voi d* ipStorage,
voi d* i pPreferences
| ong ipLength);

ipStorage the I-Piece’s global storage block (see IPInitialize).

ipPreferences the 1-Piece’s preference information, which contains the
current information to display in the preferences dialog, and
which will be changed by the I-Piece to reflect user changes in
the dialog. The contents of this block are I-Piece specific.

ipLength a long integer whose value is the length in bytes of the data
pointed to by ipPreferences.

This routine is called from both the Engine and Viewer software, when the user
chooses the “I-Piece Preferences...” menu item. A window containing icons for each
I-Piece is displayed, and when the user clicks on an icon, the appropriate I1-Piece’s
IPDisplayPrefs routine is called.

On receipt of an IPDisplayPrefs call, the I-Piece should display a dialog (which must
be an application modal dialog) containing the preferences settings, and allow the
user to change these settings before returning. On return, if the result code of the
IPDisplayPrefs function call is kStatContinue, TeleScope will take the changed
preferences information from ipPreferences, save it to the preferences file, and
immediately call the I-Piece’s IPSetPrefs routine, to make the changes permanent.

16

TeleScope Design Documentation I-Piece Design and API

Returns

kStatContinue

kStatHalt

Macintosh Call Info
ipMessage
ipParam1
ipParam?2
ipParam3

IPGetPrefs

The user changed values in the settings dialog, and approved
the changes by clicking in the OK button. The changed
preference information should be saved.

The user dismissed the settings dialog with the Cancel button.
The preference information should be discarded.

kIPDisplayPrefs
ipStorage (void*)
ipPreferences (void*)

ipLength (long) - cast from a pointer to a long value

Retrieves a copy of the current preferences from the 1-Piece.

| PStatus | PGet Prefs (void* ipStorage,

ipStorage

ipPreferences

ipLength

voi d** | pPreferences,
| ong* ipLength);

the 1-Piece’s global storage block (see IPInitialize).

a pointer to a pointer which the 1-Piece will allocate for a
copy of its current preference settings. Since TeleScope will
save this information to a preferences file, and then delete it,
it must be a copy.

a pointer to a long integer, which the I-Piece will fill with the
length, in bytes, of the data pointed to by ipPreferences.

TeleScope calls this routine just before calling IPDisplayPrefs when displaying the I-
Piece’s preferences dialog, and just before calling IPClose when the TeleScope
software shuts down. The ipPreferences parameter initially points to a nil pointer,
which the I-Piece must allocate. Once this call returns, TeleScope takes
responsibility for the allocated block, and will deallocate it after it has finished with

it.

s Macintosh Note

Because the TeleScope software on the Macintosh uses DisposePtr to deallocate the
ipPreferences block, the I-Piece must allocate the block using NewPtr, not malloc. s

17

TeleScope Design Documentation I-Piece Design and API

Returns

kStatContinue Success. The copy of the preferences has been allocated in
ipPreferences.

kStatHalt Failure. The I-Piece should deallocate any memory it has
created in the process of attempting to generate the copy of
the preferences, and set ipPreferences to point to a nil pointer.

Macintosh Call Info

ipMessage kIPGetPrefs

ipParaml ipStorage (void*)

ipParam?2 ipPreferences (void**)

ipParam3 ipLength (long*)
IPMoveFile

Allows the I-Piece to add, modify or remove files to be copied or moved by the
TeleScope software.

| PSt atus | PMoveFile (void* ipStorage,
| PMovel nfo* iplnfo);

This routine is called when the TeleScope software is about to move the original file
for a managed document to a new location in the file system. The TeleScope
software will resolve the location of the original file, mounting shared or removable
volumes if necessary, and fill in the ipInfo record with information about the file to
be moved. It then calls the IPMoveFile routine for each I-Piece in priority sequence,
passing this information in. The I-Piece may add, remove, or change files in the
ipInfo record before returning, and the TeleScope software will move all the files
pointed to by ipInfo to the new location.

Returns

kStatNotHandled The I-Piece did not handle the call. The TeleScope software
should proceed to the next I-Piece in priority order.

kStatContinue The 1-Piece changed the information in the IPMovelnfo
record. The TeleScope software should proceed to the next I-
Piece in priority order.

kStatHalt The I-Piece changed the information in the IPMovelnfo
record. The TeleScope software should stop calling I-Pieces,
and immediately move the files in the IPMovelnfo record.

kStatAbort The I-Piece determined that the file in the IPMovelnfo record
should not be moved. The TeleScope software will not move

18

TeleScope Design Documentation I-Piece Design and API

other

Macintosh Call Info
ipMessage
ipParam1
ipParam?2
ipParam3

IPClose

the file to the new location. Use this return code with
caution, as the TeleScope software does not notify the user
that the file was not moved.

The I-Piece changed the information in the IPMovelnfo
record. The TeleScope software should immediately jump to
the I-Piece whose priority signature is greater than or equal to
the return code, and continue processing.

kIPMoveFile
ipStorage (void*)
ipInfo (IPMovelnfo*)

nil

Terminates the 1-Piece.

| PStatus | Pl ose (void* ipStorage);

ipStorage

the 1-Piece’s global storage block (see IPInitialize).

This routine is called immediately before the TeleScope software shuts down. It is
the I-Piece’s responsibility to dispose of its global storage in ipStorage.

Returns

Regardless of the return code, TeleScope will continue to shut down.

Macintosh Call Info
ipMessage
ipParaml
ipParam?2

ipParam3

kIPClose
ipStorage (void*)
nil

nil

19

TeleScope Design Documentation

I-Piece Design and API

6. Data Structures

There are three main data structures which are used by the I-Piece APIl. The
IPFileInfo record is used when adding a file to the database, the IPDisplayInfo record
is used when displaying a file’s Viewex data on the screen within the Viewer interface,
and the IPMovelnfo record is used when copying or moving a file to a new location
in the file system.

IPFilelnfo Record

The IPFilelnfo record describes all the information that will be inserted into the
database for a given file, and a great deal of file information besides. This record is
used by the I-Piece to determine whether or not it wishes to handle the file, and if so,
to act as a repository for data extracted from the file. TeleScope will then use this
extracted data for insertion into the database. The IPFilelnfo record is defined as

follows:

struct IPFilelnfo {

FI LE HDL openFil e;
FI LE REF fil eOnDi sk;
HENV odbcEnv;

HDBC odbcConn

SHARE PTR shar eTi ne;

char fil eType[4];

char fileCreator[4];
char fil eNane[64];

unsi gned long fil eSi ze;
short fil eVersion;

LONG DT fil eDat e;

| ong paperd i p;

char category[10];

char subCat egori es[128];
char country[32];

char state[32];

char city[32];

char shortDescri ption[256];

TEXT_REF | ongDescri pti on;
char user Not es[256] ;

char transNane[32];

char transService[32];
char creator[256];

TEXT_REF keywor ds;

unsi gned | ong t hunbCf f set;
| MAGE_REF t hunbnail ;

unsi gned | ong vi ewex(f f set;

char vi ewexType[4];
Bl NARY_REF vi ewex;

char filelnfo[?256];

20

TeleScope Design Documentation I-Piece Design and API

The values of many of the fields in this record are sent directly to the editorial table in
the TeleScope database. For a complete description of the contents of these fields,
see the document TeleScope Design Documentation: Database Design.

Field Type Use Description

openFile FILE_ HDL in This is a platform-specific reference to the
file, which has already been opened (with
read-only privilege) by TeleScope. This
file handle can be used to read from the
file. On the Macintosh, FILE HDL is a
short integer, which refers to the open
data fork of the file. On Windows,
FILE_HDL is a void*.

filtOnDisk FILE_REF in This is a platform-specific reference to the
file on disk. You may need this to gain
access to the file’s name, or open the
resource fork of the file (on the Mac). On
the Macintosh, FILE_REF is an FSSpec
record. On Windows, FILE_REF is a
TCHAR*,

odbcEnv HNEV in This is an ODBC-specific reference to the
current ODBC environment. The I-Piece
may use this environment, and its
associated connection shown below, to
contact the database into which the file
will be inserted.

odbcConn HDBC in This is an ODBC-specific reference to the
current ODBC connection. The I-Piece
may use this, along with the odbcEnv field,
to communicate with the database into
which the file will be inserted.

shareTime SHARE_PTR in This is a pointer to a routine which the I-
Piece should call during lengthy
processing while dealing with the file.
This routine should be called at least once
a second to ensure that other processes
running on the computer have a chance to
proceed. You can use the SHARE_TIME
macro provided in the I-Piece interfaces to
share time using this pointer.

fileType char[4] in This is the 4-character type of the file, as
defined on the Macintosh. For Windows
files, this field should be filled in by the
Engine or Viewer software before calling

21

TeleScope Design Documentation

I-Piece Design and API

fileCreator

fileName

fileSize

fileVersion

fileDate

paperClip

category

subCategories

char[4]

char[64]

unsigned long

short

LONG_DT

long

char[10]

char[128]

in

in

out

in/out

out

out

out

the I-Piece, perhaps based on the file’s
extension. All 4 characters of this field
must be used - pad with spaces if
necessary.

This is the 4-character creator signature of
the file, as defined on the Macintosh. For
Windows files, this field should be left
blank. All 4 characters of this field must
be used - pad with spaces if necessary.

This is the name of the file, without any
preceding path specification. The text in
this field should be a null-terminated (C-
style) string, limiting the effective number
of characters in this field to 63.

This is the size of the file in bytes on disk.
The I-Piece should not modify this value.

The I-Piece should set the version number
of the file. Initially, this field is set to zero.

On input, this field is set to the creation
date of the file. If the I-Piece wishes to
change this information, it may do so.

On the Macintosh, LONG_DT is defined
as an unsigned long value. On Windows,
LONG_DT is defined as an unsigned
long.

The 1-Piece should set the paper clip value
for this file. The paper clip is used to tie
several related files together in the
database.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 9.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 127.

22

TeleScope Design Documentation

I-Piece Design and API

country char[32]
state char[32]
city char[32]

shortDescription char[256]

longDescription TEXT_REF

userNotes char[256]

transName char[32]

out

out

out

out

out

out

out

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 31.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 31.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 31.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 255.

The I-Piece should fill this field in with
textual information from the file. On the
Macintosh, TEXT_REF is defined as a
Handle to the text data, which is initially
passed in nil. The I-Piece must allocate
the Handle using NewHandle if it is going
to be storing data in it. On Windows,
TEXT_REF is defined as TCHAR* which
is initially passed in nil, and must be null
terminated when returned. The I-Piece
must allocate a block of memory using
malloc if it is going to be storing data in it.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 255.

The I-Piece should fill this field in with
textual information from the file. The

23

TeleScope Design Documentation

I-Piece Design and API

transService

creator

keywords

thumbOffset

thumbnail

char[32] out

char[256] out

TEXT_REF out

unsigned long out

IMAGE_REF out

text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 31.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 31.

The I-Piece should fill this field in with
textual information from the file. The
text in this field should be a null-
terminated (C-style) string, limiting the
effective number of characters in this field
to 255.

On Macintosh, TEXT _REF is defined as
a Handle to textual information, which is
initially passed in nil. The I-Piece must
allocate space for it using NewHandle if it
IS going to store information in it. On
Windows, TEXT_REF is defined as
TCHAR* which is initially passed in nil,
and must be null-terminated when
returned. The I-Piece must allocate a
block of memory using malloc if it is
going to be storing data in it. The
TEXT_REF will contain any number of
words, separated by spaces, which will be
used in the keywords table as references to
this file.

This field and the thumbnail field, are
used to specify the thumbnail information
for the TeleScope software. If thumbnail
is nil, then thumbOffset will be assumed to
be an offset into the file where TeleScope’s
image processing engine can find image
data to process into a thumbnail. If
thumbnail is non-nil, then thumbOffset is
ignored (and should be set to zero).

This is a platform-specific representation
for the thumbnail image data, if it cannot
be extracted from the file by TeleScope’s
graphic processing engine. On the
Macintosh, IMAGE_REF is defined as a

24

TeleScope Design Documentation

I-Piece Design and API

viewexOffset

viewexType

viewex

file_info

long integer

char[4]

out

out

BINARY_REF out

char[32]

out

PicHandle, which returns a Macinsoth
picture to TeleScope, which will convert
that into the JPEG thumbnail
representation in the database. On
Windows, IMAGE_REF is defined as an
HBITMAP which returns a DIB that
TeleScope will convert into the JPEG
thumbnail representation in the database.

This field and the viewex field, are used to
specify the viewex information for the
TeleScope software. If viewex is nil, then
viewexOffset will be assumed to be an
offset into the file where TeleScope’s
image processing engine can find image
data to process into a JPEG viewex. |If
viewex is non-nil, then viewexOffset is
ignored (and should be set to zero).

A 4-character code representing the type
of data stored in the viewex field. All 4
characters of this field must be used - pad
with spaces if necessary. If the I-Piece is
allowing TeleScope’s image processing
engine to handle the viewex data (i.e. if
the viewex field is nil), then this field is
ignored by TeleScope.

This is a platform-specific representation
for the viewex data, if it cannot be
extracted from the file by TeleScope’s
graphic processing engine. On the
Macintosh, BINARY REF is defined as a
Handle to binary data, which TeleScope
will store directly in the database. On
Windows, BINARY_REF is defined as a
structure which has a length and a pointer
to the binary data, as follows:
t ypedef struct {
DWORD dwLengt h;
BYTE* pbDat a;
Bl NARY_REF;
The pbData field must be allocated using
malloc, and will be freed automatically by
TeleScope.

This is a field which is stored in the
database and shown to the user when they
view the file in the editorial view of
TeleScope Viewer. This field can contain

25

TeleScope Design Documentation I-Piece Design and API

any information that the I-Piece wishes to
display to the user about the file. If the
TeleScope software is asked to read the file
(i.e. if thumbnail or viewex are nil), and
the 1-Piece has left the file_info field
blank, the TeleScope software will add
default image information to the file_info
field, as follows: “x by y pixels, a
pixels/inch, b bits/pixel”

s Macintosh Note

On the Macintosh, there are cases when you may wish to use a Picture handle to
specify viewex data as well (such as for EPS files, where the placement image is
actually a full-sized PICT resource). TeleScope provides two special features which
allow I-Pieces to do this:

1) If the viewexType field is set to ‘PICT’, and a PicHandle is stored in the viewex
field, then TeleScope will treat the handle as picture data, and convert it to JPEG
automatically.

2) The viewex and thumbnail fields can both be set to be handles to the same picture
data. In this case, TeleScope will use the same picture data for both thumbnail
(scaled down appropriately) and viewex images and, more importantly, correctly
dispose of the picture handle only once, avoiding a possible system crash.

These features also mean that you must be careful when disposing of an existing
thumbnail or viewex handle, however. Before disposing either handle, ensure that the
thumbnail and viewex handles do not point to the same memory. If they do, do not
dispose the handle, or dispose of it only once! s

s Macintosh Note

Any handles in the IPFileInfo record (i.e. TEXT_REF, IMAGE_REF, or
BINARY_REF) are disposed of automatically by the TeleScope software when they
are no longer needed, using DisposeHandle. This means that if the I-Piece is
retrieving any of these handles from a resource using GetResource (or GetPicture),
the I-Piece must also call DetachResource before returning the handles. s

s Windows Note

Any pointers in the IPFilelnfo record (i.e. TEXT_REF, IMAGE_REF, or
BINARY_REF) are disposed of automatically by the TeleScope software when they
are no longer needed, using free. Handles in the IPFilelnfo record (i.e.
IMAGE_REF) will be disposed of using CloseHandle. s

u Important

The 1-Piece will always be called after at least one other I-Piece (the Graphics I-Piece
is always called first). This means that other I-Pieces may have added data to the

26

TeleScope Design Documentation

I-Piece Design and API

IPFileInfo record before you get called. Before setting data into a pointer or handle
field, either make sure that any existing data in that field has been appropriately
disposed (as described above), or append your data to the existing pointer or handle.
Failure to do so will cause TeleScope to leak memory and could eventually cause an
out-of-memory condition to occur (especially during large imports). u

IPDisplaylnfo Record

This record is used by the IPDrawDisplay, IPDisplayEvent, and IPCloseDisplay
calls, to give the I-Piece any required information about the viewex view in which the
Viewex data is being displayed. The IPDisplaylnfo record is defined as follows:

Sstruct

| PDi spl ayl nfo {
char vi ewexType[4];
Bl NARY_REF vi ewexDat a;
ALl AS REF vi ewexFil e;

W ND_REF vi ewexW ndow,

RECT REF wi ndRect ;
EVENT _REF wi ndEvent;

voi d* i pRef Con;

BOOL_REF w ndResi zabl e;

GAMORLD_REF i mageDat a;

SHARE_PTR shar eTi ne;

}s
Field

viewexType

viewexData

viewexFile

Type
char[4]

Use

in

BINARY_REF in

ALIAS_REF

in

Description

The 4-character type indicating what sort
of data is stored in the viewexData field.
This information was created by the I-
Piece originally, in the IPFilelnfo record
above.

A platform-specific reference to the binary
viewex data. On Macintosh,
BINARY_REF is defined as a Handle to
binary data. On Windows, BINARY_REF
is defined as a structure which has a length
and a pointer to the binary data, as
follows:
t ypedef struct {
DWORD dwLengt h;
BYTE* pbDat a;
Bl NARY_REF;
The pbData field is allocated using
malloc, and will be freed automatically by
TeleScope.

A platform-specific reference to the
original file’s location on disk. Certain
I-Pieces may require access to the original

27

TeleScope Design Documentation

I-Piece Design and API

viewexWindow WIND_REF

windRect

RECT_REF

in

in/out

file to display an extended view or preview
of the file. Rather than requiring the
I-Piece to redundantly store a reference to
the original file in the viewex data itself,
TeleScope provides this field for all files,
which the I-Piece may ignore if it does not
require it. On Macintosh, ALIAS_REF is
defined as an AliasHandle which can be
resolved to an FSSpec record using the
Toolbox call ResolveAlias. On Windows,
ALIAS_REF is defined as a TCHAR*
which points to a null-terminated string
which is in the same format as the
file_location field in the TeleScope
Database (see document TeleScope Design
Documentation - Cross-Platform File
Specifications)

A reference to the window in which the
viewex data will be drawn. TeleScope
creates this window initially, and is
responsible for disposing of it when it is
closed. All viewex drawing should be
done inside this window. On Macintosh,
WIND_REF is defined as a WindowRef.
On Windows, WIND_REF is defined as
an HDC to a device context.

On input, this field contains the window’s
rectangle, in screen coordinates. After the
IPClaimDisplay call, TeleScope checks this
field and, if its contents have changed, will
resize the Viewex window appropriately.
On Macintosh, RECT_REF is defined as
a Rect. On Windows, RECT_REF is
defined asa RECT. The Viewer software
will not resize the window smaller than a
user-defined minimum, or larger than the
size of the current screen. Values returned
by the I-Piece in windRect will be
corrected within these boundaries after the
I-Piece is called.

S Note

If, on the IPClaimDisplay call, the 1-Piece
sets this rectangle to an empty rectangle,
the Viewer software will not open a
window for the viewex data. In this case,
the Viewer software will call the I-Piece’s

28

TeleScope Design Documentation

I-Piece Design and API

windEvent EVENT_REF in

ipRefCon void* in/out

windResizable BOOL_REF out

imageData GWORLD_REF out

IPDrawDisplay routine once, immediately
followed by its IPCloseDisplay routine. s

A platform-specific event descriptor,
which details the user event (i.e. mouse or
key) which was directed at the Viewex
window (and therefore must be handled
by the I-Piece). This field is only valid
during the IPDisplayEvent call - all other
times it is nil. On Macintosh,
EVENT_REF is defined as an EventPtr.
On Windows, EVENT_REF is defined as
a struct containing the Windows event
message, and the wParam and IParam
fields, as follows:

typedef struct {

Ul NT uMessage;
WPARAM wPar am
LPARAM | Par am

} EVENT_REF;

An untyped pointer, which is initially
passed in nil to the IPClaimDisplay call,
and is not altered by the TeleScope
software after that point. This field can be
used by the I-Piece for whatever it requires
while the display is up. At the
IPClaimDisplay call, TeleScope sets the
field to nil before the call, and the I-Piece
may allocate a block of storage, setting
ipRefCon to point to it. On all
subsequence IPDrawDisplay or
IPDisplayEvent calls for that extended
view, TeleScope leaves the ipRefCon field
untouched. The I-Piece is responsible for
disposing of any memory it has allocated
in the ipRefCon field. It should do this
during the IPCloseDisplay call.

During the IPClaimDisplay call, the I-
Piece can set this field to TRUE or
FALSE, indicating whether the extended
view window (viewexWindow) should be
resizable by the user or not. For all other
calls, the value in this field is ignored.

A GWORLD_REF is defined as a
GWorldPtr on the Macintosh, and an
HBITMAP handle under Windows.
Before the IPClaimDisplay call, TeleScope

29

TeleScope Design Documentation I-Piece Design and API

sets this field to nil. During the
IPClaimDisplay call, the I-Piece may set
this field to point to some graphics
representing a preview for the file, and
pass it back. TeleScope will display the
data in its standard graphics extended view
window, and will not call the I-Piece again
for the display (i.e. no IPDrawDisplay,
IPDisplayEvent or IPCloseDisplay calls).

shareTime SHARE_PTR in During the IPClaimDisplay call, the I-
Piece can share time and display a progress
bar while it is loading the extended view
data or preparing it for display.

IPMovelnfo Record

When the TeleScope software needs to move a managed document from one location
to another within the file system, it first locates the original file, then loads up the
IPMovelnfo record with information from the database about the file, and calls the
IPMoveFile routine in each I-Piece in priority order. Any I-Piece which recognizes
the file information can make changes to the IPMovelnfo record; specifically, the
I-Piece can add files to the list of files to be moved, and the TeleScope software will
copy or move all the files together.

struct | PMvelnfo {
char fil eType[4];
short nunfil es;
FI LE_REFPTR fil es;

b
Field Type Use Description

fileType char[4] in The 4-character file type of the document
being moved, taken directly from the
editorial table in the database (not from
the file itself).

numkFiles short infout On input, the number of files pointed to
in the files array (which will always initially
be 1). On output, the I-Piece sets this to
the number of files it has placed into the
files array.

files FILE_REFPTR infout On input, this field points to an array of
one (1) FILE_REF structure (see below).
The I-Piece, if it is adding files to the
array, must first allocate space for the new
array (using realloc on Windows, or
SetPtrSize on the Macintosh), and set files

30

TeleScope Design Documentation

I-Piece Design and API

to point to the new array. On the
Macintosh, FILE_REF is an FSSpec
record. On Windows, FILE_REF is a
TCHAR[260] array which contains a path
to the file.

31

TeleScope Design Documentation I-Piece Design and API

Appendix A: Developer Support

North Plains Systems Inc. is committed to supporting third-party developers who
develop I-Pieces for TeleScope. This document is only one example of this. The
following are some of the developer services offered by North Plains Systems:

Developer Pak: A complete development package, consisting of a number of
sample I-Pieces and electronic documentation, will help you get started, and
provide you with a framework in which to build your 1-Piece.

E-Mail Tech Support: We provide developer support via e-mail - simply mail
your questions to the e-mail address provided below.

FTP Access: To access our technical documentation on-line, use the FTP site
listed at the address below. Technical notes are updated often, and product
upgrades are also available.

Web Tech Support: At the Web address shown below, using a World-Wide Web
browser such as Mosaic or NetScape, you can access our on-line documentation
and technical support via HTML.

Telephone Support: Although you will be guaranteed a quicker response time
using our e-mail technical support, in an emergency, we may be able to help you
over the phone. Our main contact number is listed below.

North Plains Systems Inc.
4094 Tea Garden Circle
Mississauga, Ontario
CANADA L5B 2X8

phone: (905) 272-9186
fax: (905) 272-0413
e-mail: devsupport@northplains.com
ftp: ftp.northplains.com/pub/devsupport
www: www.northplains.com/devsupport.htmi

32

